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The discrete Szëgo kernel
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( Received 12 February 2007; final version received 25 May 2007 )

Of concern on this paper are complex-valued functions defined on the integer lattice
(i.e. the set Z £ iZ) which are discrete analytic according to the definition given by
Ferrand. In particular, we will study a Hilbert space consisting of the boundary values
of discrete analytic functions defined on a finite simply connected union of unit squares
of the integer lattice (a simple region), which is a discrete version of the Szëgo space.
We will prove that this space admits a reproducing kernel, the discrete Szëgo kernel
and will develop a general method to construct it. To sum up, the main merit of this
paper is to present by means of an orthogonal projection operator a way to select among
boundary values, those that can be extended to an analytic continuation.

Keywords: discrete Szëgo kernel; discrete analytic functions; Szëgo space; Hilbert
space
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1. Introduction

Discrete analytic functions were introduced by Ferrand for the case of the usual square

lattice in the 40s and were studied during the last fifty years in a more general context and

setting by Duffin, Zeilberger and Dym, Lovász, Mercat and others. These investigations

have centred around a programme which attempts to extend many important properties of

the ‘usual’ analytic functions to discrete ‘world’. Almost all the results can be extended to

the discrete setting if previously one finds the appropriate discrete version of the notion

under study.

On the other hand, in some problems of the theory of integrable systems arises the

question of investigating discrete kernel functions, for instance, recently a discrete Green

function has received some attention.

In this paper, we consider one more discrete kernel function: the Szëgo kernel for a

simple region. Let Rs be a simple region. As in the classic case, two basic spaces of

discrete functions would be definable as well. Consequently, we define the spaces L2ð›RsÞ

and L2Að›RsÞ. The first of which consisting of all discrete functions that are L2 over ›Rs

(i.e. the set of all discrete functions defined over ›Rs), while the second space is the

subspace of L2ð›RsÞ of all discrete functions which can be extended to an analytic discrete

function in Rs. We show that L2Að›RsÞ makes sense because such an extension to Rs is

unique as it will be seen below. Next, we achieve the result about the existence of

reproducing kernel associated to L2Að›RsÞ. The essential tool in the construction of a
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discrete Szëgo kernel for a simple region turns out to be a simple description of the

geometry of these regions which allows us to introduce and study the concept of order of a

simple region. Simple regions are those regions for which a discrete Szëgo kernel can be

obtained. The notion of a simple region is very natural and produces two disjoint subsets of

›Rs from which we ‘read’ all the necessary information to construct the discrete Szëgo

kernel.

2. Reviews of two related topics

The content of this section is divided into two main parts. In each of these we will give a

brief introduction to two topics which we try to relate to this paper. The first part deals with

the theory of discrete analytic functions as presented by Duffin [5]. The second part is

concerned about the theory of reproducing kernels, and it is based upon the ideas

developed by Aronsajn [1].

We do not intend to give a complete exposition of the subjects, but instead we wish for

the reader to recall some of the main ideas and results from each theory. Most of the proofs

will be omitted. We must encourage the interested reader to search for the references

below for a more detailed approach on the matter.

2.1 Discrete analytic functions

In this part, we briefly survey the theory of discrete analytic functions following the ideas

introduced by Duffin in his article Basic properties of discrete analytic functions [5]. We

will denote by i the imaginary unit and for any complex number z, we will write �z for its

complex conjugate.

In this paper, we are concerned with the theory of complex-valued functions defined on

the subset of the complex plane M ¼ Z £ iZ, called the integer lattice. For any z0 [ M,

we say that the unit square with corners at {z0; z0 þ 1; z0 þ 1 þ i; z0 þ i} is the unit

square associated to or at z0.

We recall that a function f : M! C is discrete analytic in the unit square associated

to z0 if

f ðz0 þ 1 þ iÞ2 f ðz0Þ

1 þ i
¼

f ðz0 þ iÞ2 f ðz0 þ 1Þ

i 2 1
: ð1Þ

Such functions were first introduced by Ferrand (Lelong) [6] in 1944. Many interesting

properties of discrete analytic functions were obtained later by Duffin [5] which are discrete

versions of well-known results in the theory of functions of a complex variable. A function

which is discrete analytic in every unit square of M is a discrete entire function. In the

following, when there is no risk of confusion, the word ‘discrete’ will be omitted.

