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San Luis Potośı, Mexico
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Both direct and reverse log-Sobolev inequalities, relating the Shannon entropy with a µ-
deformed energy, are shown to hold in a family of µ-deformed Segal–Bargmann spaces.
This shows that the µ-deformed energy of a state is finite if and only if its Shannon
entropy is finite. The direct inequality is a new result, while the reverse inequality has
already been shown by the authors but using different methods. Next the µ-deformed
energy of a state is shown to be finite if and only if its Dirichlet form energy is finite.
This leads to both direct and reverse log-Sobolev inequalities that relate the Shannon
entropy with the Dirichlet energy. We obtain that the Dirichlet energy of a state is finite
if and only if its Shannon entropy is finite. The main method used here is based on
a study of the reproducing kernel function of these spaces and the associated integral
kernel transform.
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1. Definitions and Notation

We begin with some definitions and notation. We start with an introduction to

µ-deformed Segal–Bargmann analysis (which is itself a realization of µ-deformed

quantum mechanics, though we will not go into that here). For background on

these subjects, see Refs. 20 and 25. For recent related work, see Refs. 2, 21–23, 31

and 32. The introductions of Refs. 21 and 22 provide more motivation for studying

this topic.
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First, we take µ > −1/2 to be a fixed parameter throughout this paper.

Definition 1.1. Say λ > 0. We define measures in the complex plane C by

dνe,µ,λ(z) := νe,µ,λ(z)dxdy ,

dνo,µ,λ(z) := νo,µ,λ(z)dxdy ,

whose densities are defined by

νe,µ,λ(z) := λ
2

1
2
−µ

πΓ(µ + 1
2 )

Kµ− 1
2
(|λ

1
2 z|2)|λ

1
2 z|2µ+1 , (1.1)

νo,µ,λ(z) := λ
2

1
2
−µ

πΓ(µ + 1
2 )

Kµ+ 1
2
(|λ

1
2 z|2)|λ

1
2 z|2µ+1 (1.2)

for 0 6= z ∈ C, where Γ (the Euler gamma function) and Kα (the MacDonald

function of order α) are defined in Ref. 19. Moreover, dxdy is Lebesgue measure

in C.

The function Kα is also known as the modified Bessel function of the third kind

or Basset’s function (see p. 5 Ref. 8). But it is also simply known as a modified

Bessel function (see p. 961 of Ref. 11, and p. 374 of Ref. 1). One way to identify

the MacDonald function is to note the following useful property:

Kα(x) =

∫ ∞

0

due−x cosh ucosh(αu) , (1.3)

for x > 0 and any α ∈ R (see p. 119 of Ref. 19). An explanation of how the

MacDonald functions come into this theory in a natural way is given in Ref. 36.

From the formulas (1.1) and (1.2), one can see why the case µ = −1/2 has

not been included. One should refer to the discussion of the Bose-like oscillator in

Ref. 25 (especially, note Theorem 5.7) for motivation for the condition µ > −1/2.

Let H(C) be the space of all holomorphic functions f : C → C. We note that

fe := (f + Jf)/2 (respectively, fo := (f − Jf)/2) defines the even (respectively,

odd) part of f , where Jf(z) := f(−z) is the parity operator. So, f = fe + fo.

We use throughout the paper the standard notations for Lp spaces and their

norms without further comment. All Lp spaces in this paper are complex. However,

the ambiguous notation ‖ · ‖p→q is used to denote the operator norm from some

Lp space to some Lq space without specifying the measure spaces involved. The

context will indicate which measures spaces are meant.

Definition 1.2. The λ-dilated, µ-deformed Segal–Bargmann space defined for 0 <

p < ∞ and λ > 0 is

Bp
µ,λ := H(C) ∩ {f : C → C|fe ∈ Lp(C, νe,µ,λ) and fo ∈ Lp(C, νo,µ,λ)} ,

where f = fe + fo is the decomposition of a function into its even and odd parts.

Next we define

‖f‖Bp

µ,λ
:= (‖fe‖

p
Lp(C,νe,µ,λ) + ‖fo‖

p
Lp(C,νo,µ,λ))

1/p
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for all f ∈ Bp
µ,λ. We also define the even subspace of Bp

µ,λ by

Bp
e,µ,λ := Bp

µ,λ ∩ {f : f = fe}

and the odd subspace of Bp
µ,λ by

Bp
o,µ,λ := Bp

µ,λ ∩ {f : f = fo} .

In these definitions we do not write the subscript λ when λ = 1.

As far as we know, the two Definitions 1.1 and 1.2 are due to us but first appeared

in print in joint work of the second author with Pita in Ref. 21. Behind these

definitions there is a lot of history which we will relate to the best of our knowledge.

As is customary, we do offer our sincere apologies to those researchers whose work

we have not mentioned merely due to our own ignorance. These definitions are due

to the present authors in Ref. 2 in 2006 in the case when 0 < p < ∞ and λ = 1

and µ > −1/2 and to Marron20 in 1994 in the case when p = 2 and λ > 0 and

µ > −1/2. However, Marron’s work closely follows Rosenblum’s in Ref. 26 (also in

1994) where the case p = 2 and λ = 1 and µ > −1/2 is presented. The works of

Rosenblum and Marron were most influential for our work on this topic. However,

in Sharma et al.30 formula (2.58) gives the inner product in Eq. (1.4) below up

to a multiplicative constant. So these authors already had in 1981 the case p = 2

and λ = 1 and µ > −1/2. This is the earliest reference that we are aware of. But

slightly later in 1984 Cholewinski in Ref. 7 has the case p = 2, λ = 1 and µ ≥ 0,

but only for the even subspace. Next Sifi and Soltani in Ref. 31 in 2002 have the

case p = 2, λ = 1 and µ ≥ 0. Finally, we note that Ben Säid and Ørsted in Ref. 4 in

2006 present in detail the case p = 2 and λ = 1 and µ ≥ 0 in Example 4.17, though

they are aware of the case when µ is negative.

The next known result is elementary. We include it here since it seems not to

have been proved in the literature before.

Proposition 1.1. For p ≥ 1 and λ > 0 we have that ‖ · ‖Bp

µ,λ
is a norm and that

Bp
µ,λ is a Banach space which is the (internal) direct sum of the Banach subspaces

Bp
e,µ,λ and Bp

o,µ,λ.

Proof. The proofs that ‖ · ‖Bp

µ,λ
is a norm and that we have a direct sum are

straightforward and left to the reader. It remains for us here to show that this

space is complete. This argument is well known (for example, see Ref. 15), and we

give a sketch of it.

We first note that by definition f ∈ Bp
µ,λ is equivalent to these conditions:

(1) fe and fo are holomorphic in C.

(2) fe ∈ Lp(C, νe,µ,λ) and fo ∈ Lp(C, νo,µ,λ).

Since fe is holomorphic, we have by the theory of a complex variable that

fe(z) =
1

πr2

∫

Br(z)

dµL(w)fe(w)
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for any z ∈ C and any r > 0, where µL is Lebesgue measure and Br(z) is the ball

of radius r and center z. So, using the fact that νe,µ,λ has no zeros,

fe(z) =
1

πr2

∫

C

dµL(w)νe,µ,λ(w)

(

χBr(z)(w)
1

νe,µ,λ(w)

)

fe(w) ,

where χS denotes the characteristic function of a set S. Applying Hölder’s inequal-

ity, we get for all z ∈ C that

|fe(z)| ≤ Ce(z)‖fe‖Lp(νe,µ,λ) ,

where

Ce(z) =
1

πr2

∥

∥

∥

∥

χBr(z)

νe,µ,λ

∥

∥

∥

∥

Lp′(νe,µ,λ)

is a finite real number that depends continuously on z. Here p′ is the usual dual

Lebesgue index. Similarly, we get

|fo(z)| ≤ Co(z)‖fo‖Lp(νo,µ,λ) ,

where Co(z) depends continuously on z. To show that Bp
µ,λ is complete, we take

a Cauchy sequence fn in that space and show that it converges to an element of

the space. But fn Cauchy in Bp
µ,λ implies that the sequence of even parts (fn)e

is Cauchy in Lp(νe,µ,λ) and that the sequence of odd parts (fn)o is Cauchy in

Lp(νo,µ,λ). Since p ≥ 1, these two Lebesgue spaces are complete and so (fn)e → g

and (fn)o → h as n → ∞, where g ∈ Lp(νe,µ,λ) and h ∈ Lp(νo,µ,λ). Clearly, g is

even and h is odd. Now by a standard argument, the above two inequalities imply

that (fn)e → g and (fn)o → h uniformly on compact subsets of C, and so g and h

are holomorphic. This implies that g + h ∈ Bp
µ,λ and that fn → g + h in the norm

of Bp
µ,λ. QED

Moreover, for p = 2 we have that B2
µ,λ is a Hilbert space (see Ref. 20) with inner

product defined by

〈f, g〉B2
µ,λ

:= 〈fe, ge〉L2(νe,µ,λ) + 〈fo, go〉L2(νo,µ,λ) . (1.4)

