Por favor, use este identificador para citar o enlazar este ítem: http://cimat.repositorioinstitucional.mx/jspui/handle/1008/932
The discrete Szëgo kernel
LAZARO RAUL FELIPE PARADA
Acceso Abierto
Atribución-NoComercial-CompartirIgual
Funciones Discretas
Of concern on this paper are complex-valued functions defined on the integer lattice (i.e. the set Z £ iZ) which are discrete analytic according to the definition given by Ferrand. In particular, we will study a Hilbert space consisting of the boundary values of discrete analytic functions defined on a finite simply connected union of unit squares of the integer lattice (a simple region), which is a discrete version of the Sze¨go space. We will prove that this space admits a reproducing kernel, the discrete Sze¨go kernel and will develop a general method to construct it. To sum up, the main merit of this paper is to present by means of an orthogonal projection operator a way to select among boundary values, those that can be extended to an analytic continuation.
Taylor & Francis
2008
Artículo
Inglés
Investigadores
VARIEDADES COMPLEJAS
Versión publicada
publishedVersion - Versión publicada
Aparece en las colecciones: Matemáticas

Cargar archivos:


Fichero Tamaño Formato  
RFelipe2.pdf299.1 kBAdobe PDFVisualizar/Abrir