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QUASI-JORDAN ALGEBRAS
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In this article we introduce a new algebraic structure of Jordan type and we show
several examples. This new structure, called “quasi-Jordan algebras,” appears in the
study of the product

x � y �= 1
2
�x � y + y � x��

where x� y are elements in a dialgebra �D�����. The quasi-Jordan algebras are a
generalization of Jordan algebras where the commutative law is changed by a quasi-
commutative identity and a special form of the Jordan identity is retained. We show a
few results about the relationship between Jordan algebras and quasi-Jordan algebras.
Also, we compare quasi-Jordan algebras with some structures. In particular, we find
a special relation with Leibniz algebras. We attach a quasi-Jordan algebra to any
ad-nilpotent element of index of nilpotence at most 3 in a Leibniz algebra.
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INTRODUCTION

There are three strongly related classes of algebras: associative, Jordan, and
Lie algebras. It is known that any associative algebra A becomes a Jordan algebra
A+ under the symmetric product (Jordan product) x • y �= 1

2 �xy + yx� and becomes
a Lie algebra under the skew-symmetric product (Lie bracket) �x� y� �= xy − yx.
Moreover, we know from the works of Tits, Kantor, and Koecher that Jordan
algebras can be imbedded into Lie algebras (see Kantor, 1964; Koecher, 1967; Tits,
1962). In particular, for any Jordan algebra J there is a Lie algebra L�J� such that J
is a subspace of L�J� and the product of J can be expressed in terms of the bracket
in L�J� (see Kantor, 1964; Koecher, 1967; Tits, 1962).
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It is known that the universal enveloping algebra of a Lie algebra has the
structure of an associative algebra. More recently, Loday introduced the notion of
Leibniz algebras (see Loday, 1993), which is a generalization of Lie algebras. Loday
also showed that the relationship between Lie algebras and associative algebras
can be translated into an analogous relationship between Leibniz algebras and the
so-called dialgebras (see Loday, 2001) which are a generalization of associative
algebras. In particular, Loday showed that any dialgebra �D����� becomes a
Leibniz algebra DLeib under the Leibniz bracket �x� y� �= x � y − y � x and the
universal enveloping algebra of a Leibniz algebra has the structure of a dialgebra
(see Loday, 2001 or Loday and Pirashvili, 1993).

Our aim is to discover a new generalization of Jordan algebras. This new
structure, called quasi-Jordan algebra, is noncommutative in general although it is
not in general equivalent to a noncommutative Jordan algebra (see Bremner et al.,
2008, Section 6) and satisfies a special Jordan identity. The quasi-Jordan algebras
appear in the study of the product

x � y �= 1
2
�x � y + y � x��

where x and y are elements in a dialgebra D over a field K of characteristic
different from 2. They also appear associated to other products defined over Jordan
bimodules and vector spaces of linear transformations.

In the first section, we study the algebra D+, where D is a dialgebra. After
the natural construction of the symmetrization D+, we give the definition of quasi-
Jordan algebras and show some examples.

In the second section we present other examples and show several properties.
In particular, in this section we study the relationship between quasi-Jordan algebras
and noncommutative Jordan algebras.

In the last section we define the concept of a Q-Jordan element in Leibniz
algebras and we show how it is possible to attach a quasi-Jordan algebra to any
Q-Jordan element of a Leibniz algebra (over a field of characteristic different from
2 and 3). This result follows a construction given by Fernández, García, and Gómez
(see Fernández López et al., 2007).

The fundamental problem that we would like to study in a future article is the
imbedding of quasi-Jordan algebras into Leibniz algebras.

1. ALGEBRAIC STRUCTURES OF JORDAN TYPE
GENERATED BY DIALGEBRAS

Around 1990, Loday introduced the notions of Leibniz algebras and
diassociative algebras (dialgebras) (see Loday, 2001).

Definition 1. A Leibniz algebra over a field K is a K-vector space L equipped
with a binary operation, called Leibniz bracket, �·� ·� � L× L → L, which satisfies the
Leibniz identity

�x� �y� z�� = ��x� y�� z�− ��x� z�� y�� for all x� y� z ∈ L� (L)

If the bracket is skew-symmetric, then L is a Lie algebra.
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Example 2. Let L be a Lie algebra and let M be a L-module with action
M ×L→M , �m� x� �→ mx. Let f � M → L be a L-equivariant linear map, i.e.,

f�mx� = �f�m�� x�� for all m ∈ M and x ∈ L�

Then one can put a Leibniz structure on M as follows:

�m� n�′ �= mf�n�� for all m�n ∈ M�

Additionally, the map f defines a homomorphism between Leibniz algebras, since

f��m� n�′� = f�mf�n�� = �f�m�� f�n���

Example 3. Let �A� d� be a differential associative algebra (so d�ab� = da b + adb
and d�a db� = dadb = d�da b�). Define the bracket on A by the formula

�a� b� �= adb − db a

The vector space A equipped with this bracket is a Leibniz algebra.

It follows from the Leibniz identity (L) that in any Leibniz algebra we have

�x� �y� y�� = 0� �x� �y� z��+ �x� �z� y�� = 0�

Let L be a Leibniz algebra. Let Lann be the subspace of L spanned by elements
of the form �x� x�, x ∈ L. For any x� y ∈ L, we define

ann�x� y� �= �x� y�+ �y� x� ∈ Lann�L��

If we take the set

Zr�L� = �z ∈ L � �x� z� = 0�∀x ∈ L	�

we obtain that:

1. Lann ⊂ Zr�L�;
2. Lann and Zr�L� are two-sided ideals of L;
3. �Zr�L�� L� ⊂ Lann�

The quotient of the Leibniz algebra L by the ideal Lann gives a Lie algebra
denoted by LLie. Moreover, the ideal Lann is the smallest two-sided ideal of L such
that L/Lann is a Lie algebra. The quotient map 
 � L → LLie is a homomorphism of
Leibniz algebras. Besides 
 is universal with respect to all homomorphisms from L
to another Lie algebra L′, i.e., the following diagram commutes:

