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ITERATING THE CESÀRO OPERATORS

FERNANDO GALAZ FONTES AND FRANCISCO JAVIER SOLÍS

(Communicated by Joseph A. Ball)

Abstract. The discrete Cesàro operator C associates to a given complex
sequence s = {sn} the sequence Cs ≡ {bn}, where bn = s0+···+sn

n+1
, n =

0, 1, . . .. When s is a convergent sequence we show that {Cns} converges
under the sup-norm if, and only if, s0 = limn→∞ sn. For its adjoint operator
C∗, we establish that {(C∗)ns} converges for any s ∈ �1.

The continuous Cesàro operator, Cf(x) ≡ 1
x

∫ x
0 f(s)ds, has two versions:

the finite range case is defined for f ∈ L∞(0, 1) and the infinite range case
for f ∈ L∞(0,∞). In the first situation, when f : [0, 1] → C is continuous
we prove that {Cnf} converges under the sup-norm to the constant function
f(0). In the second situation, when f : [0,∞) → C is a continuous function

having a limit at infinity, we prove that {Cnf} converges under the sup-norm
if, and only if, f(0) = limx→∞ f(x).

1. Introduction

We will denote by S the vector space consisting of all complex sequences. If
s ∈ S, we will write s = {sn : n ∈ N0} or s = {s(n) : n ∈ N0}, where N0 ≡ {0} ∪N.
Given s ∈ S, let b be the sequence given by

(1) bn ≡ s0 + . . . + sn

n + 1
, n ∈ N0.

Then C : S → S defined by Cs ≡ b is the (discrete) Cesàro operator.
As usual, let c be the Banach space consisting of all convergent sequences together

with the sup-norm ‖·‖∞, and c0 be its (closed) subspace formed by those sequences
converging to 0. We will denote by ek the sequence satisfying ek(m) = δk,m, k, m ∈
N0. The following two linear functionals defined on c will play a key role:

Ls ≡ lim
n→∞

sn, π(s) ≡ s(0).

Clearly each of them is bounded. It is well known that C(c) ⊂ c, C(c0) ⊂ c0 and
LCs = Ls, ∀ s ∈ c. We also have πCs = πs, ∀ s ∈ c. Moreover, for X = c, c0,
the operator C : X → X is bounded and ‖C‖ = 1.

It is well known that Cs may converge, although the bounded sequence s does
not converge. So in the sense of convergence, we may think of this fact as C making
“better” sequences. Thus the question arises as to how does the sequence of iterates
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{Cns} behave? For s ∈ c, in Theorem 1 we prove that {Cns} converges if, and only
if, s(0) = Ls. In this case we have that {Cns} converges to the constant sequence
s(0).

Theorem 2 deals with the iterates of C∗, the adjoint operator for C : c0 → c0.
We show that for any y ∈ �1 the sequence {(C∗)ny} converges to ϕ(y)e0 where
ϕ(y) =

∑∞
j=0 y(j).

We also analyze the finite range and the infinite range cases for the continuous
Cesàro operator. (One can find in [4] a very interesting exposition of the main
properties of the Cesàro operators.)

In the finite range case we consider f ∈ L∞(0, 1) and define

(2) Cf(x) ≡ 1
x

∫ x

0

f(s)ds, ∀x ∈ (0, 1).

Then Cf ∈ L∞(0, 1) and we obtain a linear operator C : L∞(0, 1) → L∞(0, 1) with
‖C‖ = 1. For f ∈ C[0, 1] we extend the above definition by taking

Cf(0) ≡ f(0), Cf(1) =
∫ 1

0

f(s)ds.

In this situation we also have that C : C[0, 1] → C[0, 1] is a bounded linear operator
and ‖C‖ = 1. For f ∈ C[0, 1], we show in Theorem 3 that {Cnf} always converges
to the constant function f(0).

In the infinite range case we consider f ∈ L∞(0,∞) and define

(3) Cf(x) ≡ 1
x

∫ x

0

f(s)ds, ∀x ∈ (0,∞).