Of course, f = fe + fo and g = ge + go are the representations of f and g as the

sums of their even and odd parts. (We will often use such representations without

explicit comment, letting the notation carry the burden of explanation.) In this

case, B2
µ,λ is the Hilbert space (internal) direct sum of the subspaces B2

e,µ,λ and

B2
o,µ,λ. As we shall see in Sec. 3, each of the spaces B2

µ,λ, B2
e,µ,λ and B2

o,µ,λ is a

reproducing kernel Hilbert space. When µ = 0 and λ = 1, this reduces to the

usual Segal–Bargmann space, denoted here by B2. (See Refs. 3 and 28.) Further

motivation for the nomenclature in Definition 1.2 is given in Ref. 36.

Note that νe,µ,λ(z) = λνe,µ(λ1/2z) and νo,µ,λ(z) = λνo,µ(λ1/2z), so that λ is a

dilation parameter. Or, in other words, the dilation operator Tλ defined by

Tλf(z) := f(λ1/2z) (1.5)
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for f ∈ B2
µ and z ∈ C is a unitary transformation from B2

e,µ onto B2
e,µ,λ and from

B2
o,µ onto B2

o,µ,λ. Therefore, Tλ is also a unitary map from B2
µ onto B2

µ,λ.

One can relate the parameter λ to Planck’s constant ~ by considering the case

µ = 0. We first observe that for z ∈ C, z 6= 0 and µ = 0 we have that

νe,0,λ(z) = νo,0,λ(z) = λ
21/2

πΓ(1/2)
K1/2(|λ

1/2z|2) · |λ1/2z| =
λ

π
e−λ|z|2 ,

which is a normalized Gaussian, using K1/2(x) = K−1/2(x) = (π/(2x))1/2e−x. (see

pp. 110 and 112 of Ref. 19). This should be compared with the Gaussian

νGauss,~(z) :=
1

π~
e−|z|2/~ , (1.6)

which is the density for the measure of the Segal–Bargmann space for any ~ > 0.

(See pp. 9 and 21 of Ref. 15. Note that the identification t = ~ was made in Ref. 15.)

So it turns out that λ = 1/~. (For those who are confused by the fact that ~ and |z|2

have the same dimensions, let us note that there is a normalized harmonic oscillator

Hamiltonian implicitly used here. So there is both a mass and a frequency which

have been taken equal to the dimensionless constant 1.)

Definition 1.3. Let (Ω, ν) be a measure space with finite measure (meaning that

0 < ν(Ω) < ∞). Define the entropy of any f in L2(Ω, ν) to be

SL2(Ω,ν)(f) :=

∫

Ω

dν(ω)|f(ω)|2 log |f(ω)|2 − ‖f‖2
L2(Ω,ν) log ‖f‖2

L2(Ω,ν) , (1.7)

where ‖ · ‖L2(Ω,ν) means the norm in the Hilbert space L2(Ω, ν), log is the natural

logarithm, and 0 log 0 := 0 (to make the function 0 ≤ r 7→ r log r continuous from

the right at r = 0).

This definition is due to Shannon29 in his theory of communication. The require-

ment that the measure be finite is not necessary, but is imposed to avoid technical

details which are not important for us, since all the measure spaces in this paper

have finite measure. (See Ref. 17 for an example where ν(Ω) = ∞.) For a finite mea-

sure space we have that SL2(Ω,ν)(f) is defined for all f ∈ L2(Ω, ν) and moreover

that

(− log W )‖f‖2
L2(Ω,ν) ≤ SL2(Ω,ν)(f) ,

where W = ν(Ω), by applying Jensen’s inequality to the probability space (Ω, ν/W )

and the convex function r 7→ r log r for r ≥ 0. It follows that SL2(Ω,ν)(f) > −∞,

though SL2(Ω,ν)(f) = +∞ could occur.

Definition 1.4. If there is a distinguished quadratic form Q(f) defined for all

f ∈ X , a closed subspace of L2(Ω, ν) where (Ω, ν) is a measure space, we say that

an inequality holding for all f ∈ X of the form

SL2(Ω,ν)(f) ≤ C1Q(f) + C2‖f‖
2
L2(Ω,ν) ,
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for constants C1 > 0 and C2 ≥ 0 is a (direct) log-Sobolev inequality in X . Similarly,

an inequality holding for all f ∈ X of the form

Q(f) ≤ D1SL2(Ω,ν)(f) + D2‖f‖
2
L2(Ω,ν) ,

for constants D1 > 0 and D2 ≥ 0 is a reverse log-Sobolev inequality in X .

Usually, Q(f) in this definition is a Dirichlet form, but this is not so in the main

results given in Sec. 4. We understand Q : X → [0,∞] as a sort of energy. If Q(f)

is only densely defined, we put Q(f) = +∞ for f not in the original domain of

Q. Also, the entropy in this definition can be equal to +∞. So, one way to think

about a direct log-Sobolev inequality is that it tells us that finite energy implies

finite entropy. It can also be thought of as a type of coercivity inequality. Similar

comments apply to reverse log-Sobolev inequalities. There is an extensive literature

on log-Sobolev inequalities, starting with the articles of Federbush9 and of Gross.12

For more recent references, see Ref. 14 and references therein. The first reverse

log-Sobolev inequality appeared in Ref. 34. Further studies of such inequalities can

be found in Refs. 2, 6, 10, 13 and 35.

We use the standard convention in analysis that C represents a positive, finite

constant (i.e. a quantity not depending on the variable of interest in the context)

which may change value with each usage.

The organization of the article is as follows. In Sec. 2, we review some basic

properties of the measures introduced above. In Sec. 3 we analyze each reproducing

kernel function of the various Hilbert spaces studied here as the kernel function

of an integral transform. In Sec. 4, we present our main result, an energy-entropy

inequality which in special cases is a direct log-Sobolev inequality and in other cases

is a reverse log-Sobolev inequality. All of this is in terms of a quadratic form called

the µ-deformed energy and introduced by the authors in Ref. 2. Then in Sec. 5

we present relations between the µ-deformed energy and the Dirichlet form energy.

This allows us to prove all of our main inequalities in terms of the Dirichlet form

energy as well as in terms of the µ-deformed energy.

2. Properties of the Measures

We note the following results (see p. 136 of Ref. 19) for the asymptotic behavior of

the MacDonald function Kα(x) for α ∈ R and x > 0:

Kα(x) ∼=
2|α|−1Γ(|α|)

x|α|
as x → 0+ if α 6= 0 ,

K0(x) ∼= log
2

x
as x → 0+ ,

Kα(x) ∼=
( π

2x

)1/2

e−x as x → +∞ for all α ∈ R .

Here f(x) ∼= g(x) as x → a means limx→a f(x)/g(x) = 1, where a is a limit point

of a common domain of definition of the positive functions f and g. While the
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usual definition of Kα (see Ref. 19, pp. 108–109) gives an analytic function defined

on C\(−∞, 0], we are only interested in its values for real x > 0. Notice that the

asymptotic behavior of Kα(x) as x → +∞ does not depend on α to first order. But

the next order term does depend on α.

Written in polar coordinates dνo,µ,λ has density (with respect to drdθ)

λµ+ 3
2

2
1
2
−µ

πΓ(µ + 1
2 )

Kµ+ 1
2
(λr2)r2µ+2 .

So, the behavior of the density of dνo,µ,λ near zero (r → 0+) is asymptotic to

C
1

(r2)(µ+1/2)
r2µ+2 = Cr

for all µ > −1/2. On the other hand, dνe,µ,λ has density

λµ+ 3
2

2
1
2
−µ

πΓ(µ + 1
2 )

Kµ− 1
2
(λr2)r2µ+2

in polar coordinates (again with respect to drdθ), whose asymptotic behavior as

|z| = r → 0+ is given by the following three cases:

(a) For −1/2 < µ < 1/2, we have νe,µ,λ(z) ∼= Cr2µ+2/(r2)(
1
2
−µ) = Cr4µ+1.