L

→ LLie

↘ ↓
L′�
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Since Lann ⊂ Zr�L�, we see that

LLie �= L/Zr�L�

is also a Lie algebra. Thus by definition one has a central extension of Lie algebras

0 → La → LLie → LLie → 0�

where La = Zr�L�/Lann.
The Leibniz algebras are in fact right Leibniz algebras. For the opposite

structure (left Leibniz algebras), the left Leibniz identity is

��x� y�′� z�′ = �y� �x� z�′�′ − �x� �y� z�′�′� (L′)

Definition 4. A dialgebra over a field K is a K-vector space D equipped with two
bilinear associative products

� � D×D → D�

� � D×D → D

satisfying the identities

x � �y � z� = x � �y � z�� (D1)

�x � y� � z = x � �y � z�� (D2)

�x � y� � z = �x � y� � z� (D3)

Observe that the analog of formula (D2), but with the product symbols
pointing outward, is not valid in general in dialgebras: �x � y� � z = x � �y � z�.

A morphism of dialgebras from D to D′ is a linear map f � D → D′ such that

f�x � y� = f�x� � f�y� and f�x � y� = f�x� � f�y��

for all x� y in D.
A bar-unit in D is an element e in D such that

x � e = x = e � x� for all x ∈ D�

A bar-unit needs not to be unique. The subset of bar-units of D is called its Halo.
A unital dialgebra is a dialgebra with a specified bar-unit e. The problem of adding
a bar-unit to dialgebras remains open.

Observe that if a dialgebra has an element � which satisfies � � x = x for any
x ∈ D, then �=� and D is an associative algebra with unit �.

Example 5. If A is an associative algebra, then the formula x � y = xy = x � y
defines a structure of dialgebra on A.
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Example 6. If �A� d� is a differential associative algebra, then the formulas x �
y = x dy and x � y = dx y define a structure of dialgebra on A.

The next example of dialgebra was studied in Felipe et al. (2005).

Example 7. Let V be a vector space and fix � ∈ V ′ (the algebraic dual). Then one
can define a dialgebra structure on V by setting x � y = ��y�x and x � y = ��x�y,
denoted by V�. If � = 0, then V� is a dialgebra with nontrivial bar-units. Moreover,
its halo is an affine space modeled after the subspace Ker �.

If D is a dialgebra and we define the bracket �·� ·� � D×D → D by

�x� y� �= x � y − y � x� for all x� y ∈ D�

then �D� �·� ·�� is a Leibniz algebra. Moreover, Loday showed that the following
diagram is commutative:

Dias
−→ Leib

↑ ↑
As

−→ Lie

where Dias, As, Lie, and Leib denote, respectively, the categories of dialgebras,
associative, Lie, and Leibniz algebras (see Loday, 2001).

If we translate the quasi-multiplication (Jordan product) to the dialgebra
framework, we obtain a new algebraic structure of Jordan type. Let D be a dialgebra
over a field K of characteristic different from 2. We define the product � � D×D →
D by

x � y �= 1
2
�x � y + y � x�� (�1)

for all x� y ∈ D.
Simple calculations show that the product � satisfies the identities

x � �y � z� = x � �z � y� (QJ1)

�y � x� � x2 = �y � x2� � x (QJ2)

x2 � �x � y� = x � �x2 � y�� (QJ3)

but the product � is noncommutative in general.

Note 8. Chapoton introduced the notion of commutative dialgebra. A dialgebra D
is commutative if the Leibniz algebra DLeib has trivial product (i.e., if x � y = y � x,
for all x� y in D (see Chapoton, 2001)). In this case, if D is a commutative dialgebra,
�D� �� is associative and satisfies the identity

x � �y � z� = x � �z � y�� for all x� y� z ∈ D�

These algebras are called Perm algebras (see Chapoton, 2001, p. 105).
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If D is a unital dialgebra, with a specific bar-unit e, we have that x � e = x, for
all x in D. This implies that e is a right unit for the algebra �D� ��. In this case we
have by (QJ2) and (QJ3) that

x2 � x = x � x2 (1)

and

x2 � x2 = �x2 � x� � x� (2)

for all x� y in D.
Then all algebras �D� �� that satisfy the identities (QJ1), (QJ2), and (QJ3) with

right unit e defined over a field of characteristic zero are power-associative. If D can
be embedded in a unital dialgebra (1) is satisfied.

In this part we are going to introduce the definition of quasi-Jordan algebra.

Definition 9. A quasi-Jordan algebra is a vector space � over a field K of
characteristic different from 2 equipped with a bilinear product � � � × � → � that
satisfies

x � �y � z� = x � �z � y� (right commutativity) (QJ1)

�y � x� � x2 = �y � x2� � x (right Jordan identity)� (QJ2)

for all x� y� z ∈ �, where x2 = x � x.

Note that in terms of the left and right multiplicative maps Lx and Rx, defined
for x ∈ � by Lx�y� = x � y and Rx�y� = y � x, for all y ∈ �, the identities (QJ1) and
(QJ2) are equivalent to

LxLy = LxRy (QJ1*)

RxRx2 = Rx2Rx (QJ2*)

There is an analogous structure if we define a product � � � × � → � by x �
y �= y � x, for all x� y ∈ �. This product satisfies the identities

�x � y� � z = �y � x� � z (left commutativity) (QJ1′)

x2 � �x � y� = x � �x2 � y�� (left Jordan identity) (QJ2′)

for all x� y ∈ �, where x2 = x � x.
We will only consider the right quasi-Jordan algebras.

Note 10. The Jordan and Perm algebras are obvious examples of quasi-Jordan
algebras.
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2. EXAMPLES AND PROPERTIES OF QUASI-JORDAN ALGEBRAS

In this section we show other examples of quasi-Jordan algebras and we
prove some properties. First, we recall the definitions of Jordan algebra and Jordan
bimodule.