Then Cf ∈ L∞(0,∞) and we obtain a linear operator C : L∞(0,∞) → L∞(0,∞)
with ‖C‖ = 1. If f ∈ C[0,∞) is bounded take Cf(0) ≡ f(0) and let us denote
by C[0,∞] the closed subspace of L∞(0,∞) consisting of all continuous functions
f : [0,∞) → C such that limx→∞ f(x) exists. In this situation we also have that
C takes C[0,∞] into itself and C : C[0,∞] → C[0,∞] is a bounded linear operator
with ‖C‖ = 1. For f ∈ C[0,∞], we prove in Theorem 4 that {Cnf} converges if,
and only if, f(0) = limx→∞ f(x). In this case we have that {Cnf} converges to the
constant function f(0), a result corresponding to that of the discrete case.

2. Discrete case

We will start by discussing a finite dimensional case for the Cesàro operator that
throws light on the general situation. So let m = 0, 1, . . . and consider Cm+1 with
the sup-norm ‖(b0, . . . , bm)‖ ≡ max{|b0|, . . . , |bm|}. The Cesàro operator now takes
the form

C(s0, s1, . . . , sm) ≡
(

s0,
s0 + s1

2
, . . . ,

s0 + s1 + · · · + sm

m + 1

)
.

For s = (s0, . . . , sm) ∈ C
m+1, let M ≡ {(s0, x1, . . . , xm) : x1, . . . , xm ∈ K}. Notice

s ∈ M and C(M) ⊂ M . Take x = (s0, x1, . . . , xm) and y = (s0, y1, . . . , ym) ∈ M .
Then,

‖s0 + x1 + · · · + xj

j + 1
− s0 + y1 + · · · + yj

j + 1
‖ ≤ j

j + 1
‖x − y‖, 2 ≤ j ≤ m.

It follows that
‖Cx − Cy‖ ≤ K‖x − y‖, ∀ y ∈ M,
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with K ≡ (1− 1
m+1 ) < 1. This shows that C is a contraction on M and so it has a

unique fixed point, which is easily seen to be the constant vector (s0, . . . , s0). Thus
we have proved the following.

Proposition 1. If s = (s0, s1, . . . , sm) ∈ Cm+1, then Cns → (s0, . . . , s0).

We now consider the infinite dimensional case.

Theorem 1. Let s ∈ c. Then {Cns} converges if, and only if, s0 = L(s). In this
case, {Cns} converges to (the constant sequence) s0.

Proof. Assume Cns → y. This implies s(0) = π(Cn(s)) → π(y) = y(0), when
n → ∞. Thus s(0) = y(0). We also have Ls = L(Cns) → Ly, when n → ∞. It
follows that Ly = Ls. From Cns → y we have that y is constant and so Ly = y(0).
Hence s(0) = Ls.

To establish the other implication, we will first prove

(4) Cn(ek) → 0 when n → ∞, ∀ k = 1, 2, . . . .

Let us fix n ∈ N. According to G. H. Hardy [2, Sect. 11.12], Cn is the moment
difference operator corresponding to the measure on the interval [0, 1] given by
dµ ≡ fn(t)dt, where

(5) fn(t) ≡ 1
(n − 1)!

logn−1 1
t
, 0 < t ≤ 1.

(A brief discussion of this result can be found in [3, p. 125].) This means that for
any s ∈ c we have

Cns(m) ≡
m∑

j=0

(
m
j

)
sj

∫ 1

0

(1 − t)m−jtjfn(t)dt, ∀m ∈ N0.

Now take k ∈ N. From above we have Cnek(m) = 0, m < k, and

(6) Cnek(m) =
(

m
k

) ∫ 1

0

(1 − t)m−ktkfn(t)dt, k ≤ m.

Let us define gn(0) = 0, gn(t) = tfn(t), 0 < t ≤ 1 and

(7) an ≡ sup{gn(t) : 0 ≤ t ≤ 1}.

Since
∫ 1

0
(1 − t)m−ktk−1dt = (m−k)!(k−1)!

m! [5, Thm. 7.69], from (6) we obtain
|Cnek(m)| ≤ an

k . Thus

(8) ‖Cnek‖∞ ≤ an, ∀ k ∈ N.

Assume in what follows that

(9) an → 0.

Then (4) is obtained from (8) and (9).
Take s ∈ c0 such that s(0) = 0 and let σN ≡

∑N
k=0 skek ≡

∑N
k=1 skek. Given

ε > 0, we have ‖s − σN1‖∞ ≤ ε
2 for some N1 ∈ N. From (4), we can find some

N > N1 such that ‖CnσN‖∞ ≤ ε
2 ∀n ≥ N . Hence

‖Cns‖∞ ≤ ‖CnσN‖∞ + ‖Cn(s − σN )‖∞ ≤ ε

2
+ ‖s − σN‖∞ ≤ ε, ∀n ≥ N.
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Finally, let s ∈ c be such that s(0) = Ls. Then, s = (s − s(0)) + s(0). Since
s − s0 ∈ c0 and π(s − s(0)) = 0, we have

Cns = Cn(s − s0) + Cns0 = Cn(s − s0) + s0 → s0.