We define the following concepts:

1. A region of the integer lattice is the union of unit squares.

2. A simple region of the integer lattice is a finite union of unit squares such that

(a) it is simply connected when considering the unit squares as full blocks

with its boundary and interior included.

(b) its boundary is a simple closed (polygonal) curve, composed of edges of

unit squares.

3. The points on the boundary of a region are called boundary points, and all other

points are called interior points.
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Figure 1 shows an example of a simple region, where the interior points are z0 and z1

and all the other points are boundary points. From now on, whenever we have fixed a point

z0 [ M, we will assume that z1 ¼ z0 þ 1; z2 ¼ z0 þ 1 þ i and z3 ¼ z0 þ i. Also, in the

following we will use the notation f j U f ðzjÞ.

Let z0 be a point in the integer lattice. Duffin defined a discrete analytic function in the

square associated to z0 as follows

f 0 þ if 1 þ i2f 2 þ i3f 3 ¼ 0: ð2Þ

It is easy to see that the definition given by Duffin is equivalent to that of Ferrand. In all

the paper, we shall employ the definition as it was used by Duffin.

Next, we introduce the translation operators X and Y, over the set of functions defined

on M as follows

X nf ðzÞ ¼ f ðz þ nÞ; Y mf ðzÞ ¼ f ðz þ imÞ for all z [ M; m; n [ Z:

Defining the operator L by

L ¼ I þ iX 2 XY 2 iY ;

we have Lf ðz0Þ ¼ f 0 þ if 1 2 f 2 2 if 3. Hence, the discrete analytic condition can be

written as Lf ðz0Þ ¼ 0.

Let f : M! C be a discrete analytic function in the unit square at z0 and put u U Rðf Þ

and v U Iðf Þ. Then,

0 ¼ Lf ðz0Þ ¼ f 0 þ if 1 2 f 2 2 if 3 ¼ u0 þ iv0 þ iðu1 þ iv1Þ2 ðu2 þ iv2Þ2 iðu3 þ iv3Þ

¼ u0 2 v1 2 u2 þ v3 þ iðv0 þ u1 2 v2 2 u3Þ

Thus, we deduce the discrete version of the Cauchy–Riemann equations

u2 2 u0 ¼ v3 2 v1 and u3 2 u1 ¼ v0 2 v2:

Figure 1. Simple region.
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If the operator L0 is given by

L0 ¼ I 2 iX21 2 Y 21X21 þ iY 21;

we define the laplacian operator D ¼ 2L0L,

Df ðz0Þ ¼ 2L0Lf ðz0Þ ¼ 2LL0f ðz0Þ ¼ f 2 þ f 4 þ f 6 þ f 8 2 4f 0: ð3Þ

We say that f : M! C is discrete harmonic at a point z0 [ M if Df ðz0Þ ¼ 0. And

from (3) we deduce that if f is discrete analytic in a region R, then f is discrete harmonic in

the interior of R.

We recall the following very important result.

Theorem 1 (The Maximum Principle). Let R , M a finite region and f : R ! C a

harmonic function in the interior of R. Then

max
z[R

j f ðzÞj ¼ max
z[›R

j f ðzÞj:

i.e. j f j takes its maximum at the boundary of R.

Here, we give a proof of this statement, more in the spirit of this work.

Proof. Asume that f takes its maximum at an interior point z0 of R. Since f is harmonic at z0

we have

0 # 4j f 0j2 ðj f 2j þ j f 4j þ j f 6j þ j f 8jÞ # 4j f 0j2 j f 2 þ f 4 þ f 6 þ f 8j

# j f 2 þ f 4 þ f 6 þ f 8 2 4f 0j ¼ jDf ðz0Þj ¼ 0:

Hence, j f 0j ¼ j f jj, j ¼ 2; 4; 6; 8; in particular, j f j takes its maximum at z2 ¼ z0 þ 1 þ i.