(b) For µ = 1/2, we have νe,µ,λ(z) ∼= C(| log r2|)r3 = Cr3| log r|. Note that this is

not the limit when µ ↑ 1/2 of the previous case.

(c) For µ > 1/2, we have νe,µ,λ(z) ∼= Cr2µ+2/(r2)(µ−
1
2
) = Cr3. So for this range of

values of µ, the functional form of the asymptotic dependence on r (for r near

zero) is independent of µ, namely r3, though the constant does depend on µ.

Also, this functional form is the limit when µ ↑ 1/2 of the first case.

Note that in all cases the singularity of the MacDonald function at zero in

formulas (1.1) and (1.2) has been regularized into a locally integrable function of

r near r = 0 by the factor r2µ+2, which comes from a factor of r2µ+1 given in the

definition of the densities of the measures and another factor of r that comes from

the change of variables dxdy = rdrdθ.

Using (1.3) we see immediately that |α| < |β| implies that Kα(x) < Kβ(x) for

all x > 0. In particular, we have Kµ−1/2(x) < Kµ+1/2(x) for all x > 0 provided

that |µ− 1/2| < |µ + 1/2|. But this last condition is equivalent to µ > 0. So, for all

µ > 0 and all z ∈ C with z 6= 0 we have that

νe,µ,λ(z) < νo,µ,λ(z) . (2.1)

In the case µ = 0, we have already seen that νe,0,λ(z) = νo,0,λ(z). Finally, in

the case −1/2 < µ < 0 we have Kµ+1/2(x) < Kµ−1/2(x) for all x > 0 since

|µ + 1/2| < |µ − 1/2|, and so it follows for 0 6= z ∈ C that

νo,µ,λ(z) < νe,µ,λ(z) . (2.2)

Since νe,µ,λ(z) and νo,µ,λ(z) are integrable near zero, continuous in C\{0} and

decay as r = |z| → +∞ as Cr2µ+1e−λr2

(density with respect to drdθ), it follows
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that the measures dνe,µ,λ(z) and dνo,µ,λ(z) are finite. It turns out that dνe,µ,λ(z) is

a probability measure. To show this we will use the identity

d

dx
[xαKα(x)] = −xαKα−1(x)

for x > 0 (see p. 110 of Ref. 19). So we now evaluate that

νe,µ,λ(C) =

∫

C

dνe,µ,λ(z) = 2π

∫ ∞

0

dr
2

1
2
−µ

πΓ(µ + 1/2)
r2µ+2λµ+ 3

2 Kµ−1/2(λr2)

=
2

1
2
−µ

Γ(µ + 1/2)

∫ ∞

0

dssµ+ 1
2 Kµ−1/2(s)

=
2

1
2
−µ

Γ(µ + 1/2)

∫ ∞

0

ds
d

ds
(−sµ+ 1

2 Kµ+1/2(s))

=
2

1
2
−µ

Γ(µ + 1/2)
(−sµ+ 1

2 Kµ+1/2(s))

∣

∣

∣

∣

∣

∞

0

=
2

1
2
−µ

Γ(µ + 1/2)
2µ− 1

2 Γ(µ + 1/2) = 1 ,

where we used the definition of the measure dνe,µ,λ(z), a change of variables, the

above quoted identity, the fundamental theorem of calculus and the asymptotic

behavior of Kµ+1/2 at zero and at infinity. (Another way of thinking about this

fact is given in Ref. 36.) It now follows from (2.1) or (2.2) that dνo,µ,λ(z) is not a

probability measure when µ 6= 0.

The results of this paper hold for every value of the scaling parameter λ > 0.

However, to keep the notation manageable, we will usually put λ = 1 hereafter. Of

course, the case of general λ is implied by the case λ = 1 by applying a dilation.

3. The Reproducing Kernel and Its Associated Integral Transform

There is a reproducing kernel function K for B2
µ (see Refs. 20 and 4), which satisfies

the usual reproducing property, namely, 〈K(·, w)∗, f〉B2
µ

= f(w) for all f ∈ B2
µ and

w ∈ C. In fact, K(z, w) = expµ(z∗w) for all z, w ∈ C, where the µ-deformed

exponential function (see Ref. 25) is defined by expµ(z) :=
∑∞

k=0 zk/γµ(k) and the

µ-deformed factorial is defined recursively for all integers k ≥ 0 by

γµ(0) := 1 and γµ(k) := (k + 2µχo(k))γµ(k − 1) if k ≥ 1 . (3.1)

Finally, χo(k) = 0 for k even and χo(k) = 1 for k odd, that is, χo is nothing but

the characteristic function of odd integers. Other conventions in force here are that

z∗ is the complex conjugate of z ∈ C and that all inner products are anti-linear in

the first argument and linear in the second.

Notice that for the case µ = 0 we have γ0(k) = k! and so exp0(z) = ez. In

general, the idea is that for µ = 0 we recover familiar objects and relations, while
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for µ 6= 0 we obtain a deformation of the standard theory. But it can happen that

the deformed theory µ 6= 0 has properties identical to those in the case µ = 0. For

example, we have that γµ(0) = 1 = 0! and expµ(0) = 1 = e0. See Ref. 36 for more

details about this point of view.

The results of the following lemma are immediate consequences of these defini-

tions. The proofs can be found in Ref. 20.

Lemma 3.1. The function expµ(z) satisfies the following properties:

(a) For all µ > −1/2 the µ-deformed exponential expµ(z) is a holomorphic function

whose domain is the entire complex plane C, i.e. it is an entire function.

(b) For any µ > −1/2 and all z ∈ C we have | expµ(z)| ≤ expµ(|z|).

(c) If µ ≥ 0, then we have | expµ(z)| ≤ e|z| for every z ∈ C.

(d) If −1/2 < µ < 0, there is a Cµ > 0 so that | expµ(z)| ≤ Cµ(1 + |z||µ|)e|z| for

every z ∈ C.

Definition 3.1. For a measurable function f = fe + fo : C → C we now define an

integral kernel transform, denoted Kf , that is associated to the reproducing kernel

function K for B2
µ as follows:

Kf(w) :=

∫

C

dνe,µ(z)Ke(z, w)fe(z) +

∫

C

dνo,µ(z)Ko(z, w)fo(z) , (3.2)

provided both integrals converge absolutely, this being a restriction on f as well as

on w ∈ C.

Here, of course, Ke(z, w) and Ko(z, w) refer to the even and odd parts of K(z, w)

with respect to the first variable z, and each is a kernel function for an integral kernel

transform that enters in the definition (3.2) as well as in the subsequent definition

(3.5). Notice that the first integral in (3.2), if it exists, gives an even function in

w, while the second integral in (3.2), if it exists, gives an odd function in w. This

property depends on the explicit form of K(z, w).

If f ∈ B2
µ, the right-hand side of definition (3.2) reduces to 〈K(·, w)∗, f〉B2

µ
=

f(w), that is, Kf = f in this case. Of course, this remark is the motivation for this

definition.

The kernel function K(z, w) appears in Ref. 20, while all three kernel functions

K(z, w), Ke(z, w) and Ko(z, w) appear in Ref. 4. (Note that explicit formulas for

these reproducing kernels are given in Example 4.17 in Ref. 4, and they appear to

disagree with our formulas given below. But they are indeed equal to ours, as they

must be.)

Notice that Ke(z, w) = expµ,e(z
∗w) and that Ko(z, w) = expµ,o(z

∗w), where

expµ,e and expµ,o are the even and odd parts, respectively, of expµ. Since

expµ,e(z
∗w) (resp., expµ,o(z

∗w)) as a function of z is in Lq(νe,µ) (resp., Lq(νo,µ))

for 1 ≤ q < ∞ and any fixed w ∈ C, (which is a consequence of Lemma 3.1 and the

previously cited asymptotic behavior of the MacDonald function near infinity), it

follows by Hölder’s inequality that Kf(w) is well defined for every w ∈ C provided
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that fe ∈ Lp1(C, νe,µ) and fo ∈ Lp2(C, νo,µ) for some 1 < p1 ≤ ∞ and 1 < p2 ≤ ∞.

One can use Morera’s Theorem to show that the resulting function w 7→ Kf(w) is

holomorphic for all w ∈ C.