All that is now left to prove is (9), and we do this in the following lemma. �

Lemma 1. an → 0 when n → ∞.

Proof. Fix n ∈ N, n ≥ 2, and notice that gn : [0, 1] → R is continuous. Its derivative
is

g′n(t) =
lnn−2 1

t

(n − 2)!

(
ln 1

t

n − 1
− 1

)
, 0 < t ≤ 1.

After simple calculations it follows that gn has t0 ≡ e−n+1 as its unique critical
point and that gn(t0) is its maximum value. Thus

(10) an = gn(t0) =
e−n+1(n − 1)n−1

(n − 1)!
.

Stirling’s formula states that limm→∞

[
m!

e−m mm
√

2πm)

]
= 1 [5, Thm. 5.44].

From this and (10) the conclusion follows. �

3. Iterates of the adjoint of the Cesàro operator

The next result extends Proposition 1 to �∞ and complements Theorem 1. Since
�∞ = (�1)∗, notice that �∞ can be given the weak-∗ topology.

Corollary 1. {Cns} converges weak-∗ to (the constant sequence) s0, for any s ∈
�∞.

Proof. Consider s ∈ �∞, s = 0. Take y ∈ �1 and let ε > 0 be given. First we fix
N ∈ N to satisfy ‖y − yN‖ ≤ ε

4‖s‖∞
, where yN ≡

∑N
j=0 y(j)ej . Since ‖Cn‖ ≤ 1,

this implies

|〈Cns − s0, y〉| = |〈Cns − s0, yN 〉| + |〈Cns − s0, y − yN 〉|

≤
N∑

j=0

(Cns (j) − s0)y(j) +
ε

2
.(11)

From Proposition 1 follows that, for each j ∈ N0, Cns (j) → s0 when n → ∞.
Using this in (11), we conclude that 〈Cns, y〉 → 〈s0, y〉. �

We now consider C : c0 → c0. After some simple calculations we find that its
adjoint C∗ : �1 → �1 is given by

(12) C∗y (m) =
∞∑

j=m

y(j)
j + 1

, m ∈ N0.

Theorem 2. (C∗)ny →
(∑∞

j=0 y(j)
)

e0, ∀ y ∈ �1.
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Proof. Let y ∈ �1. Since weakly convergent sequences in �1 are norm convergent,
to obtain the conclusion we only have to show that {C∗)ny} converges weakly to(∑∞

j=0 y(j)
)

e0. Take s ∈ �∞ = �1
∗. From Corollary 1 we now obtain

〈(C∗)ny, s〉 = 〈y, Cns〉 → 〈y, s0〉 =
∞∑

j=0

y(j)s0

= 〈(
∞∑

j=0

y(j))e0, s〉. �

4. The finite range case

Next we will see that the behavior of the Cesàro operator on the space of contin-
uous complex functions C[0, 1] is the same as that of the Cesàro operator defined
on C

n.

Theorem 3. Cnf → f(0), ∀ f ∈ C[0, 1].

Proof. By a direct calculation we obtain

Cxk =
1

k + 1
xk, k ∈ N0.

Thus Cn1 = 1 and Cnxk → 0, ∀ k ∈ N. Let P (x) ≡ c0 + c1x + · · · + cmxm be a
polynomial. Hence

CnP ≡ c0 +
1
2n

c1x + · · · + 1
(m + 1)n

cmxm.

It follows that CnP → c0 = P (0).
We now consider an arbitrary function f ∈ C[0, 1] and let a positive real number

ε be given. Applying Weierstrass’ Theorem we find a polynomial P such that
‖f − P‖ ≤ ε

3 . By the case discussed above, there is some N ∈ N such that
‖CnP − P (0)‖ ≤ ε

3 , ∀n ≥ N . Let n ≥ N . Since ‖Cn‖ ≤ 1, it follows that

‖Cnf − f(0)‖ = ‖Cnf − Cnf(0)‖

≤ ‖(Cnf − CnP )‖ + ‖(Cn(P − Cnf(0)))‖

= ‖(f − P )‖ + ‖CnP − P (0)‖ + ‖P (0) − f(0)‖ ≤ ε. �

5. The infinite range case

Recall that C[0,∞] consists of all continuous functions f : [0,∞) → C such that
limx→∞ f(x) exists. To analyze C : [0,∞] → [0,∞] we will proceed in a way similar
to that of the discrete Cesàro operator. We define

Lf ≡ lim
x→∞

f(x), π(f) ≡ f(0), ∀ f ∈ C[0,∞].