If z2 [ ›R, the result follows. If this is not the case, then by an analog argument j f j

reaches its maximum at z2 ¼ z0 þ 2 þ 2i. This process must end in a point of the

boundary of R, since it is a finite region. This completes the proof. A

Now, We give some information about the discrete theory of integration due to Duffin.

Let a ¼ z0; z1; . . . ; zm ¼ b be a chain of lattice points (jzjþ1 2 zjj ¼ 1,

j ¼ 1; 2; . . . ;m). For a given function f : M! C, we define the line integral by

ðb

a

f dz ¼
1

2

Xm

n¼1

ðf n þ f n21Þðzn 2 zn21Þ:

In the case where we have a closed chain C (a ¼ b), it can be shown thatð
C

f dz ¼
1

2

Xm

n¼1

f nðznþ1 2 zn21Þ:

Thus, when C is a unit square we get

ð
C

f dz ¼
1

2
½ð1 2 iÞf 0 þ ð1 þ iÞf 1 þ ði 2 1Þf 2 þ ð21 2 iÞf 3� ¼

ð1 2 iÞ

2
Lf ðz0Þ
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The proof of the following fact (not given here) is due to Duffin.

Let Rs be a simple region. Thenð
›Rs

f dz ¼
ð1 2 iÞ

2

X
Rs

Lf ; ð4Þ

where
P

Rs
denotes the sum over all the unit squares in Rs.

If we compare the expression (4) with the usual case, it is natural to say that ð1 þ

iÞ=ð4pÞLf ðzÞ is the discrete version of the residue. Although probably for the sake of

simplicity, Duffin defined the residue of f at the square associated to z as Lf ðzÞ. Also, from

the previous proposition it follows that if f es analytic in the simple region Rs, thenð
Rs

f dz ¼ 0:

Another interesting result obtained by Duffin deals with the definition of the derivative

and it is stated in the theorem below. First, for a given function f we define its dual

function, denoted by f 2, as

f 2ðx þ iyÞ ¼ ð21ÞðxþyÞ�fðx þ iyÞ: ð5Þ

Then we have,

Let F be an analytic function in a region R , M. Let a; b [ R and k [ C be a

constant. Then

f ðzÞ ¼ 4

ðz

b

F2dz þ k

� �2

is analytic in R, and

FðzÞ ¼

ðz

a

f dz þ FðaÞ:

All integration paths are assumed to be in R.

The function f given in (5) is called the derivative of F, while the function k2 defined

by k2ðx þ iyÞ ¼ ð21ÞðxþyÞk is said to be a biconstant. Hence, the derivative of a discrete

analytic function is unique up to an arbitrary biconstant.

2.2 Reproducing kernels

Kernels functions (for instance, the Green and the Neumann functions) are of wide

applicability in physics and mathematics in particular in function theory, partial

differential equations, etc. A natural way to construct a kernel function is to express it in

terms of a complete orthonormal system. In this case the kernel function is called

reproducing kernel. The reproducing kernels are of importance in various fields of physics

and mathematics because they make it possible to solve numerically some boundary value

and mapping problems.

We begin this subsection by recalling the definition of a reproducing kernel:

Definition 2. Let ½H; k·; ·lH� be a Hilbert space whose elements are complex-valued

functions defined on a set E. A reproducing kernel for H is a function K : E £ E ! C such

that

. for every y [ E, Kðx; yÞ [ H as a function of x and
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. for every function f [ H, we say that K reproduces this function in the sense that

;y [ E; f ðyÞ ¼ kf ð·Þ;Kð·; yÞlH :

Let us recall a little of the theory of reproducing kernel. It is well known that a

reproducing kernel, if it exists, it is uniquely determined by the Hilbert space H. On the

other hand, if Kðx; yÞ is a reproducing kernel for the Hilbert space H whose elements are

complex-valued functions over a set E, then the following properties hold:

