Please use this identifier to cite or link to this item: http://cimat.repositorioinstitucional.mx/jspui/handle/1008/956
BLOWUP AND LIFE SPAN BOUNDS FOR A REACTION-DIFFUSION EQUATION WITH A TIME-DEPENDENT GENERATOR
EKATERINA TODOROVA KOLKOVSKA
Acceso Abierto
Atribución-NoComercial-CompartirIgual
Análisis Estocástico
We consider the nonlinear equation @ @t u(t) = k(t)u(t) + u1+(t), u(0, x) = '(x), x 2 Rd, where := −(−)/2 denotes the fractional power of the Laplacian; 0 < 2, , > 0 are constants; ' is bounded, continuous, nonnegative function that does not vanish identically; and k is a locally integrable function. We prove that any combination of positive parameters d, , , , obeying 0 < d/ < 1, yields finite time blow up of any nontrivial positive solution. Also we obtain upper and lower bounds for the life span of the solution, and show that the life span satisfies T' −/(−d) near = 0.
Department of Mathematics Texas State University
2008
Artículo
Inglés
Investigadores
PROCESOS ESTOCÁSTICOS
Versión publicada
publishedVersion - Versión publicada
Appears in Collections:Probababilidad Y Estadística

Upload archives


File SizeFormat 
ETodorova1.pdf301.01 kBAdobe PDFView/Open