Por favor, use este identificador para citar o enlazar este ítem:
http://cimat.repositorioinstitucional.mx/jspui/handle/1008/935
An Algebraic Formula for the Index of a Vector Field on an Isolated Complete Intersection Singularity | |
XAVIER GOMEZ MONT AVALOS | |
Acceso Abierto | |
Atribución-NoComercial-CompartirIgual | |
Variable Compleja | |
Let $(V,0)$ be a germ of a complete intersection variety in ${\mathbb{C}}^{n+k}$, $n>0$, having an isolated singularity at $0$ and $X$ be the germ of a holomorphic vector field having an isolated zero at $0$ and tangent to $V$. We show that in this case the homological index and the GSV-index coincide. In the case when the zero of $X$ is also isolated in the ambient space ${\mathbb{C}}^{n+k}$ we give a formula for the homological index in terms of local linear algebra. | |
CEDRAM | |
2008 | |
Artículo | |
Inglés | |
Investigadores | |
FUNCIONES DE UNA VARIABLE COMPLEJA | |
Versión publicada | |
publishedVersion - Versión publicada | |
Aparece en las colecciones: | Matemáticas |
Cargar archivos:
Fichero | Tamaño | Formato | |
---|---|---|---|
XGMont.pdf | 472.38 kB | Adobe PDF | Visualizar/Abrir |