Definition 11. Let J be a vector space over a field K of characteristic different
from 2. We say that J is a Jordan algebra over J if there is a product • � J × J → J
that satisfies the identities

a • b = b • a (3)

and

a2 • �b • a� = �a2 • b� • a� (4)

for all a� b ∈ J , where a2 = a • a.

Definition 12. Let J be a Jordan algebra and let M be a vector space over the
same field as J . Then M is a Jordan bimodule for J in case there are two bilinear
compositions �m� a� �→ ma and �m� a� �→ am, for all m ∈ M and a ∈ J , satisfying

ma = am (5)

and

�a2�m� a� = �a2� b�m�+ 2�ma� b� a� = 0� (6)

for all m ∈ M and a� b ∈ J , where �a� b� c� denotes the associator.

Example 13. Let J be a Jordan algebra and let M be a Jordan bimodule. A linear
map f � M → J is called J -equivariant over M if f�am� = a • f�m�, for all m ∈ M
and a ∈ J . If f is a J -equivariant map over M , then we define the product � � M ×
M → M by

m � n = f�n�m� for all m�n ∈ M� (� 2)

The product � satisfies the identities

m � �n � s� = m � �s � n� (QJ1)

�n �m� �m2 = �n �m2� �m (QJ2)

m � �n �m2�+ 2�m2 � n� �m = �m � n� �m2 + 2m2 � �n �m�� (QJ4)

for all m�n� s ∈ M , but it is, in general, not commutative.

If we compare the products � defined by (�1) and (� 2), these products satisfy
the identities (QJ1), (QJ2), and (QJ4).
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Another way to define a product over Jordan algebras and Jordan bimodules
is the following: over the vector space J ×M , where J is a Jordan algebra and M is
a Jordan bimodule over J , we define the product � by

�a�m� � �b� n� = �ab�mb�� for all a� b ∈ J and m�n ∈ M�

For simplicity we write �a�m�b = �ab�mb�. This product is a particular case
of the product defined by (� 2). If we define the projection map 
J � J ×M → J by

J�a�m� = a, then 
J��a�m�b� = ab = a
J�b� n� and this is equivalent to


J��a�m� � �b� n�� = 
J�a�m� • 
J�b� n��

for all a� b ∈ J and m�n ∈ M .
We have that J ×M is a Jordan bimodule over J with bilinear compositions

defined by a�b� n� = �ab� an� and �b�m�a = �ba�ma�. The map 
J defined over J ×
�J ×M� is J -equivariant since


J��a�m�b� = 
J�a�m� • b� for all b ∈ J and �a�m� ∈ J ×M�

Now, we are going to construct a quasi-Jordan algebra with respect to a vector
space and its Jordan algebra of linear transformations.

Example 14. Let V be a vector space over a field K with a characteristic different
from 2 and let gl+�V� be a Jordan algebra of linear transformations over V with a
product defined by

A • B = 1
2
�AB + BA��

where AB denotes the composition of the maps A and B. We consider the vector
space gl+�V�× V and we define the product � � �gl+�V�× V�× �gl+�V�× V� →
gl+�V�× V by

�A� u� � �B� v� = �A • B�Bu�� (�4)

for all A�B ∈ gl�V� and u� v ∈ V . This product satisfies the identities

�A� u� � ��B� v� � �C�w�� = �A� u� � ��C�w� � �B� v�� (QJ1)

and

��B� v� � �A� u�� � �A� u�2 = ��B� v� � �A� u�2� � �A� u�� (QJ2)

for all A�B ∈ gl+�V� and u� v ∈ V , where �A� u�2 = �A� u� � �A� u�.
This algebra is power-associative and �Id� v�, where Id denotes the identity

map over V , is a right unit which is not a left unit.

Following Kinyon and Weinstein’s ideas (see Kinyon and Weinstein, 2001), in
this part we will obtain Jordan algebras from quasi-Jordan algebras and we show
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a universal property about homomorphisms from quasi-Jordan algebras to Jordan
algebras.

Let � be a quasi-Jordan algebra. A subspace I ⊂ � is called left (resp., right)
ideal if for any a ∈ I and x ∈ � we have a � x ∈ I (resp., x � a ∈ I). If I is both left
and right ideal, then I is called a two-sided ideal.

For a quasi-Jordan algebra � we put

Zr��� = �z ∈ � � x � z = 0�∀x ∈ �	�

We denote by �ann the subspace of � spanned by elements of the form x � y −
y � x, with x� y ∈ �. We have that � is a Jordan algebra if and only if �ann = �0	.

It follows from the right commutativity (QJ1) that in any quasi-Jordan algebra
we have

x � �y � z− z � y� = 0�

The last identity implies

�ann ⊂ Zr����

Lemma 15. Let � be a quasi-Jordan algebra. Then �ann and Zr��� are two-sided
ideals of �. Moreover,

�Zr��� � �� ⊂ �ann�

Proof. Because �ann ⊂ Zr��� and � � Zr��� = 0 it suffices to show the last
inclusion. For all z ∈ Zr��� and x ∈ � by definition we have x � z = 0 and

z � x = z � x − x � z ∈ �ann�

Then Zr��� � � ⊂ �ann and �ann� Zr��� are two-sided ideals of �. �

Let ��� �� be a quasi-Jordan algebra. If we consider the quotient algebra
�Jor �= �/�ann we see that �Jor is a Jordan algebra. Moreover, the ideal �ann is the
smallest two-sided ideal in � such that �/�ann is a Jordan algebra. In effect, let I be
any two-sided ideal of � such that �/I is a Jordan algebra, then x � y − y � x + I = I
and this implies that �ann ⊂ I . The quotient map 
 � � → �Jor is a homomorphism
of quasi-Jordan algebras. Besides 
 is universal with respect to all homomorphisms
from � to another Jordan algebra J , this is equivalent to the fact that following
diagram commutes:

� 
→ �Jor

↘ ↓
J�

A right unit in a quasi-Jordan algebra � is an element e in � such that x � e =
x, for all x ∈ �.



