Por favor, use este identificador para citar o enlazar este ítem: http://cimat.repositorioinstitucional.mx/jspui/handle/1008/931
Quasi-Jordan Algebras
LAZARO RAUL FELIPE PARADA
Acceso Abierto
Atribución-NoComercial-CompartirIgual
Algebras de Jordan
In this article we introduce a new algebraic structure of Jordan type and we show several examples. This new structure, called “quasi-Jordan algebras,” appears in the study of the product x y = 1 2 x y + y x where x y are elements in a dialgebra D . The quasi-Jordan algebras are a generalization of Jordan algebras where the commutative law is changed by a quasicommutative identity and a special form of the Jordan identity is retained. We show a few results about the relationship between Jordan algebras and quasi-Jordan algebras. Also, we compare quasi-Jordan algebras with some structures. In particular, we find a special relation with Leibniz algebras. We attach a quasi-Jordan algebra to any ad-nilpotent element of index of nilpotence at most 3 in a Leibniz algebra.
Taylor & Francis
2008
Artículo
Inglés
Investigadores
ÁLGEBRAS NO ASOCIATIVAS
Versión publicada
publishedVersion - Versión publicada
Aparece en las colecciones: Matemáticas

Cargar archivos:


Fichero Tamaño Formato  
RFelipe1.pdf307.32 kBAdobe PDFVisualizar/Abrir