Por favor, use este identificador para citar o enlazar este ítem:
http://cimat.repositorioinstitucional.mx/jspui/handle/1008/931
Quasi-Jordan Algebras | |
LAZARO RAUL FELIPE PARADA | |
Acceso Abierto | |
Atribución-NoComercial-CompartirIgual | |
Algebras de Jordan | |
In this article we introduce a new algebraic structure of Jordan type and we show several examples. This new structure, called “quasi-Jordan algebras,” appears in the study of the product x y = 1 2 x y + y x where x y are elements in a dialgebra D . The quasi-Jordan algebras are a generalization of Jordan algebras where the commutative law is changed by a quasicommutative identity and a special form of the Jordan identity is retained. We show a few results about the relationship between Jordan algebras and quasi-Jordan algebras. Also, we compare quasi-Jordan algebras with some structures. In particular, we find a special relation with Leibniz algebras. We attach a quasi-Jordan algebra to any ad-nilpotent element of index of nilpotence at most 3 in a Leibniz algebra. | |
Taylor & Francis | |
2008 | |
Artículo | |
Inglés | |
Investigadores | |
ÁLGEBRAS NO ASOCIATIVAS | |
Versión publicada | |
publishedVersion - Versión publicada | |
Aparece en las colecciones: | Matemáticas |
Cargar archivos:
Fichero | Tamaño | Formato | |
---|---|---|---|
RFelipe1.pdf | 307.32 kB | Adobe PDF | Visualizar/Abrir |