1. Kðx; yÞ ¼ kKð·; yÞ;Kð·; xÞl for all x; y [ E.

2. Kðx; yÞ ¼ Kðy; xÞ for all x; y [ E.

3. Kðy; yÞ $ 0; ;y [ E; and Kðy; yÞ ¼ 0 , Kðx; yÞ ¼ 0 for all x [ E.

It is obvious that the question arise naturally of determining if, given a Hilbert space

composed by complex-valued functions over a set E, it exists a reproducing kernel

associated to this Hilbert space. The answer can be stated in the following form (The

Existence Criterion):

Let H be a Hilbert space composed by complex-valued functions over a set E. Then, H

admits a reproducing kernel Kðx; yÞ if and only if for every y [ E, f 7! f ðyÞ is a bounded

linear functional over H.

Definition 3. A positive matrix defined over a set E is a hermitian function K :

E £ E ! C such that for every finite set {uj}
n
j¼1 , E and arbitrary complex numbers

{cj}
n
j¼1 , C, we have Xn

j¼1

Xn

k¼1

cjckKðxk; xjÞ $ 0:

The following results will be enounced without a proof. Details can be found in Ref.

[1]: Every reproducing kernel is a positive matrix. Moreover, if Kðx; yÞ is a reproducing

kernel, then jKðx; yÞj
2
# Kðx; xÞKðy; yÞ. On the other hand, let Kðx; yÞ be a positive matrix

over a set E. Then it exists a unique Hilbert space H, consisting of complex functions

defined on E, that admits K as a reproducing kernel.

Finally we have,

Theorem 4. Let H be a Hilbert space and HK , H a closed subspace of H. If HK admits a

reproducing kernel Kðx; yÞ, then the map P : H ! H given by

ðPf ÞðyÞ ¼ kf ð·Þ;Kð·; yÞl with f [ H

defines an orthogonal projection operator over HK.

Now, we present the proof of this result for the sake of completeness of this paper.

Proof. The Hilbert space H can be written as a direct sum H ¼ HK%H’
K . That is, every

function f [ H has a unique representation as f ¼ f K þ f’K , with f K [ HK and f’K [ H’
K .

Thus,

ðPf ÞðyÞ ¼ kf ð·Þ;Kð·; yÞl ¼ f K þ f’K ;Kð·; yÞ
� �

¼ kf K ;Kð·; yÞlþ f’K ;Kð·; yÞ
� �

¼ kf K ;Kð·; yÞl ¼ f KðyÞ:

Then, Pf ¼ f K , i.e. P is an orthogonal projection. A
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The usual Szëgo kernel [7].

Let V be a bounded domain of the complex plane such that its boundary is a smooth

curve. Let H2ð›VÞ be the closed subspace of the Hilbert space L2ð›VÞ consisting of the

boundary values of holomorphic functions in V. That is

H2ð›VÞ ¼ {u [ L2ð›VÞj’U : V! C holomorphic with Uj›V ¼ u
� �

;

which we will call the Szëgo space of V.

There is a reproducing kernel, called the Szëgo kernel, naturally associated to V which

arises from considering the orthogonal projection K : L2ð›VÞ!H2ð›VÞ.

3. The discrete Szëgo kernel

In this section, we will discuss the results obtained concerning the discrete version of the

Szëgo kernel. First, we introduce the appropriate L2 space of functions and the

corresponding closed subspace L2A that will be the discrete version of the Szëgo space.

Then we will study some geometric aspects of simple regions of the grid M. Finally, the

fundamental results of this article will be proved.

3.1 Preliminaries

In what follows Rs will denote a simple region of the grid. Let us fix an arbitrary point

z1 [ ›Rs. Since the boundary of Rs is a closed polygonal curve, we can find a closed chain

of grid points {z1; z2; . . . ; zkþ1 ¼ z1} passing through every vertex of ›Rs. We will

identify the semi-closed chain {z1; z2; . . . ; zk}, which is a way of enlisting the points of

›Rs, with the boundary of Rs from here on.