When p = 2 the spaces Bp
e,µ and Bp

o,µ introduced in Definition 1.2 become

Hilbert spaces of holomorphic functions with reproducing kernel functions given

by Ke(z, w) = expµ,e(z
∗w) for B2

e,µ and Ko(z, w) = expµ,o(z
∗w) for B2

o,µ, where z,

w ∈ C. These kernels then have associated integral transforms, given by

Kef(w) :=

∫

C

dνe,µ(z)Ke(z, w)f(z) (3.3)

and

Kof(w) :=

∫

C

dνo,µ(z)Ko(z, w)f(z) (3.4)

for measurable f : C → C, provided the integrals converge absolutely. These two

integral kernel transforms will be basic for our analysis.

Notice that we follow here the very common convention of using the same symbol

to denote both a kernel function as well as its associated integral kernel transform.

We have already done this before in equation (3.2).

We also consider Ke ⊕ Ko, which is defined for w ∈ C as

(Ke ⊕ Ko)(f ⊕ g)(w) := Kef(w) + Kog(w) (3.5)

where f , g : C → C are measurable functions, provided that both integrals in (3.3)

and (3.4) converge absolutely. Again, suitable integrability conditions on f and g

guarantee that the integrals exist for all w ∈ C and, in that case, the resulting

functions Kef and Kof are holomorphic in the entire complex plane. Moreover,

note that Ke ⊕ Ko : L2(νe,µ) ⊕ L2(νo,µ) → B2
e,µ ⊕ B2

o,µ = B2
µ is the orthogonal

projection in the Hilbert space of the domain onto the codomain, where the latter,

B2
µ, is included in the former, L2(νe,µ)⊕L2(νo,µ), by the map f = fe+fo 7→ fe⊕fo.

Notice that L2(νe,µ) ⊕ L2(νo,µ) is an external direct sum of Hilbert spaces, while

B2
e,µ ⊕ B2

o,µ is an internal direct sum of Hilbert spaces.

For all w ∈ C we have the identity

Kf(w) = (Ke ⊕ Ko)(fe ⊕ fo)(w) = Ke(fe)(w) + Ko(fo)(w) .

So the study of Ke ⊕ Ko and of K reduces to the study of Ke and Ko.

Let us note in passing that, while the transforms defined in (3.2) and (3.5)

can be viewed as the sum of two integral transforms (each with respect to its own

measure space), one can easily rewrite these as one integral transform with respect

to the measure space (C × Z2, νµ), where Z2 = {−1, +1} is a multiplicative group,

νµ|C×{+1} := νe,µ and νµ|C×{−1} := νo,µ. The group Z2 can be identified with the

Coxeter group (see Refs. 4 and 27) of this formalism.

Now a natural problem is to identify all quadruples p1, q1, p2, q2 of Lebesgue

indices such that

Ke ⊕ Ko : Lp1(νe,µ) ⊕ Lp2(νo,µ) → Bq1

e,µ ⊕ Bq2

o,µ (3.6)
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is bounded, i.e. the operator norm with respect to the indicated domain and

codomain is finite. And given that this operator is bounded, another problem is

to ascertain if it is compact. For example, if p1 = q1 = 2 and p2 = q2 = 2, then

Ke⊕Ko is bounded (since it is an orthogonal projection), but is not compact (since

it is an orthogonal projection with infinite dimensional range).

For the purposes of the present exposition it is better to start with the more

general problem of identifying those quadruples p1, q1, p2, q2 for which Ke ⊕Ko is

a bounded (or compact) transformation of Lp1(νe,µ)⊕Lp2(νo,µ) to Bq1
e,µ,a1

⊕Bq2
o,µ,a2

for some reals a1 and a2. So we wish to study when

Ke ⊕ Ko : Lp1(νe,µ) ⊕ Lp2(νo,µ) → Bq1

e,µ,a1
⊕ Bq2

o,µ,a2
(3.7)

is bounded or compact.

Here we are using a weighted modification of the previously defined spaces.

Specifically,

Bq
e,µ,a := H(C) ∩ {f : C → C|f = fe ∈ Lq(C, νe,µ,a)} ,

Bq
o,µ,a := H(C) ∩ {f : C → C|f = fo ∈ Lq(C, νo,µ,a)} ,

where a ∈ R and

dνe,µ,a(z) := e−a|z|2dνe,µ(z) and dνo,µ,a(z) := e−a|z|2dνo,µ(z) . (3.8)

Notice that here we allow a to be negative. When a = 0, we recover the spaces of

Definition 1.2 for the case λ = 1. Strictly speaking, the notation for the measures

defined in (3.8) conflicts with the notation of Definition 1.1, but we use it to avoid

even more complicated notation. The point is that in the notation of the measures

dνe,µ,λ(z) and dνo,µ,λ(z) in Definition 1.1 the variable λ > 0 could be interpreted as

the variable a ∈ R in the measures in (3.8). However, the measures in Definition 1.1

are dilations of the measures dνe,µ,1(z) ≡ dνe,µ(z) and dνo,µ,1(z) ≡ dνo,µ(z) (as we

noted earlier), while the measures in (3.8) are given by a simple weight function

(depending on the parameter a) times the measures dνe,µ(z) and dνo,µ(z), which do

not depend on a. It follows that the measures in (3.8) are not those of Definition 1.1

when µ 6= 0. However, for µ = 0 the measures in (3.8) are related to those of

Definition 1.1 by e−a|z|2dνe,0(z) = λ−1dνe,0,λ(z), where λ = 1 + a provided that

a 6= −1. (In our applications we always have a > −1. See for example Theorem 3.1

below.)

Of course, this problem naturally splits into two problems, since the first (resp.,

second) summand on the left of (3.7) maps to the first (resp., second) summand on

the right of (3.7). An answer is given in the following theorem.

Theorem 3.1. Let 1 < p ≤ ∞ and 1 ≤ q < ∞. Then for any a > p′q/4 − 1, the

integral kernel transform Ke (respectively, Ko) is a compact (and, hence, bounded)

operator from Lp(νe,µ) to Bq
e,µ,a (respectively, from Lp(νo,µ) to Bq

o,µ,a).

Consequently, for 1 < pj ≤ ∞ and 1 ≤ qj < ∞ and aj > p′jqj/4 − 1 for

j = 1, 2 we have that Ke ⊕ Ko is a compact (and hence, bounded) operator from

Lp1(νe,µ) ⊕ Lp2(νo,µ) to Bq1
e,µ,a1

⊕ Bq2
o,µ,a2

.
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Here, p′ is the usual index conjugate to p, namely, p′ = p/(p− 1) for 1 < p < ∞

and ∞′ = 1 and 1′ = ∞.

Proof. The proof is given for the case of Ke, since the other case of Ko has a quite

similar proof. (However, occasional parenthetical comments are given about the

latter case.) The tool to prove this result is the Hille–Tamarkin norm (see Refs. 16

and 18). For the Lebesgue indices 1 < p ≤ ∞ and 1 ≤ q < ∞ and the kernel

function Ke this norm is given by

‖|Ke‖|p,q :=

(

∫

C

dνe,µ,a(w)

(
∫

C

dνe,µ(z)|Ke(z, w)|p
′

)q/p′
)1/q

. (3.9)

(For Ko, one has to use the measures dνo,µ,a and dνo,µ.)

In the following we continue to use the same symbol Ke to represent the kernel

function as well as the operator defined by that kernel function. The main property

of the Hille–Tamarkin norm that will be used here is given next (see Refs. 16 and

18).

If ‖|Ke‖|p,q as given in (3.9) is finite, then the corresponding integral kernel

transform Ke is a compact operator and, hence, bounded from Lp(νe,µ) to

Bq
e,µ,a. Moreover, the operator norm from Lp(νe,µ) to Bq

e,µ,a is bounded above

by the Hille–Tamarkin norm, namely, ‖Ke‖p→q ≤ ‖|Ke‖|p,q.

We remark that the notation ‖|Ke‖|p,q has the same ambiguity as does ‖Ke‖p→q,

namely that the relevant measures are omitted from the notation. But again context

will clarify this.

So, the first step is to estimate the inner integral
∫

C
dνe,µ(z)|Ke(z, w)|p

′

in

Eq. (3.9) in order to determine its dependence on w. To do this, note that we

have the following estimate, which follows from the definition of the even part of a

function and from Lemma 3.1:

|Ke(z, w)| =
1

2
| expµ(z∗w) + expµ(−z∗|w)

≤ expµ(|z||w|) ≤ Cµ(1 + |z||µ||w||µ|)e|z||w| . (3.10)

We can take Cµ as in part (d) of Lemma 3.1 for −1/2 < µ < 0 and Cµ = 1 for

µ ≥ 0. (The same estimate holds for Ko). In the following estimates, the reader

should not confuse the kernel function Ke with the MacDonald function Kµ−1/2.