QUASI-JORDAN ALGEBRAS 1589

Let � be a quasi-Jordan algebra, if there is an element � in � such that � �
x = x, then � is a classical Jordan algebra and � is a unit. For this reason we only
consider right units over quasi-Jordan algebras.

It is possible to attach a unit to any Jordan algebra, but in quasi-Jordan
algebras the problem of attaching a right unit is an open problem. Additionally, the
right units in quasi-Jordan algebras are not unique (see Examples 16 and 18).

We denote by Ur��� the set of all right units of a quasi-Jordan algebra �.
A right unital quasi-Jordan algebra is a quasi-Jordan algebra with a specified right
unit e.

Example 16. Let V be a vector space and fix � ∈ V ′ with � = 0. We define the
product � � V × V → V by x � y = ��y�x, for all x� y ∈ V . Then �V� �� is a quasi-
Jordan algebra and all elements x in V such that ��x� = 0 define a right unit x/��x�.
Moreover, Ur�V� is an affine space modeled after the Ker �.

We will show the following characterization of the ideal �ann and the set Ur���
of all right units.

Lemma 17. Let � be a right unital quasi-Jordan algebra, with a specific right unit e.
Then

�ann = Zr����
�ann = �x ∈ � � e � x = 0	�

and

Ur��� = �x + e � x ∈ �ann	�

Proof. For all z ∈ Zr���, we have that z = z � e− e � z ∈ �ann, i.e., �ann = Zr���.
It is clear that �ann ⊂ �x ∈ � � e � x = 0	. Suppose that x ∈ � satisfies e � x = 0,
then x = x � e− e � x ∈ �ann. Finally, we have that e+ x ∈ Ur���, for all x ∈ �ann.
Conversely, for any e′ ∈ Ur���, we have e′ − e = e′ � e− e � e′ ∈ �ann. �

Example 18. Let V be a 2-dimensional vector space with base �e1� e2	. If we define
the product � � V × V → V with respect to e1 and e2 by ei � ej = ei, for i = 1� 2,
and extend the product to V by linearity, we have that �V� �� is a noncommutative
quasi-Jordan algebra.

Now, if we consider the symmetric product x • y = x � y + y � x, for all
x� y ∈V , then �V� •� is a Jordan algebra.

Example 19. Let J be a Jordan algebra and let M be a Jordan bimodule such that
the identity �a� b� am� = 0 is not satisfied. Then the quasi-Jordan algebra �J ×M� ��,
with product � defined by (�3), is not a Jordan algebra with respect to the symmetric
product

�a�m� • �b� n� = 1
2
��a�m� � �b� n�+ �b� n� � �a�m��
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In this point it is important to recall the definition of a noncommutative
Jordan algebra and see the relation with quasi-Jordan algebras (see Bremner et al.,
2008, Section 6). A noncommutative Jordan algebra is a vector space Jn over a field K
of characteristic different from 2 equipped with a product · � Jn × Jn → Jn satisfying
the flexible law and the Jordan identity, i.e.,

x · �y · x� = �x · y� · x (7)

x2 · �y · x� = �x2 · y� · x� (8)

for all x� y ∈ Jn. The following lemma gives necessary and sufficient conditions for
an algebra to be a noncommutative Jordan algebra (see Bremner et al., 2008, Section
6, Fact 4).

Lemma 20. An algebra A is a noncommutative Jordan algebra if and only if it is
flexible (satisfies the flexible law) and the corresponding plus-algebra A+ is a Jordan
algebra (A+ = �A� •� is a Jordan algebra, with x • y = 1

2 �x · y + y · x)).

Remark 21. The previous lemma and the last example imply that there are
quasi-Jordan algebras which are not noncommutative Jordan algebras. Moreover,
there exist noncommutative Jordan algebras which are not quasi-Jordan algebras.
In effect, let A be an associative and noncommutative algebra over a field K
(characteristic = 2) and let a ∈ K with a = 1

2 . We define a new product on A as

x •a y = axy + �1− a�yx

and we denote the resulting algebra by Aa. The algebra Aa is a noncommutative
Jordan algebra, but it is not a quasi-Jordan algebra.

Remark 22. Let � be a quasi-Jordan algebra. If we define the associator
�x� y� z� �= x � �y � z�− �x � y� � z, then ��� �·� ·�� �·� ·� ·�� is an Akivis algebra (see
Bremner et al., 2008, Section 8).

In future works we will search to find more specific relations between
(commutative and noncommutative) Jordan algebras and quasi-Jordan algebras.
Furthermore, we will search for relations between quasi-Jordan algebras and
Leibniz algebras.

3. QUASI-JORDAN ALGEBRAS GENERATED BY Q-JORDAN
ELEMENTS IN LEIBNIZ ALGEBRAS

In this section we show that it is possible to attach a quasi-Jordan algebra to
some elements of a Leibniz algebra L.

This construction translates the results obtained by Fernández López et al.
(2007, Theorem 2.4) to the context of Leibniz algebras and quasi-Jordan algebras.

We begin by introducing the definition of an adjoint map in Leibniz algebras
and we show some properties.
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Definition 23. Let L be a Leibniz algebra. For all x ∈ L, we define the adjoint map
adx � L → L by adxy = �y� x�, for all y ∈ L. Additionally, the Leibniz identity implies
that adx is a derivation over L, since adx�y� z� = �adxy� z�+ �y� adxz�, for all y� z ∈ L.

Remark 24. The map ad � L → gl�L�, x �→ adx, where gl�L� is the Lie algebra of
linear maps over L with a Lie bracket �T� S� = TS − ST , is an antihomomorphism
of Leibniz algebras,

ad�x�y� = �ady� adx�� for all x� y ∈ L� (9)

The set ad�L� = �adx � x ∈ L	 with the bracket defined by �adx� ady� �= adxady −
adyadx turns out to be a Lie algebra, in particular it is a Lie subalgebra of gl�L�.