Definition 5. We define the following space of functions

L2ð›RsÞ U f : ›Rs ! C :

ð
›Rs

j f ðzÞj
2
jdzj , 1

� �
¼ {f : ›Rs ! C}:

with the scalar product

kf ; glL 2 ¼

ð
›Rs

f ðzÞgðzÞjdzj ¼
1

2

Xk

j¼1

f ðzjÞgðzjÞjzjþ1 2 zj21j;

where z0 ¼ zk y zkþ1 ¼ z1.

In this definition we introduce a notion of line integral based on the one given by

Duffin, only that we consider jdzj instead of dz.

Since ›Rs ¼ {z1; z2; . . . ; zk} is a finite set, we can think of a function f [ L2ð›RsÞ as a

complex k-vector

f ¼ ðf 1; f 2; . . . ; f kÞ; where f j ¼ f ðzjÞ; j ¼ 1; 2; . . . ; k:

Thus, we can identify the space ½L2ð›RsÞ; k·; ·lL 2� with the Hilbert space ½Ck; k·; ·lL 2�.

Therefore, ½L2ð›RsÞ; k·; ·lL 2 � is a Hilbert space of dimension k. In fact, if
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f ; g [ Ck
¼ L2ð›RsÞ, then kf ; glL 2 ¼ f t Ag, where A is the diagonal positive matrix

Aii ¼
jziþ1 2 zi21j

2
[ 1;

1ffiffiffi
2

p

� �
:

We will denote by Fj (j ¼ 1; 2; . . . ; k) the canonic functions

Fj : ›Rs ! C

FjðziÞ ¼ dij:

(

which are equivalent to the canonic vectors {ej}
k
j¼1 of Ck.

Definition 6. We define the discrete Szëgo space, denoted by L2Að›RsÞ, as follows

L2Að›RsÞ ¼ {f [ L2ð›RsÞj’F : Rs ! C analytic; with Fj›Rs
¼ f }:

That is, L2Að›RsÞ consists of the functions defined on ›Rs which can be extended to an

analytic function on the interior of Rs.

Proposition 7. Let f [ L2Að›RsÞ, then its analytic extension to Rs is unique.

Proof. Let us suppose that F and G are analytic extensions of f to Rs. Since F 2 G is

analytic on Rs, it is consequently harmonic. Thus, by the Maximum Principle

max
Rs

jF 2 Gj ¼ max
›Rs

jF 2 Gj ¼ max
›Rs

j f 2 f j ¼ 0

Therefore F ¼ G, and the proposition follows. A

Since the set of discrete analytic functions on Rs is a linear variety and since L2ð›RsÞ

is finite-dimensional, the subspace L2Að›RsÞ is closed and hence a Hilbert space itself.

Proposition 8. The Hilbert space L2Að›RsÞ admits a reproducing kernel (the discrete

Szëgo kernel).

Proof. Let zj [ ›Rs, with j [ {1; 2; . . . ; k}. We define the linear functional

wj : L2Að›RsÞ! C wjðf Þ ¼ f ðzjÞ:

Then

jwjðf Þj
2
¼ j f ðzjÞj

2
# 2j f ðzjÞj

2
jzjþ1 2 zj21j #

Xk

i¼1

2j f ðziÞj
2
jziþ1 2 zi21j ¼ 4kfk

2
;

that is, jwjðf Þj # 2kfk for every f [ L2Að›RsÞ. Thus, wj is a bounded linear functional for

every j [ {1; 2; . . . ; k}. By the existence criterion, it follows that L2Að›RsÞ admits a

reproducing kernel. A

R. Felipe and M.G. Arroyo374



3.2 A basis for the discrete Szëgo space L2Að›RsÞ

Now we will introduce a concept that will be useful in the study of the geometry of simple

regions.

Definition 9. If a finite region R consists of k unit squares, we say that the region has

order k and we write oðRÞ ¼ k.

Lemma 10. Let Rs be a simple region. Then, cardð›RsÞ ¼ 2n for some n [ N.

