Por favor, use este identificador para citar o enlazar este ítem: http://cimat.repositorioinstitucional.mx/jspui/handle/1008/912
DIRECT AND REVERSE LOG-SOBOLEV INEQUALITIES IN -DEFORMED SEGAL BARGMANN ANALYSIS
STEPHEN BRUCE SONTZ
Acceso Abierto
Atribución-NoComercial-CompartirIgual
Espacios de Banach
Both direct and reverse log-Sobolev inequalities, relating the Shannon entropy with a - deformed energy, are shown to hold in a family of -deformed Segal{Bargmann spaces. This shows that the -deformed energy of a state is nite if and only if its Shannon entropy is nite. The direct inequality is a new result, while the reverse inequality has already been shown by the authors but using dierent methods. Next the -deformed energy of a state is shown to be nite if and only if its Dirichlet form energy is nite. This leads to both direct and reverse log-Sobolev inequalities that relate the Shannon entropy with the Dirichlet energy. We obtain that the Dirichlet energy of a state is nite if and only if its Shannon entropy is nite. The main method used here is based on a study of the reproducing kernel function of these spaces and the associated integral kernel transform.
World Scientific
2007
Artículo
Inglés
Investigadores
OTRAS
Versión publicada
publishedVersion - Versión publicada
Aparece en las colecciones: Matemáticas

Cargar archivos:


Fichero Tamaño Formato  
SSontz.pdf346.84 kBAdobe PDFVisualizar/Abrir