Notation 25. We will use capital letters to denote the adjoint maps (the elements
of ad�L�): X = adx, Y = ady, etcetera. In this notation the last identity has the form

ad�x�y� = �Y� X�� (10)

Definition 26. Let L be a Leibniz algebra and let x be an element in L. We say
that x is an ad-nilpotent element if there is a positive integer m such that adm

x = 0.
For any ad-nilpotent element x ∈ L we define the ad-nilpotence index of x as the
positive integer m such that adm

x = 0 and adm−1
x = 0.

The elements in a Leibniz algebra that satisfy the following definition are the
central objects in the construction of quasi-Jordan algebras from Leibniz algebras.

Definition 27. We say that an element x in a Leibniz algebra L is a Q-Jordan
element if x is an ad-nilpotent element of index at most 3.

Example 28. A natural example of Jordan elements are the zero-square elements
in a dialgebra. Let D be a dialgebra and let L be the Leibniz algebra DLeib. For any
x� y ∈ L, we have:

1. ad2
x�y� = y � �x � x�− 2�x � y� � x + �x � x� � y;

2. ad3
x�y� = y � x3� − 3�x � y� � �x � x�+ 3�x � x� � �y � x�+ x3� � y�

where x3� = x � �x � x� and x3� = �x � x� � x.
Thus, if x is an element in D such that x � x = 0 or x � x = 0 then ad3

x�y� =
0, since �x � y� � �x � x� = �x � y� � �x � x� and �x � x� � �y � x� = �x � x� � �y �
x�. This implies that x is a Q-Jordan element in the Leibniz algebra D−. Note also
ad2

x�L� = x � L � x.

Example 29. Let L be Leibniz algebra with basis �a� b� c� d� e	 defined by

�a� b� = c �a� c� = −2a �b� a� = −c �b� c� = 2b�

�c� a� = 2a �c� b� = −2b �d� b� = e �d� c� = −d�

�e� a� = d �e� c� = e�
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where the omitted products are equal to zero. It is not difficult to see that a� b
are Q-Jordan elements in L, Lann is the subspace generate by �d� e	 and LLie is
isomorphic to the Lie algebra sl2.

The next example of Leibniz algebras appeared in the work Liu (2006) on
simple Leibniz algebra with Lie factor sl2.

Example 30. Let L be a Leibniz algebra over a field K (of characteristic zero) with
basis �h� e� f� u� v� w	 defined by

�h� e� = 2e+ 2u �h� f� = −2f + �w �e� h� = −2e �e� f� = h+ v�

�f� h� = 2f �f� e� = −h− �v �u� h� = −2u �u� f� = −v�

�v� e� = −2u �v� f� = −w �w� h� = 2w �w� e� = −2v�

where the omitted products are equal to zero and � � are two fixed elements of the
field K.

We have that e is a Q-Jordan element in L, Lann is the subspace generated by
�u� v� w	 and KerL�x� is the subspace generated by �e� h� u� v	.

We are going to recall two results due to Konstrikin (see Benkart, 1977) and
Benkart and Isaacs (1977) about ad-nilpotent elements in Lie algebras.

Theorem 31 (Konstrikin). Let � be a Lie algebra and let a be a nonzero element
in � such that adm

a = 0, for m ≥ 4. If � is n-torsion free for all n ≤ m, then

(
adadm−1

a �c�

)m−1 = 0� for all c ∈ ��

Therefore � contains a nonzero ad-nilpotent element of index at most 3.

Theorem 32. Any nonzero finite dimensional Lie algebra over an algebraically closed
field of arbitrary characteristic necessarily contains a nonzero ad-nilpotent element and
therefore a nonzero ad-nilpotent element of index at most 3.

This result is trivial in Leibniz algebras that are non-Lie algebras, because
adz = 0 for all z ∈ Lann and Lann = �0	.

Conjecture 33. We conjecture that the last two theorems are true in the context
of Leibniz algebras for nontrivial elements (i.e., x ∈ L such that x � Lann).

Lemma 34. Let L be a Leibniz algebra. Then for all positive integers n we have

ADn
X�Y� = adXn�y�� for all x� y ∈ L� (11)

where ADX � ad�L� → ad�L�, Y �→ �X� Y� for all X� Y ∈ ad�L�, is the adjoint map over
ad�L�.
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Proof. If n = 1, by (10) we have

ADX�Y� = �X� Y� = ad�y�x� = adadx�y�
= adX�y��

We suppose that the property is true for n = k, this is

ADk
X�Y� = adXk�y�� for all x� y ∈ L�

Because Xk+1 = X�Xk�y�� = �Xk�y�� x�, then

ADk+1
X �Y� = ADX�AD

k
X�Y�� = ADX�adXk�y��

= �X� adXk�y�� = �adx� adXk�y��

= ad�Xk�y��x� = adXk+1�y�

and the result is true for n = k+ 1. �

Now, we are going to show that it is possible to obtain a quasi-Jordan algebra
from any Q-Jordan element in a Leibniz algebra. Throughout this section we will
be dealing with Leibniz algebras over a field K containing 1/6 (K containing the
elements 1/2 and 1/3). Following the ideas of Lemma 2.3 in Fernández López et al.
(2007), we have the next result for ad-nilpotent elements of index at most 3 in
Leibniz algebras.

Lemma 35. Let x be an ad-nilpotent element of index at most 3 of a Leibniz
algebra L. For any a� b ∈ L and  ∈ K, we have:

1. X2AX = XAX2;
2. X2AX2 = 0;
3. X2A2XAX2 = X2AXA2X2;
4. �X2�a�� X�b�� = −�X�a�� X2�b��;
5. ad2

x��a� �b� x��� = �X�a�� X2�b��;
6. X2ad�a�X2�b�� = ad�X2�a��b�X

2;
7. adX2�a�adX2�b� = X2ABX2;
8. x, ad2

x�a� are Q-Jordan elements in L,

where A = ada and B = adb.