Proof. Note that on a bipartite graph every cycle is of even length. A

In this section, we will determine the discrete Szëgo kernel for an arbitrary simple

region Rs. By means of the equation of discrete analiticity (2) given by Duffin, we will find

a subset V of the boundary of the simple region such that for every function f̂ : V! C, it

exists a unique function f [ L2Að›RsÞ, with f jV ¼ f̂. The values of f over ›RsnV will be

linear combinations of its values on V. That is, for every z [ D U ›RsnV, there exist

complex numbers {avðzÞ}v[V, independent of f, such that

f ðzÞ ¼
X
v[V

avðzÞf ðvÞ: ð6Þ

Such a set V , ›Rs will be said to satisfy the spanning condition on the simple region Rs.

We will then show how to use the linear relations of (6) to construct a basis for the

Szëgo space, and by means of this basis, we will obtain the Szëgo kernel. Finally, we will

show the Szëgo orthogonal projection.

Really, the case to prefer a given set V of Cauchy data to another is a matter of debate.

For instance, we can take half þ 1 of boundary vertices as V. In fact, as we can see the

non-upper-right boundary vertices is such a ‘good half plus one’.

3.2.1 Examples

Before introducing a general method to construct the set V defined above, let us consider

the following examples.

Example 1. Let us consider a simple region Rs of order 1 (Figure 2), and let f [ L2Að›RsÞ

be an arbitrary function. Then, f is analytic on the sole unit square of Rs; that is,

f 1 þ if 2 2 f 3 2 if 4 ¼ 0. Then we can write any of the function’s values, say f 3, as a linear

Figure 2. Simple region of order 1.
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combination of the other three values:

f 3 ¼ f 1 þ if 2 2 if 4: ð7Þ

In this way, the value f 3 is uniquely determined by this linear combination, whose

coeficients do not depend on the function, but only on the region and on Duffin’s equation.

Thus, a function defined arbitrarily on the vertices z1, z2 and z4 has a unique analytic

extension to ›Rs (¼ Rs, in this case) which is defined at z3 by (7). Thus the set V ¼

{z1; z2; z4} clearly satisfies the spanning condition.

Note that in this case we could have chosen any other triplet of vertices to define V, so

that it is not unique in general. Also, it is clear that V cannot contain less than three

elements if the analytic extension is to be unique, neither it can consist of the four vertices

because not every function defined on a square is discrete analytic there.

Since there are several sets satisfying the spanning condition for a given simple region,

we will give a general method to choose one that will only depend on the region.

Following the idea suggested by the simple example above we propose the following

method.

Method to find V: Let Rs be a simple region of the integer lattice and let V ; VðRsÞ be

its set of vertices. We define the set D , V consisting of the upper-right vertices of all the

unit squares of Rs. We set VðRsÞ U VnD.

It is obvious that a vertex v of a simple region is an interior vertex if and only if the four

unit squares of the integer lattice of which it is a vertex belong to the simple region. From

the method described above we see that the set VðRsÞ consists of all vertices in Rs that are

not a right-upper vertex of any square in the region. Hence, we have the desired property

VðRsÞ , ›Rs.

As one can see that the dimension of the Szëgo space is the half the number of

boundary points plus one (see the subsection 3.3 for more detail), indeed any subset of the

boundary with the right cardinal without upper-right boundary vertices will do when

the boundary is simply connected, it is simply discrete Hodge theory. Therefore, the

demonstration of the fact that the non-upper-right boundary vertices satisfy the spanning

condition is simply stating that their number is ððj›RsjÞ=2Þ þ 1. We do not present a proof

of this fact here which can be seen in Ref. [2] where the notion of discrete integrability is

put onto firm grounds, although it does not talk about reproducing kernels, which is the

topic here.

Note that, even if the subset of boundary points satisfying the spanning condition can

be chosen in several ways, one cannot choose ANY subset with cardinal ‘half þ1’. For

instance, consider the simple region consisting of two squares, as the one shown in

Example 2 (Figure 3). It has 6 boundary points, so the Szëgo space has dimension

6=2 þ 1 ¼ 4. However, we cannot choose the four vertices of one of the unit squares of

the simple region to be in our subset of the boundary, since the analyticity may not be

Figure 3. Simple region of order 2.
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satisfied in that square and the spanning condition will not hold. This justifies our

introduction in this paper of the non-upper-right corner choice of the vertices, even if there

is no special reason to choose this method from others that also work.

