Por favor, use este identificador para citar o enlazar este ítem:
http://cimat.repositorioinstitucional.mx/jspui/handle/1008/912
DIRECT AND REVERSE LOG-SOBOLEV INEQUALITIES IN -DEFORMED SEGAL BARGMANN ANALYSIS | |
STEPHEN BRUCE SONTZ | |
Acceso Abierto | |
Atribución-NoComercial-CompartirIgual | |
Espacios de Banach | |
Both direct and reverse log-Sobolev inequalities, relating the Shannon entropy with a - deformed energy, are shown to hold in a family of -deformed Segal{Bargmann spaces. This shows that the -deformed energy of a state is nite if and only if its Shannon entropy is nite. The direct inequality is a new result, while the reverse inequality has already been shown by the authors but using dierent methods. Next the -deformed energy of a state is shown to be nite if and only if its Dirichlet form energy is nite. This leads to both direct and reverse log-Sobolev inequalities that relate the Shannon entropy with the Dirichlet energy. We obtain that the Dirichlet energy of a state is nite if and only if its Shannon entropy is nite. The main method used here is based on a study of the reproducing kernel function of these spaces and the associated integral kernel transform. | |
World Scientific | |
2007 | |
Artículo | |
Inglés | |
Investigadores | |
OTRAS | |
Versión publicada | |
publishedVersion - Versión publicada | |
Aparece en las colecciones: | Matemáticas |
Cargar archivos:
Fichero | Tamaño | Formato | |
---|---|---|---|
SSontz.pdf | 346.84 kB | Adobe PDF | Visualizar/Abrir |