Proof. 1. Because X3�a� = 0, then adX3�a� = 0. By (11), we have

0 = adX3�a� = AD3
X�A�

= �X� �X� �X�A���

= X3A− 3X2AX + 3XAX2 − AX3

= 3�XAX2 − X2AX��

which proves 1, since L is 3-torsion free.
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2. From 1 we have that X2AX = XAX2. Then multiplying on the right side
by X we obtain 2.

3. By 2 we have

0 = X2����X�A�� A�� A��X2

= X2�XA3 − 3AXA2 + 3A2XA− A3X�X2

= 3�X2A2XAX2 − X2AXA2X2��

4. From X3 = 0, using the Leibniz identity we get

0 = X3��a� b�� = ����a� b�� x�� x�� x�

= ����a� x�� b�� x�� x�+ ���a� �b� x��� x�� x�

= ����a� x�� x�� b�� x�+ 2���a� x�� �b� x��� x�+ ��a� ��b� x�� x��� x��

The Leibniz identity implies that

0 = 3����a� x�� x�� �b� x��+ ��a� x�� ��b� x�� x���

= 3��X2�a�� X�b��+ �X�a�� X2�b����

Then �X2�a�� X�b�� = −�X�a�� X2�b��, because L is 3-torsion free.

5. From the Leibniz identity and 4, we have

ad2
x��a� �b� x��� = ���a� �b� x��� x�� x�

= ���a� x�� �b� x��� x�+ ��a� ��b� x�� x��� x�

= ���a� x�� x�� �b� x��+ 2��a� x�� ��b� x�� x���

From the definition of X, we obtain

ad2
x��a� �b� x��� = �X2�a�� X�b��+ 2�X�a�� X2�b��

= −�X�a�� X2�b��+ 2�X�a�� X2�b��

= �X�a�� X2�b���

6. Since ad�a�X2�b�� = ��X� �X� B��� A�, we get

X2ad�a�X2�b�� = X2��X2B − 2XBX + BX2�A− A�X2B − 2XBX + BX2��

= 2X2AXBX − X2ABX2

= 2XAXBX2 − X2ABX2

= �B� �X� �X�A���X2

= ad�X2�a��b�X
2�
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7. From (11) and 2, we have

adX2�a�adX2�b� = �X� �X�A���X� �X� B��

= �X2A− 2XAX + AX2��X2B − 2XBX + BX2�

= −2X2AXBX + X2ABX2 + 4XAX2BX − 2XAXBX2

= X2ABX2�

8. ad3
x = 3ad3

x shows that x is a Jordan element. Using 2 and 7, we get

ad3
X2�a� = adX2�a�ad

2
X2�a� = �X� �X�A��X2A2X2

= �X2A− 2XAX + AX2�X2A2X2

= 0�

so ad2
x�a� is a Q-Jordan element. �

Theorem 36. Let L be a Leibniz algebra and let x be a Q-Jordan element of L. Then
L with the new product defined by

a � b �= 1
2
�a� �b� x��

is a nonassociative algebra, denoted by L�x�, such that

KerL�x� �= �a ∈ L �X2�a� = 0	

is an ideal of L�x�.

Proof. Let a ∈ KerL�x� and let b ∈ L. Using 4 and 5 in the previous lemma, we get

X2��b� �a� x��� = �X�b�� X2�a�� = 0�

X2��a� �b� x��� = �X�a�� X2�b�� = −�X2�a�� X�b�� = 0�

since X2�a� = 0. Therefore a � b and b � a are in KerL�x�. �

In the following theorem we are going to see that it is possible to attach a
quasi-Jordan algebra Lx to any Q-Jordan element x in a Leibniz algebra L. This
result is Theorem 2.4 in Fernández López et al. (2007) for Leibniz algebras.

Theorem 37. Let L be a Leibniz algebra and let x be a Q-Jordan element of L. Then
Lx �= L�x�/KerL�x� is a quasi-Jordan algebra.

Proof. Let a� b ∈ L and a denotes the coset of a with respect to kerL�x�.
We have

c � �b � a� = 1
4
�c� ��b� �a� x��� x�� and c � �a � b� = 1

4
�c� ��a� �b� x��� x���
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Since

ad2
x��c� ��b� �a� x��� x��� = �X�c�� X2��b� �a� x����

= �X�c�� X2���b� a�� x�− ��b� x�� a���

= �X�c�� X2�−��b� x�� a����

by 4 in Lemma 35 we have

ad2
x��c� ��b� �a� x��� x��� = −�X2�c�� X�−��b� x�� a���

= −�X2�c�� �−��b� x�� a�� x��

= −�X2�c�� ��a� �b� x��� x��

= −�X2�c�� X��a� �b� x�����

Using 4 from Lemma 35, we obtain

ad2
x��c� ��b� �a� x��� x��� = �X�c�� X2��a� �b� x����

= ad2
x��c� ��a� �b� x��� x����

Then c � �b � a�− c � �a � b� ∈ KerL�x�, this is c̄ � �ā � b̄� = c � �b̄ � ā�. We will
verify the Jordan identity. Let a� b ∈ L and put w �= ��a� �a� x��� x�. Then

8�b̄ � ā2� � ā = ��b� ��a� �a� x��� x��� �a� x�� = ��b� w�� �a� x��

and

8�b̄ � ā� � ā2 = ��b� �a� x��� ��a� �a� x��� x�� = ��b� �a� x��� w�

= ��b� w�� �a� x��+ �b� ��a� x�� w��

= 8�b̄ � ā2� � ā+ �b� ��a� x�� w��

Thus we only need to verify that �b� ��a� x�� w�� is in KerL�x�. In effect, because
�b� ��a� x�� w�� = ad��a�x��w��b�, then

ad2
xad��a�x��w� = X2�W� �X�A��

= X2WXA− X2WAX + X2AXW�

since X3 = 0, and

adw = W = X2A2 − 2XAXA+ 2AXAX − A2X2�
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From

X2WAX = 0

−X2WAX = −2X2AXAXAX + X2A2X2AX

X2AXW = 2X2AXAXAX − X2AXA2X2�

we have ad2
xad��a�x��w� = 0, i.e., X2��b� ��a� x�� w��� = 0, for all a� b ∈ L. �

In Example 36, we have ū � f̄ = f̄ and f̄ � ū = 0̄, then Le is not commutative.
Therefore, Lx is a noncommutative algebra in general.