Now, we would like incorporate two more examples to justify our method.

In the following examples we will show that, in addition, the set VðRsÞ satisfies the

spanning condition.

Example 2. Let us consider a simple region Rs of order 2, as the one shown in Figure 3. Let

f [ L2Að›RsÞ be an arbitrary function. Since Rs has no interior points, then f is analytic

on both squares of the region (there is no ‘analytic extension’ to the interior of Rs).

Following our method we find that VðRsÞ ¼ {z1; z2; z3; z6}, consisting of the vertices

not being upper-right corners of unit squares of Rs. We apply Duffin’s equation on the left

square of the region, to obtain the value of f at z5 as a linear combination of the values of f

in the vertices of VðRsÞ:

f 5 ¼ f 1 þ if 2 2 if 6: ð8Þ

Now, we use Duffin’s equation in the right square of the region and isolate the value of

f at z4:

f 4 ¼ f 2 þ if 3 2 if 5: ð9Þ

Replacing the value f 5 in Equation (9) by the one found in (8) we obtain

f 4 ¼ f 2 þ if 3 2 iðf 1 þ if 2 2 if 6Þ ¼ 2if 1 þ 2f 2 þ if 3 2 f 6: ð10Þ

In this way we are able to represent the values of f on D ¼ {z4; z5} as a linear

combination of its values on V. Clearly, a function defined arbitrarily on V has a unique

extension to all of ›Rs ¼ Rs defined by (8) and (10); thus, the set V satisfies the spanning

condition.

As it can be seen from the examples above, for rectangular regions our method always

puts in V the boundary vertices found at the very left column of the region and those found

on the lowest row. However, for more general regions the result is slightly different, as it

will be shown by the following example.

Example 3. Let Rs be a simple region of order 9, as the one appearing in Figure 4. Note that

the boundary points are ›Rs ¼ {z1; z2; . . . ; z14}, while the interior points of the region are

z15; z16 and z17.

Figure 4. Simple region of order 9.
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As before, we define V ; VðRsÞ as the set of points not being upper-right corners of

unit squares of the region, V ¼ {z1; z7; z8; . . . ; z13}.

Let f [ L2Að›RsÞ be arbitrary. Since f has a unique analytic extension to the interior

of Rs, we denote this extension by the same letter f without risk of confusion. We now look

for the linear combinations of the values of f on V that will determine those on

D ¼ ›RsnV. We use Duffin’s equation at lowest-left unit square of Rs to isolate the value

of f at the upper-right vertex in terms of the other three vertices. Then, we do the same at

the next unit square to the right, substituting the linear combination obtained in the

previous step. We continue in this way through all the lower unit squares of the region. In

this example we have, for the lower-left unit square

f 15 ¼ f 11 þ if 12 2 if 10;

then to the right of this square we get

f 14 ¼ f 12 þ if 13 2 if 15 ¼ f 12 þ if 13 2 iðf 11 þ if 12 2 if 10Þ ¼ 2f 10 2 if 11 þ 2f 12 þ if 13:

So we have found the linear combination of the values of f on V that determine

uniquely its value f 14. Of course this linear combination depends only of the region and of

V; the coefficients being given by Duffin’s equation and recursive substitution.

We continue this process in the next row up, from left to right. Using Duffin’s equation

at each square of this row and subsituting all the values of f (in terms of its values on V)

that have been found in previous steps. Then we proceed to the next row up, until we have

used Duffin’s equation once on every unit square of the region. In this way we find the

linear combinations desired, and the set V satisfies the spanning condition.

In the previous example, we describe the process to obtain the linear combinations of

the values of f on V that determine uniquely its values on D. Note that we apply Duffin’s

equation once at every unit square of the region. Thus, if we define arbitrarily a function

f̂ : V! C and we extend it to a function f : ›Rs ! C defined at D by the linear

combinations obtained, we have that f [ L2Að›RsÞ automatically.

