Por favor, use este identificador para citar o enlazar este ítem: http://cimat.repositorioinstitucional.mx/jspui/handle/1008/934
ITERATING THE CES`ARO OPERATORS
FERNANDO GALAZ FONTES
Acceso Abierto
Atribución-NoComercial-CompartirIgual
Operadores de Cesaro
The discrete Ces`aro operator C associates to a given complex sequence s = {sn} the sequence Cs ≡ {bn}, where bn = s0+···+sn n+1 , n = 0, 1, . . .. When s is a convergent sequence we show that {Cns} converges under the sup-norm if, and only if, s0 = limn→∞ sn. For its adjoint operator C∗, we establish that {(C∗)ns} converges for any s ∈ 1. The continuous Ces`aro operator, Cf(x) ≡ 1 x x 0 f(s)ds, has two versions: the finite range case is defined for f ∈ L∞(0, 1) and the infinite range case for f ∈ L∞(0,∞). In the first situation, when f : [0, 1] → C is continuous we prove that {Cnf} converges under the sup-norm to the constant function f(0). In the second situation, when f : [0,∞) → C is a continuous function having a limit at infinity, we prove that {Cnf} converges under the sup-norm if, and only if, f(0) = limx→∞ f(x).
American Mathematical Association
2008
Artículo
Inglés
Investigadores
OTRAS
Versión publicada
publishedVersion - Versión publicada
Aparece en las colecciones: Matemáticas

Cargar archivos:


Fichero Tamaño Formato  
FGalaz.pdf126.55 kBAdobe PDFVisualizar/Abrir