Also, in agreement with our convention mentioned earlier, the symbol C in the

following is a positive finite constant (i.e. independent of w, but not necessarily of

µ or p) which can change with each occurrence.

Using the estimate (3.10), the definition of the measure dνe,µ, the asymptotics

of the MacDonald function near +∞ and a completion of the square, we have
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∫

|z|≥M

dνe,µ(z)|Ke(w, z)|p
′

≤ C

∫

|z|≥M

dνe,µ(z)(1 + |z||µ||w||µ|)p′

ep′|z||w|

= C

∫ ∞

M

drKµ−1/2(r
2)r2µ+2(1 + r|µ||w||µ|)p′

ep′r|w|

≤ C

∫ ∞

M

dre−r2

r2µ+1(1 + r|µ||w||µ|)p′

ep′r|w|

= Cep′
2
|w|2/4

∫ ∞

M

dre−(r−p′|w|/2)2r2µ+1(1 + r|µ||w||µ|)p′

.

(3.11)

For our present purposes the particular value of 0 < M < ∞ is not relevant. To

estimate the integral in (3.11), we first note that for any α ≥ 0 we have the estimate

e−(x−α)2 ≤ e
1
4 eαe−x

for all x ≥ 0, which can be shown by calculus. Also for any r > 0 we have the

elementary inequality

(1 + α)r ≤ C(1 + αr) (3.12)

for all α ≥ 0, where C depends only on r, and not on α. Applying these two

inequalities to the integral in (3.11), we have that
∫ ∞

M

dre−(r−p′|w|/2)2r2µ+1(1 + r|µ||w||µ|)p′

≤ Cep′|w|/2

∫ ∞

M

dre−rr2µ+1(1 + rp′|µ||w|p
′|µ|) ≤ Cep′|w|/2(1 + |w|p

′|µ|) .

Substituting this into (3.11) we have that
∫

|z|≥M

dνe,µ(z)|Ke(w, z)|p
′

≤ Cep′
2
|w|2/4ep′|w|/2(1 + |w|p

′ |µ|) .

Now we consider the case |z| ≤ M , for which we see that
∫

|z|≤M

dνe,µ(z)|Ke(w, z)|p
′

≤ C

∫

|z|≤M

dνe,µ(z)(1 + |z||µ||w||µ|)p′

ep′|z||w|

≤ C

∫

|z|≤M

dνe,µ(z)(1 + M |µ||w||µ|)p′

ep′M |w|

≤ C(1 + M |µ||w||µ|)p′

ep′M |w|

≤ C(1 + |w|p
′ |µ|)ep′M |w| ,

where we first used the estimate (3.10), applied |z| ≤ M to the integrand, estimated

the integral by a constant, and finally used (3.12) and then made an elementary

estimate.
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Putting all this together we have that
∫

C

dνe,µ(z)|Ke(w, z)|p
′

≤ C((1 + |w|p
′ |µ|)ep′M |w| + ep′

2
|w|2/4ep′|w|/2(1 + |w|p

′|µ|)) . (3.13)

But now each of the terms on the right (3.13) can obviously be bounded by

C exp(βp′
2

|w|2) for any β > 1/4 and all w ∈ C, where now the constant C can

depend on β (as well as on p, µ and M), but not on w. So, the final estimate on

the inner integral in (3.9) is
∫

C

dνe,µ(z)|Ke(w, z)|p
′

≤ Ceβp′
2
|w|2

for any β > 1/4 and all w ∈ C. Continuing with the computation of the Hille–

Tamarkin norm of Ke in Eq. (3.9), we have to take the last expression to the power

q/p′ and then integrate with respect to the measure dνe,µ,a(w). (Using dνo,µ,a(w)

for Ko gives the same results.) But this gives us the estimate

‖|Ke‖|
q
p,q =

∫

C

dνe,µ,a(w)

(
∫

C

dνe,µ(z)|Ke(w, z)|p
′

)q/p′

≤ C

∫

C

dνe,µ,a(w)eβp′q|w|2 = C

∫ ∞

0

drKµ−1/2(r
2)r2µ+2e−ar2

eβp′qr2

.

Now this last integral converges if and only if it converges near infinity. But there

it has the upper bound

C

∫ ∞

M ′

dre−r2

r2µ+1e−ar2

eβp′qr2

,

for some M ′ > 0, which converges if and only if −1−a+βp′q < 0. This condition in

turn is equivalent to a > βp′q−1. However, we have by hypothesis that a > p′q/4−1,

which implies that we can pick some β > 1/4 such that

a > βp′q − 1 > p′q/4 − 1 .

Using this value of β in the above argument shows that ‖|Ke‖|p,q < ∞. The remain-

ing assertions of the theorem now follow directly. QED

Remark. The argument in this proof can be refined in the case µ > 0 with the

aim of getting an improved estimate for the Hille–Tamarkin norm and, hence, for

the operator norm. Clearly, one can use part (c) of Lemma 3.1 (instead of part (d))

in this case. But we can use an even better estimate, that follows directly from

(2.3.5) in Ref. 25. This says that for all z ∈ C and µ > 0 we have that | expµ(z)| ≤

expµ(Re(z)). However, we are not trying to find optimal constants, nor do we believe

it to be likely that the Hille–Tamarkin norm will produce them.
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Corollary 3.1. Let 1 < p ≤ ∞ and 1 ≤ q < ∞ be given with p′q < 4. Then the

integral kernel transform Ke (respectively, Ko) is a compact (and hence bounded)

operator from Lp(νe,µ) to Bq
e,µ (respectively, from Lp(νo,µ) to Bq

o,µ).

Proof. This is the special case a = 0 of the theorem. One only has to note that

Bq
e,µ,a = Bq

e,µ and that Bq
o,µ,a = Bq

o,µ when a = 0. QED

Theorem 3.1 and its corollary generalize results proved in Ref. 33 for the case

µ = 0. Notice that the relations a > p′q/4 − 1 of the theorem and p′q < 4 of the

corollary do not depend on the parameter µ, and so are identical with the relations

already found in Ref. 33. However, the Hille–Tamarkin and operator norms most

likely do depend on µ, though only an analysis which calculates good lower bounds

for these norms (or the norms themselves) can settle this question. Here we have

presented only upper bounds. Also, notice that for the case µ = 0 it is proved in

Ref. 33 that the integral kernel transform K is unbounded if p′q > 4. It is reasonable

to conjecture that this also holds for the case µ 6= 0.

4. The Main Results

To obtain the main results of this paper we will use an interpolation theorem due

to Stein (see Ref. 37 or Theorem 3.6 in Ref. 5). This theorem is a generalization

of the well-known interpolation theorem of Riesz–Thorin (see Ref. 38). The reason

interpolation theory is used here is to obtain operator norm estimates that vary

smoothly as the pair of Lebesgue indices varies. This will allow us to take a deriva-

tive with respect to the interpolation parameter t as the reader will shortly see.

This derivative is central to the argument that we use.

Since the Stein theorem is not so widely known, we now quote it. But first, let

us recall that a simple function is a measurable function f having a finite range

R ⊂ C such that f−1(z) is a set of finite measure for every z ∈ R, z 6= 0.

Theorem 4.1. (Stein37) Let (Ωj , νj) for j = 1, 2 be σ-finite measure spaces. Let

T be a linear transformation which takes simple complex-valued functions on Ω1 to

measurable complex-valued functions on Ω2. Let p0, p1, q0, q1 be in [1,∞]. Then,

for 0 ≤ t ≤ 1, define pt and qt by

p−1
t = (1 − t)p−1

0 + tp−1
1 and q−1

t = (1 − t)q−1
0 + tq−1

1 .

Suppose that u0, u1: Ω1 → [0,∞) and k0, k1: Ω2 → [0,∞) are measurable functions

such that for all simple f : Ω1 → C we have

‖(Tf)k0‖Lq0 (Ω2,ν2) ≤ A0‖fu0‖Lp0 (Ω1,ν1) ,

and

‖(Tf)k1‖Lq1 (Ω2,ν2) ≤ A1‖fu1‖Lp1(Ω1,ν1)
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for some finite constants A0 ≥ 0 and A1 ≥ 0. (Note that for some simple f the right

side of these inequalities can be equal to +∞.) For 0 ≤ t ≤ 1, define functions ut :=

u1−t
0 ut

1 : Ω1 → [0,∞) and kt := k1−t
0 kt

1 : Ω2 → [0,∞). Then the transformation

T can be extended uniquely to a linear transformation defined on the space of all

f : Ω1 → C that satisfy ‖fut‖Lpt (Ω1,ν1) < ∞ in such a way that for all such f we

have

‖(Tf)kt‖Lqt (Ω2,ν2) ≤ A1−t
0 At

1‖fut‖Lpt(Ω1,ν1) .