Remark 38. Let L be a Leibniz algebra and let x be a Q-Jordan element in L.
Then Lx is a Jordan algebra if and only if �a� �b� x��− �b� �a� x�� ∈ KerL�x�, for all
a� b ∈ L. In particular, if L is a Lie algebra then Lx is a Jordan algebra.

Definition 39. For any Q-Jordan element x of a Leibniz algebra L, the
quasi-Jordan algebra Lx we have just introduced will be called the quasi-Jordan
algebra of L at x.

Note that for the quasi-Jordan algebra of L at x, we have Lann
x ⊆ Lann and

Zr�L� ⊆ Zr�Lx�, because

ā � b̄ = �a� �b� x��− �b� �a� x�� = �a� �b� x��− ��b� a�� x�+ ��b� x�� a�

= �a� �b� x��+ ��b� x�� a� ∈ Lann

and

�a� �b� x�� = �a�−�x� b�� = 0� for all b ∈ Zr�L��

Therefore, if Lann ⊆ KerL�x�, then Lx is a Jordan algebra.
Moreover, if L is a Leibniz algebra, then �a� b� = 0, for any a ∈ L and b ∈ Lann,

and this implies that Leibniz algebras cannot be nondegenerate in the classical sense,
because all elements in Lann are absolute zero divisors of L. Therefore we introduce
the following definition.

Definition 40. An element x in a Leibniz algebra L is called an absolute zero
divisor of L if ad2

x = 0. A Leibniz algebra L is said to be nondegenerate if the absolute
zero divisors in L are elements of Lann, i.e., if ad2

x = 0, for x ∈ L, then x ∈ Lann.

It should be noted that the above definition agrees with the definition of
nondegenerate Lie algebra, since Lann = �0	 in this case.

Additionally, if L is a nondegenerate Leibniz algebra, then Lann = Zr�L�,
because adz = 0 for all z ∈ Zr�L�.

The following lemma shows that if ��y� x�� x�− 2x ∈ Lann, then there are right
units in Lx.
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Lemma 41. Let L be a Leibniz algebra and let x be a Jordan element in L. If y is
an element in L such that ��y� x�� x�− 2x ∈ Lann, then ȳ is a right unit in Lx. Moreover,
z̄+ ȳ is a right unit in Lx, for all z ∈ Zr�L�.

Proof. For all a ∈ L, we have

X2��a� �y� x��� = �X�a�� X2�y��

= ��a� x�� ��y� x�� x�� = 2��a� x�� x� = 2X2�a��

since 0 = �b� X2�y�− 2x� = �b� X2�y��− �b� 2x�, for all b ∈ L. Therefore,
X2��a� �y� x��− 2a� = 0 and this is equivalent to ā � ȳ = ā, for all ā ∈ Lx. The
identities �a� z� = 0, for all z ∈ Zr�L�, and �a� �b� c�� = �a�−�c� b��, for all a� b� c ∈ L,
implies that z̄+ ȳ is a right unit in Lx, for all z ∈ Zr�L�. �

The previous lemma shows that if ȳ is a right unit of Lx, then y � Zr�L�.
The next lemma proves that the existence of the right unit is equivalent

to ��y� x�� x�− 2x ∈ Lann, for some y ∈ L and for x a Q-Jordan element in a
nondegenerate Leibniz algebra L.

Lemma 42. Let L be a nondegenerate Leibniz algebra and let x be a Jordan element
of L. Then ȳ is a right unit for the quasi-Jordan algebra Lx if and only if ��y� x�� x�−
2x ∈ Lann.

Proof. Suppose that y ∈ L which ��y� x�� x�− 2x ∈ Lann, then ȳ is a right unit of Lx

by the last lemma.
Suppose, conversely, that ȳ is a right unit for Lx. Put z �= X2�y�− 2x. For all

a ∈ L,

��a� z�� z� = ��a� X2�y��� X2�y��− 2��a� x�� X2�y��− 2X2��a� �y� x��− 2a�

= ��a� X2�y��− 2�a� x�� X2�y��

= ��a� X2�y�− 2x�� X2�y��

= ��a� z�� z�+ 2��a� z�� x��

Then ��a� z�� x� = 0, for all a ∈ L, since L is 2-torsion free. As �z� x� = −2�x� x�,
we have

0 = ��a� z�� x� = ��a� x�� z�+ �a� �z� x��

= ��a� x�� z�− 2�a� �x� x�� = ��a� x�� z��

Finally, the Leibniz identity and the identities ��a� z�� x� = 0 = ��a� x�� z� imply

��a� z�� z� = ��a� X2�y��� z�− 2��a� x�� z�

= ��a� ��y� x�� x�� z�

= ���a� �y� x��� x�� z�− ���a� x�� �y� x��� z�

= −���a� x�� z�� �y� x��− ��a� x�� ��y� x�� z�� = 0�

Therefore z ∈ Lann, because L is nondegenerate. �
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Remark 43. The previous lemmas show that if there is an right unit ȳ in Lx, then
Zr�L� ⊂ Lann

x and Zr�L�+ ȳ ⊂ Ur�Lx�.

We are going to define a special operator over quasi-Jordan algebras. This
operator agrees with the U -operator over Jordan algebras (see McCrimmon, 2004,
Section I.4.1).

