Por favor, use este identificador para citar o enlazar este ítem:
http://cimat.repositorioinstitucional.mx/jspui/handle/1008/932
The discrete Szëgo kernel | |
LAZARO RAUL FELIPE PARADA | |
Acceso Abierto | |
Atribución-NoComercial-CompartirIgual | |
Funciones Discretas | |
Of concern on this paper are complex-valued functions defined on the integer lattice (i.e. the set Z £ iZ) which are discrete analytic according to the definition given by Ferrand. In particular, we will study a Hilbert space consisting of the boundary values of discrete analytic functions defined on a finite simply connected union of unit squares of the integer lattice (a simple region), which is a discrete version of the Sze¨go space. We will prove that this space admits a reproducing kernel, the discrete Sze¨go kernel and will develop a general method to construct it. To sum up, the main merit of this paper is to present by means of an orthogonal projection operator a way to select among boundary values, those that can be extended to an analytic continuation. | |
Taylor & Francis | |
2008 | |
Artículo | |
Inglés | |
Investigadores | |
VARIEDADES COMPLEJAS | |
Versión publicada | |
publishedVersion - Versión publicada | |
Aparece en las colecciones: | Matemáticas |
Cargar archivos:
Fichero | Tamaño | Formato | |
---|---|---|---|
RFelipe2.pdf | 299.1 kB | Adobe PDF | Visualizar/Abrir |