Now we will apply Stein’s Theorem in the context of Theorem 3.1. The next

result, including its proof using Stein’s Theorem, follows the presentation in Ref. 33

for the case µ = 0. Moreover, the next result and its proof are valid for Ko provided

that we change the subscript “e” to “o” throughout.

Theorem 4.2. Let 1 < p ≤ ∞, 1 ≤ q < ∞ and a > p′q/4 − 1. Then we have

‖Ke‖p→q ≤ ‖|Ke‖|p,q < ∞ and also that for all 0 ≤ t ≤ 1, Ke is a bounded linear

map from Lpt(C, νe,µ) to Lqt(C, νt
e,µ,a), where

dνt
e,µ,a(z) := exp

(

−
tqt

q
a|z|2

)

dνe,µ(z) (4.1)

for p−1
t = (1 − t)2−1 + tp−1 and q−1

t = (1 − t)2−1 + tq−1. Moreover, the operator

norm from Lpt(C, νe,µ) to Lqt(C, νt
e,µ,a) satisfies

‖Ke‖pt→qt
≤ (‖Ke‖p→q)

t < ∞ ,

or equivalently,

‖(Kef)kt‖Lqt (νe,µ) ≤ At
e‖f‖Lpt(νe,µ) , (4.2)

for all f ∈ Lpt(C, νe,µ), where Ae = Ae(p, q, a, µ) := ‖Ke‖p→q < ∞ is the operator

norm from Lp(C, νe,µ) to Lq(C, νe,µ,a) and where

kt(z) = exp(−at|z|2/q) (4.3)

for all z ∈ C and 0 ≤ t ≤ 1.

Proof. In the context of Stein’s theorem, we take (Ω1, ν1) = (C, νe,µ) and

(Ω2, ν2) = (C, νe,µ,a). Also take p0 = q0 = 2, p1 = p, q1 = q and k0(z) = u0(z) =

u1(z) = 1 for all z ∈ C. Finally, put k1(z) = exp(−a|z|2/q). Note that

‖(Kef)kt‖Lqt (νe,µ) = ‖Kef‖Lqt (νt
e,µ,a) .

Here kt(z) = k1−t
0 (z)kt

1(z) comes from the statement of Stein’s Theorem. Us-

ing the definitions for k0(z) and k1(z) just given, we get that kt(z) = kt
1(z) =

exp(−at|z|2/q), which is just Eq. (4.3). Note that kt also depends on a and q,

although this is suppressed from the notation. For t = 0, we have

‖(Kef)k0‖L2(νe,µ) ≤ ‖fu0‖L2(νe,µ)

In
fi

n.
 D

im
en

s.
 A

na
l. 

Q
ua

nt
um

. P
ro

ba
b.

 R
el

at
. T

op
. 2

00
7.

10
:5

39
-5

71
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 C

E
N

T
R

E
 F

O
R

 M
A

T
H

E
M

A
T

IC
A

L
 R

E
SE

A
R

C
H

 (
C

IM
A

T
) 

on
 1

0/
03

/1
8.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



December 11, 2007 18:17 WSPC/102-IDAQPRT 00288

Direct and Reverse Log-Sobolev Inequalities 555

for all f ∈ L2(νe,µ), since Ke is an orthogonal projection when considered as an

operator with domain L2(νe,µ). For t = 1, we can apply Theorem 3.1 because of

our hypotheses on p, q and a and so we have that

‖(Kef)k1‖Lq(νe,µ) ≤ Ae‖fu1‖Lp(νe,µ) .

(Recall that Ae = ‖Ke‖p→q.) So, Stein’s Theorem allow us to conclude that

‖(Kef)kt‖Lqt (νe,µ) ≤ 11−tAt
e‖fut‖Lpt (νe,µ) = At

e‖f‖Lpt(νe,µ) ,

or, equivalently,

‖Kef‖Lqt (νt
e,µ,a) ≤ At

e‖f‖Lpt(νe,µ)

for all f ∈ Lpt(νe,µ). Here we have used ut = u1−t
0 ut

1 ≡ 1. QED

In the next theorem and its discussion we will see three expressions arising quite

naturally. These have been basically identified by us in Ref. 2 and are given next.

We give these definitions for the measures introduced in Definition 1.1.

Definition 4.1. Let λ > 0 be a given value throughout of the dilation parameter.

For every g ∈ B2
e,µ,λ define its µ-deformed energy by

Ee,µ,λ(g) :=

∫

C

dνe,µ,λ(z)λ|z|2|g(z)|2 . (4.4)

Similarly, for every h ∈ B2
o,µ,λ define its µ-deformed energy by

Eo,µ,λ(h) :=

∫

C

dνo,µ,λ(z)λ|z|2|h(z)|2 .

Finally, for every f ∈ B2
µ,λ define its µ-deformed energy by

Eµ,λ(f) := Ee,µ,λ(fe) + Eo,µ,λ(fo) , (4.5)

where f = fe + fo is the representation of f as the sum of its even and odd parts.

See Ref. 2 for the case λ = 1 of this definition. With the normalization we have

chosen, we have that Eµ,1(f) = Eµ,λ(Tλf) for all f ∈ B2
µ, where Tλ is defined in

Eq. (1.5). Having made this comment, we now revert to the situation where λ = 1

and λ is suppressed from the notation.

We note that all of these µ-deformed energies are non-negative quantities, al-

though they can be equal to +∞. We have given in Ref. 2 explicit formulas for

these µ-deformed energies in terms of the coefficients of the Taylor series (centered

in the origin) of the function. Unfortunately, those formulas are rather unenlight-

ening and do not show an immediate relation with the Dirichlet form energy, which

we introduce in the next section. Note that in the case µ = 0 these µ-deformed

energies are related to the Dirichlet energy in the Segal–Bargmann space B2 via an

identity of Bargmann that is proved in Ref. 3 [Eq. (3.17)], namely, for all f ∈ B2

we have that
∫

C

dνGauss(z)|z|2|f(z)|2 = ‖f‖2
B2 + 〈f, Nf〉B2 ,

In
fi

n.
 D

im
en

s.
 A

na
l. 

Q
ua

nt
um

. P
ro

ba
b.

 R
el

at
. T

op
. 2

00
7.

10
:5

39
-5

71
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 C

E
N

T
R

E
 F

O
R

 M
A

T
H

E
M

A
T

IC
A

L
 R

E
SE

A
R

C
H

 (
C

IM
A

T
) 

on
 1

0/
03

/1
8.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



December 11, 2007 18:17 WSPC/102-IDAQPRT 00288

556 C. E. Angulo Aguila & S. B. Sontz

where dνGauss(= dνe,0 = dνo,0) is a Gaussian measure [cf. Eq. (1.6)] and N is the

number operator which is associated with the Dirichlet form. See Ref. 3 for more

details. In the next section we will discuss a µ-deformed number operator Nµ acting

in B2
µ and its associated Dirichlet form as well as its relation with the µ-deformed

energies of Definition 4.1.

We now continue with the main results of this paper.

Theorem 4.3. Suppose that 1 < p ≤ ∞, 1 ≤ q < ∞ and a > p′q/4 − 1. Then the

energy-entropy inequality

(p−1 − q−1)SL2(νe,µ)(f) ≤ (log Ae)‖f‖
2
L2(νe,µ) +

a

q
Ee,µ(f) (4.6)

holds, where Ae = Ae(p, q, a, µ) is the operator norm of Ke acting from Lp(νe,µ) to

Bq
e,µ,a, provided that one of the following hypotheses is satisfied:

Hypothesis 1 : f ∈ B2+ε
e,µ for some ε > 0.

Hypothesis 2 : f ∈ B2
e,µ, 1 < p ≤ 2, 1 ≤ q ≤ 2 and SL2(νe,µ)(f) < ∞.