3.2.2 Building a basis for L2Að›RsÞ

In this section, we will use the results obtained above to build a basis for the Szëgo space

associated to a given simple region Rs. The spanning property of the set VðRsÞ will be

fundamental in this task. Only first we are compelled to introduce a simple notation to

simplify our discussion.

Let Rs be a fixed simple region of the integer lattice and let ›Rs ¼ {z1; z2; . . . ; zk} be

its boundary (semi-closed chain). We define the set VðRsÞ ; V , ›Rs as explained

before and we set D U ›RsnV. We introduce the next notation for the disjoint set of

indices:

IV ¼ {j [ Njzj [ V}

ID ¼ {j [ Njzj [ D};

Suppose that f [ L2Að›RsÞ is a given function. Then the values of f on D are given by a

linear combination of its values on V, say

f i ¼
X
j[IV

aijf j; for each i [ ID
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where the coefficients aij depend only of the simple region (and the method used to define

V) and not of the function f [ L2Að›RsÞ. We write f in terms of the canonic basis of the

Hilbert space L2ð›RsÞ, {Fj}
k
j¼1 as follows:

f ¼
Xk

j¼1

f jFj ¼
X
j[IV

f jFj þ
X
i[ID

f iFi ¼
X
j[IV

f jFj þ
X
i[ID

X
j[IV

aijf j

 !
Fi ð11Þ

Now, let us define the following elements of L2ð›RsÞ:

vj ¼ Fj þ
X
i[ID

aijFi; j [ IV

The set {vj}j[IV
is linearly independent because the canonic function Fj appears only in

vj for each j [ IV. On the other hand, we have that

X
j[IV

f jvj ¼
X
j[IV

f j Fj þ
X
i[ID

aijFi

" #
¼
X
j[IV

f jFj þ
X
i[ID

X
j[IV

aijf j

 !
Fi ¼ f ;

so that the functions {vj}j[IV
generate the subspace L2Að›RsÞ. Hence these functions

form a basis of the Szëgo space associated to Rs. It follows that every subset of the

boundary of Rs that satisfies the spanning condition has the same cardinality, since we can

define a basis for L2Að›RsÞ indexed by its elements. This cardinality is of course the

dimension of the Szëgo space.

Now we are in the position of finding the Szëgo kernel for any given simple region

Rs. What we do is apply to the basis {vj}j[IV
defined above the Gram–Schmidt

orthonormalization process. Where the scalar product is not the usual dot product of Ck but

the one described in Definition 5. After this process we will obtain an orthonormal basis

{uj}j[IV
, and from the general theory of reproducing kernels we simply write

Ksðx; yÞ ¼
X
j[IV

uiðxÞujðyÞ;

which is the Szëgo kernel for the simple region Rs. Now, it is clear that the map

Ps : L2ð›RsÞ! L2ð›RsÞ given by

ðPsf ÞðyÞ ¼ kf ð·Þ;Ksð·; yÞl with f [ L2ð›RsÞ

defines the Szëgo orthogonal projection operator over L2Að›RsÞ.

3.3 About the dimension of the Szëgo space

Note that if Rs is a simple region then, dimðL2Að›RsÞÞ ¼ iðRsÞ þ 1. In fact, as it is well

known discrete analytic functions decompose onto independent harmonic functions on the

even graph and on its odd dual graph (see [8]). Analyticity associates to a given harmonic

function on the even graph a harmonic function on the dual graph, unique up to an additive

constant. Therefore the dimension of the Szëgo space should be half the number of boundary

points plus one, and this is true in any combinatorics, not only in the flat square case.

We recommend to read the interesting papers [3,4] where certain pairing of two

harmonic functions is presented in terms of ‘response of an electrical network’ but the idea

is essentially the same, in this case the set of compatible tensions and currents was

pinpointed.
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Finally, we believe that this kernel could be used and generalized to ‘less’ rigid lattices

(we are thinking in random tiling domain). Also we hope to find the relation between the

discrete Szëgo kernel and the Jordan algebras.
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