Definition 44. Let � be a quasi-Jordan algebra and let Ra be a right multiplicative
map by a over � (Ra � � → �, b �→ b � a). For all a ∈ � we define the U -operator
Ua � � → � by

Ua = 2R2
a − Ra2� where a2 = a � a� (12)

We will show a special formula for the U -operator over Lx. The next lemma
is Lemma 2.4 in Fernández López et al. (2007), for Leibniz algebras.

Lemma 45. Let x be a Q-Jordan element of a Leibniz algebra L. Then the
quasi-Jordan algebra Lx of L at x has a U -operator given by

Uāb̄ = 1
4
A2X2�b�� for all ā� b̄ ∈ Lx� (13)

Proof. For all c ∈ L we have �c� x� ∈ KerL�x�, since X2��c� x�� = X3�c� = 0. Then
�c� x� = 0̄ and

A2X2�b� = ����b� x�� x�� a�� a�

= ����b� x�� a�� x�� a�+ ���b� x�� �x� a��� a�

= ����b� x�� a�� a�� x�+ 2���b� x�� a�� �x� a��+ ��b� x�� ��x� a�� a��

= 2���b� a�� x�� �x� a��+ 2��b� �x� a��� �x� a��+ ��b� ��x� a�� a��� x�

+ �b� �x� ��x� a�� a���

= 2���b� a�� x�� �x� a��+ 2��b� �a� x��� �a� x��− �b� ��a� �a� x��� x��

= 4
(
2�b̄ � ā�ā− b̄ � ā2

)

= 4Uāb̄�

since ���b� a�� x�� �x� a�� = 0̄, because

X2��X��b� a��� �x� a��� = −X2��X��b� a��� �a� x���

= −�X�X��b� a��� X2�a��

= �X2�X��b� a��� X�a��

= �X3��b� a��� X�a��

= 0�

for all b� a ∈ L. �
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Let � be a quasi-Jordan algebra. Since � � �ann = 0, quasi-Jordan algebras
cannot be nondegenerate in the classical sense, because all elements in �ann are
absolute zero divisors of �. Therefore we introduce the following generalization of
the definition of nondegenerate Jordan algebra (see Jacobson, 1968, p. 155).

Definition 46. Let � be a quasi-Jordan algebra. An element a in � is called
an absolute zero divisor of � if Ua = 0. A quasi-Jordan algebra � is said to be
nondegenerate if the absolute zero divisors of � are elements of �ann, i.e., Ua = 0, for
a ∈ �, implies a ∈ �ann.

It should be noted that the above definition agrees with the definition of
nondegenerate Jordan algebra, since �ann = �0	 in this case.

If � is a nondegenerate quasi-Jordan algebra, the last definition implies
�ann =Zr���, because Uz = 0, for all z ∈ Zr���.

Lemma 47. Let L be a nondegenerate Leibniz algebra and let x be a Q-Jordan
element of L. If ā ∈ Lx is an absolute zero divisor of Lx, then ā ∈ Zr�Lx�.

Proof. Let ā be an absolute zero divisor in Jor�Lx�. Then Uāb̄ = 0̄ for every b̄ ∈ Lx.
By Lemma 44 we have 0 = ad2

xad
2
aad

2
x�b� = X2A2X2�b� = ad2

X2�a�
�b� and therefore

�ad2
x�a��L ∈ Lann, since L is nondegenerate.
By 5 in Lemma 35, X2��b� �a� x��� = �X2�b�� X2�a�� = 0, for any b ∈ L.

Therefore b̄ � ā = 0̄, for all b ∈ L, and this implies ā ∈ Zr�Lx�. �

Now, we will characterize the Q-Jordan elements in Leibniz algebras by inner
ideals. First, we define inner ideals in Leibniz algebras.

Definition 48. Let L be a Leibniz algebra. A vector subspace B of L is an inner
ideal if ��L� B�� B� ⊆ B. Clearly, any ideal I of L is an inner ideal. Moreover,
subideals of L are also inner ideals.

An abelian inner ideal is an inner ideal B which is also an abelian subalgebra,
this is �B� B� = 0.

According to the last definition, we have the following characterization for
Jordan elements in Leibniz algebras.

Lemma 49. Let L be a Leibniz algebra and let x ∈ L. The following conditions are
equivalent:

1. ad3
x = 0, with x � Lann;

2. x ∈ B, for B an abelian inner ideal such that B � Lann.

Proof. We suppose that ad3
x = 0 (X3�L� = 0) and x � Lann. First, we are going to

show that X2�L� is an abelian inner ideal of L. It suffices to show YZ�L� ⊆ X2�L�,
for Y = ady and Z = adz, where y = X2�v� and z = X2�w�. This equality is 7 in
Lemma 35. This implies that YZ�L� ⊆ X2�L�.

On the other hand,

�y� z� = Z�y� = �X2W − 2XWX +WX2��X2�v�� = 0
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therefore X2�L� is an abelian inner ideal of L. Then Fx + X2�L� is an abelian inner
ideal of L, where F is the field over which L is defined. Because adx = 0, then
x � Lann.

Now, we suppose that x ∈ B, for B an abelian inner ideal of L such that
B � Lann. Then for x ∈ B such that x � Lann, we have ad3

x�L� = ���L� x�� x�� x� ⊆
�B� x� = 0. �

Let L be a Leibniz algebra. A nonzero element x ∈ L is called von Neumann
regular if X3 = 0 and x ∈ X2�L�. It is clear if x ∈ L is von Neumann regular, then
x � Zr�L� and x is a Q-Jordan element

The following lemma is Lemma 2.7 in Fernández López et al. (2007) for
Leibniz algebras with the same proof.

Lemma 50. Let x be a Q-Jordan element of L.

1. If I is an ideal of L and x ∈ I is von Neumann regular, then both quasi-Jordan
algebras Ix and Lx agree.

2. If L = I ⊕ J is a direct sum of ideals and x = i+ j with respect to this
decomposition, then Lx � Ii × Jj .

3. For any inner ideal B of L, Bx �= �B/KerL�x� ∩ B� �� is a subalgebra of Lx.
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