Moreover, for the coefficients of the principle terms in (4.6), namely the energy

term Ee,µ(f) and the entropy term SL2(νe,µ)(f), we have the following cases:

Case 1: p−1 > q−1. This implies that p′q/4 − 1 > 0 and so a > 0. Thus the

coefficients of both SL2(νe,µ)(f) and Ee,µ(f) are positive and consequently (4.6)

is a direct log-Sobolev inequality in B2
e,µ with respect to the µ-deformed energy

Ee,µ.

Case 2: p−1 ≤ q−1 and p′q/4− 1 ≥ 0. Again a > 0 follows so that the coefficient

of Ee,µ(f) is positive, but now the coefficient of the entropy is non-positive. Since

dνe,µ(z) is a probability measure, SL2(νe,µ)(f) ≥ 0 and so (4.6) is trivially true.

Case 3: p′q/4 − 1 < 0. This implies that p−1 < q−1, namely, that the coefficient

of the entropy is negative. Moreover, we choose a such that 0 > a > p′q/4 − 1,

which means that the energy term also has a negative coefficient. (Of course, we

can also choose a ≥ 0 in this case. But then (4.6) becomes trivial.) In this case

by putting the energy term on the left and the entropy term on the right, (4.6)

gives us a reverse log-Sobolev inequality in B2
e,µ with respect to the µ-deformed

energy Ee,µ.

Since Ke1 = 1 (where 1 is the constant function, which is holomorphic and

even), we have that Ae ≥ 1 and so the coefficient of the norm term in (4.6) is

non-negative. Here, we use that a < 0 implies ‖1‖Bq
e,µ,a

≥ 1.

Remark. The corresponding inequality holds for odd functions. One merely has

to change the subscript “e” to “o” throughout. We simply note the result here. So,

with the same hypotheses as in Theorem 4.3, we have that

(p−1 − q−1)SL2(νo,µ)(f) ≤ (log Ao)‖f‖
2
L2(νo,µ) +

a

q
Eo,µ(f) , (4.7)
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where Ao = Ao(p, q, a, µ) is the operator norm of Ko acting from Lp(νo,µ) to Bq
o,µ,a.

However, the comments about the three cases need some modification. In Case 2 we

remark that for µ > 0 we can have negative entropies and (4.7) could be nontrivial

for some choices of f . Also, the second paragraph of Case 3 does not apply.

The proof (in either the even or odd case) is essentially identical to that given

in Ref. 34, except for some notational changes some of which are due to the absence

of a Bargmann identity for Ee,µ(f) and some to a difference in the normalization

of the measures. Since the proof in Ref. 34 is rather long and technical, it will not

be repeated in detail here. However, we now present a sketch of the main ideas of

the proof.

We start with the formula (4.2), which we repeat here:

‖(Kef)kt‖Lqt (νe,µ) ≤ At
e‖f‖Lpt(νe,µ) . (4.2)

This is valid with Ae finite because of the assumptions imposed on p, q and a. We

have proved this formula for f ∈ Lpt(νe,µ) and hence for f ∈ Lpt(νe,µ) ∩ B2
e,µ. But

we will now use it for f ∈ B2
e,µ. In the rest of this sketch, such technical details

about domain issues and their ensuing complications will be omitted. The idea is

that (4.2) is an equality when t = 0, since p0 = q0 = 2, k0 ≡ 1, A0
e = 1 and Kef = f

because f ∈ B2
e,µ. So, using a technique that dates back at least to Hirschman in

Ref. 17 but that is also important in Ref. 12, we take f , p and q fixed and regard

each side of (4.2) as a real-valued function of the real variable t ∈ [0, 1]. The fact

that equality obtains at t = 0 implies that we can take the derivative (from the

right) at t = 0 on both sides of (4.2) and thereby get another valid inequality,

namely

d

dt

∣

∣

∣

∣

∣

t=0+

(‖fkt‖Lqt (νe,µ)) ≤
d

dt

∣

∣

∣

∣

∣

t=0+

(At
e‖f‖Lpt(νe,µ)) ,

which simplifies to

d

dt

∣

∣

∣

∣

∣

t=0+

(‖fkt‖Lqt (νe,µ)) ≤ (log Ae)‖f‖L2(νe,µ) +
d

dt

∣

∣

∣

∣

∣

t=0+

(‖f‖Lpt(νe,µ)) . (4.8)

Note that derivation in general is not an order-preserving operator, but that in this

particular instance, the operator d/dt|t=0+ is. Using elementary calculus, a differ-

entiation under the integral sign (which we do not justify here) and the definition

in Eq. (1.7) of entropy, we find that

d

dt

∣

∣

∣

∣

∣

t=0+

(‖f‖Lpt(νe,µ)) =
(2−1 − p−1)SL2(νe,µ)(f)

‖f‖L2(νe,µ)
, (4.9)

provided that ‖f‖L2(νe,µ) 6= 0. But (4.6) is trivially true if f ≡ 0, so hereafter we

exclude that case. Similarly, we find that
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d

dt

∣

∣

∣

∣

∣

t=0+

(‖fkt‖Lqt (νe,µ)) =
(2−1 − q−1)SL2(νe,µ)(f)

‖f‖L2(νe,µ)

+
1

‖f‖L2(νe,µ)

∫

C

dνe,µ(z)

(

−
a

q
|z|2
)

|f(z)|2 , (4.10)

using the following immediate consequence of Eq. (4.3):

dkt

dt

∣

∣

∣

∣

∣

t=0+

= −
a

q
|z|2 .

Substituting (4.9) and (4.10) into (4.8) and using the definition in Eq. (4.4) of the

µ-deformed energy Ee,µ(f), we obtain

(2−1 − q−1)SL2(νe,µ)(f)

‖f‖L2(νe,µ)
−

1

‖f‖L2(νe,µ)

a

q
Ee,µ(f)

≤ (log Ae)‖f‖L2(νe,µ) +
(2−1 − p−1)SL2(νe,µ)(f)

‖f‖L2(νe,µ)
.

Then, multiplying by ‖f‖L2(νe,µ), putting the two entropy terms on the left and

the energy term on the right, we obtain (4.6). This concludes the sketch of the

proof. QED

As noted before, the missing details of the proof, which amount to some ten

pages, can be found in Ref. 34. It is in those details that Hypotheses 1 and 2 play

a role in justifying the differentiation under the integral sign, as mentioned earlier.

Now we state a corollary of a part of the proof that we have not presented here.

Again, refer to Ref. 34 for details. Notice that this is not a consequence of the

conclusion of the previous theorem.

Corollary 4.1. The following relations between entropies and µ-deformed energies

hold:

(a) For all fe ∈ B2
e,µ we have that the Shannon entropy SL2(νe,µ)(fe) is finite if and

only if the µ-deformed energy Ee,µ(fe) is finite.

(b) For all fo ∈ B2
o,µ we have that the Shannon entropy SL2(νo,µ)(fo) is finite if and

only if the µ-deformed energy Eo,µ(fo) is finite.

(c) For all f ∈ B2
µ we have that the µ-deformed entropy Sµ(f) (see Definition 4.2

below) is finite if and only if the µ-deformed energy Eµ(f) is finite.

By adding the inequalities (4.6) and (4.7) for the even and odd cases, we get

the next result.

Corollary 4.2. Let 1 < pe ≤ ∞, 1 ≤ qe < ∞, ae > p′eqe/4 − 1, 1 < po ≤ ∞,

1 ≤ qo < ∞ and ao > p′oqo/4− 1. Then we have the energy-entropy inequality

(p−1
e − q−1

e )SL2(νe,µ)(fe) + (p−1
o − q−1

o )SL2(νo,µ)(fo)

≤ (log Ae)‖fe‖
2
L2(νe,µ) + (log Ao)‖fo‖

2
L2(νo,µ) +

ae

qe
Ee,µ(fe) +

ao

qo
Eo,µ(fo) ,
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where f = fe + fo is the representation of f as the sum of its even and odd parts,

provided that fe (resp., fo) satisfies one of the two Hypotheses of Theorem 4.3 (resp.,

one of the two Hypotheses of Theorem 4.3 with “o” instead of “e”).

Remark. We now will make a comparison of the present results with our previous

results in Ref. 2. Note that Theorem 4.3, Case 3, gives

Ee,µ(fe) ≤
q

a
(p−1 − q−1)SL2(νe,µ)(fe) + σe(p, q, a, µ)‖fe‖

2
L2(νe,µ)

for some constant σe(p, q, a, µ). It is shown by the second author in Ref. 34 that the

coefficient of the entropy term can achieve any number c > 1. So we have:

Theorem 4.4. (Reverse log-Sobolev inequalities in B2
e,µ and B2

o,µ for the µ-

deformed energy) For every fe ∈ B2
e,µ we have that

Ee,µ(fe) ≤ cSL2(νe,µ)(fe) + τe(c, µ)‖fe‖
2
L2(νe,µ) (4.11)

for any c > 1, where τe(c, µ) is some finite constant.