Clearly both L and π are bounded linear functionals. Moreover, they satisfy

LCf = Lf, πCf = πf, ∀ f ∈ C[0,∞].

Using the change of variables s = xt, (3) can be written as

Cf(x) =
∫ 1

0

f(xt)dt, ∀x ∈ (0,∞).
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More generally, D. W. Boyd proved that

(13) Cnf(x) =
∫ 1

0

f(xt)fn(t)dt, ∀x ∈ (0,∞)

where fn is given by (5) [1, Lemma 2].

Theorem 4. Let f ∈ C[0,∞]. Then {Cnf} converges if, and only if, f(0) = Lf .
In this case, {Cnf} converges to (the constant function) f(0).

Proof. The necessity of the condition is established as in Theorem 1.
To establish sufficiency, we will first assume f(0) = 0 = Lf . Let ε > 0 be given.

We can now choose δ such that 0 < δ < 1 and N ∈ N to satisfy

|f(u)|≤ ε

3
if 0 ≤ u ≤ δ or u ≥ N.

Let x > N . To estimate Cnf(x) using (13), we divide the integration interval [0, 1]
in three parts. Since

∫ 1

0
fn(t)dt = 1, we have

(14)
∫ δ

x

0

|f(xt)| fn(t)dt ≤ ε

3

∫ 1

0

fn(t)dt =
ε

3
.

Similarly, we obtain

(15)
∫ 1

N
x

|f(xt)| fn(t)dt ≤ ε

3

∫ 1

0

fn(t)dt =
ε

3
.

Next, using that fn is a decreasing function and (7), we find
∫ N

x

δ
x

|f(xt)| fn(t)dt ≤ ‖f‖∞
(N − δ)

x
fn(

δ

x
) ≤ ‖f‖∞

(N − δ)
δ

an.

Applying Lemma 1, this implies

(16)
∫ N

x

δ
x

|f(xt)| fn(t)dt ≤ ε

3
, ∀n ≥ N1,

for some N1 ∈ N.
Finally, by (13), (14), (15) and (16) we conclude that

|Cnf(x)|≤ ε, ∀x > N, ∀n ≥ N1.

Now, from the finite range case (with the interval [0, N ] instead of [0, 1]) we find
N2 ∈ N such that

|Cnf(x)|≤ ε, ∀x ∈ [0, N ], ∀n ≥ N2.

This proves the theorem when f ∈ C[0,∞] satisfies f(0) = Lf = 0. If f(0) = Lf ,
then we proceed as in the discrete case. �
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ITERATING THE CESÀRO OPERATORS 2153

References

[1] D. W. Boyd, ‘The spectral radius of averaging operators’. Pacific J. Math., 24(1968), No. 1,
19-28. MR0221308 (36:4360)

[2] G. H. Hardy, Divergent series. Clarendon Press, Oxford, 1949. MR0030620 (11:25a)
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09340

E-mail address: galaz@cimat.mx

CIMAT, Apdo. Postal 402, 36 000 Guanajuato, Gto., Mexico

E-mail address: solis@cimat.mx

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=0221308
http://www.ams.org/mathscinet-getitem?mr=0221308
http://www.ams.org/mathscinet-getitem?mr=0030620
http://www.ams.org/mathscinet-getitem?mr=0030620
http://www.ams.org/mathscinet-getitem?mr=0318948
http://www.ams.org/mathscinet-getitem?mr=0318948
http://www.ams.org/mathscinet-getitem?mr=0322569
http://www.ams.org/mathscinet-getitem?mr=0322569
http://www.ams.org/mathscinet-getitem?mr=604364
http://www.ams.org/mathscinet-getitem?mr=604364

	1. Introduction
	2. Discrete case
	3. Iterates of the adjoint of the Cesàro operator
	4. The finite range case
	5. The infinite range case
	Acknowledgement
	References