For every fo ∈ B2
o,µ we have that

Eo,µ(fo) ≤ cSL2(νo,µ)(fo) + τo(c, µ)‖fo‖
2
L2(νo,µ) (4.12)

for any c > 1, where τo(c, µ) is some finite constant.

The inequality (4.11) (resp., (4.12)) holds for all elements in B2
e,µ (resp., B2

o,µ)

due to an argument based on Corollary 4.1. Again, see Ref. 34 for more details.

Similar reasoning justifies the subsequent results which, at first glance, appear to

hold only in a certain dense subspace of the relevant Hilbert space, but actually

hold in all of that Hilbert space.

The inequality (4.11) should be compared with Theorem 5.1 in Ref. 2, which

says in our notation that

Ee,µ(fe) ≤ cSL2(νe,µ)(fe) + κe(c, µ)‖fe‖
2
L2(νe,µ) .

We have shown in Ref. 2 that for each c > 1 we can take

κe(c, µ) = c log

∫

C

dνe,µ(z)e|z|
2/c < ∞ .

So we have proved the same type of reverse log-Sobolev inequality in B2
e,µ though

with a possibly different coefficient for the norm term. Similarly, our result (4.12)

in the odd case corresponds to Theorem 5.2 in Ref. 2 with the same caveats. The

method of Ref. 2 is based on the Young inequality and is due to Gross (see Refs. 10

and 35). One advantage of the results in Ref. 2 is that formulas are produced for

the coefficients of the norm terms. Our analysis here is incomplete in that regard.

It remains an open problem to identify the optimal constants of the norm terms.

They may even be equal to zero as far as we currently know.

In
fi

n.
 D

im
en

s.
 A

na
l. 

Q
ua

nt
um

. P
ro

ba
b.

 R
el

at
. T

op
. 2

00
7.

10
:5

39
-5

71
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 C

E
N

T
R

E
 F

O
R

 M
A

T
H

E
M

A
T

IC
A

L
 R

E
SE

A
R

C
H

 (
C

IM
A

T
) 

on
 1

0/
03

/1
8.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



December 11, 2007 18:17 WSPC/102-IDAQPRT 00288

560 C. E. Angulo Aguila & S. B. Sontz

Finally, Corollary 4.2 in the particular case that pe = po, qe = qo and ae = ao

with p′eqe/4− 1 < ae < 0 reduces to

Eµ(f) ≤ c(SL2(νe,µ)(fe) + SL2(νo,µ)(fo))

+ τe(c, µ)‖fe‖
2
L2(νe,µ) + τo(c, µ)‖fo‖

2
L2(νo,µ) ,

for any c > 1, using the definition of Eµ(f) in Eq. (4.5). This is the first inequality

in Theorem 5.3 in Ref. 2, modulo the coefficient of the norm term. By taking

τ(c, µ) := max(τe(c, µ), τo(c, µ)), we get the next result.

Theorem 4.5. (Reverse log-Sobolev inequality in B2
µ for µ-deformed energy) For

every f = fe + fo ∈ B2
µ we have that

Eµ(f) ≤ c{SL2(νe,µ)(fe) + SL2(νo,µ)(fo)} + τ(c, µ)‖f‖2
B2

µ
(4.13)

for any c > 1, where τ(c, µ) is a finite constant.

This is the second inequality in Theorem 5.3 of Ref. 2, again modulo the coeffi-

cient of the norm term. Note that this does not appear to be a reverse log-Sobolev

inequality in the sense of Definition 1.4 given that the expression in brackets on the

right of (4.13) may not be immediately seen to be a Shannon entropy. In fact, it is

not a Shannon entropy of f ∈ B2
µ, since B2

µ is not defined as a subspace of an L2

space. And we stated just this in Ref. 2, but it turns out that there is another way

of viewing this. Note that the isometry f → (fe, fo) maps

B2
µ → L2(C, νe,µ) ⊕ L2(C, νo,µ) ∼= L2(C × Z2, νµ)

as we remarked in Sec. 3 and so this canonically identifies B2
µ with a closed subspace

of L2(C × Z2, νµ), which is an L2 space. We use this fact in the next definition.

Definition 4.2. (see Ref. 2) For f = fe +fo ∈ B2
µ we define its µ-deformed entropy

by

Sµ(f) := SL2(C×Z2,νµ)(fe, fo) .

Then we immediately calculate Sµ(f) = SL2(νe,µ)(fe) + SL2(νo,µ)(fo), which

agrees with the definition in Ref. 2. Now this allows us to write (4.13) as follows:

Eµ(f) ≤ cSµ(f) + τ(c, µ)‖f‖2
B2

µ
.

In summary, we have another method of proving the reverse log-Sobolev in-

equalities in Ref. 2. However, the coefficients of the norm terms that we obtain here

are most likely different (they are different in the case µ = 0. See Ref. 35).

An important point is that the reproducing kernel method also produces direct

log-Sobolev inequalities in B2
e,µ and in B2

o,µ, and these are new results. So, we have

the next result, which is a restatement of Case 1 of Theorem 4.3.

Theorem 4.6. (Log-Sobolev inequalities in B2
e,µ and B2

o,µ for the µ-deformed en-

ergy) For all fe ∈ B2
e,µ we have
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aeSL2(νe,µ)(fe) ≤ beEe,µ(fe) + ce‖fe‖
2
L2(νe,µ) ,

where ae > 0, be > 0 and ce ≥ 0 are finite constants.

For all fo ∈ B2
o,µ we have

aoSL2(νo,µ)(fo) ≤ boEo,µ(fo) + co‖fo‖
2
L2(νo,µ) ,

where ao > 0, bo > 0 and co ≥ 0 are finite constants.

Obviously, one can divide both sides of the previous inequalities by the coeffi-

cient of the entropy term without changing the sense of the inequality. Then one

would try to find the optimal constant for the norm term, given a fixed value for

the coefficient of the energy term.

Next by summing these two direct log-Sobolev inequalities, we obtain an energy-

entropy inequality in B2
µ with two entropy terms of the form:

aeSL2(νe,µ)(fe) + aoSL2(νe,µ)(fo) ≤ beEe,µ(fe) + boEo,µ(fo)

+ ce‖fe‖
2
L2(νe,µ) + co‖fo‖

2
L2(νo,µ) ,

where f = fe + fo ∈ B2
µ. By taking a := min(ae, ao), b := max(be, bo) and c :=

max(ce, co), we get for all f = fe + fo ∈ B2
µ that

a{SL2(νe,µ)(fe) + SL2(νe,µ)(fo)} ≤ bEµ(f) + c‖f‖2
B2

µ
.

We can apply Definition 4.2 to the term in brackets on the left and obtain the next

result.

Theorem 4.7. (Log-Sobolev inequality for B2
µ for the µ-deformed energy) For all

f ∈ B2
µ we have that

aSµ(f) ≤ bEµ(f) + c‖f‖2
B2

µ
,

where a > 0, b > 0 and c ≥ 0 are finite constants.

As a closing comment to this section, we note that some other rather strange

looking inequalities can be obtained from these results. For example, we can add

a direct log-Sobolev inequality for B2
e,µ with a reverse log-Sobolev inequality for

B2
e,µ. (Similarly, we can do this for B2

o,µ.) We can also add a direct log-Sobolev

inequality for B2
e,µ with a reverse log-Sobolev inequality for B2

o,µ and, vice versa, a

direct log-Sobolev inequality for B2
o,µ with a reverse log-Sobolev inequality for B2

e,µ.

Of course, none of these inequalities is more fundamental than their antecedents,

and they seem to be mere curiosities as far as we can tell.

5. Dirichlet and µ-Deformed Energies

The µ-deformed energies introduced by us in Ref. 2 can be related to a Dirichlet

form energy in B2
µ. So we proceed to a discussion that will lead us to a definition

of this latter concept.
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We first note that one can introduce creation and annihilation operators, A∗
µ

and Aµ respectively, which act in B2
µ. In terms of the standard orthonormal basis

{Ψµ
n}n≥0 of B2

µ, where Ψµ
n(z) = zn/(γµ(n))1/2 (see Ref. 20), the definitions are:

AµΨµ
n :=

(

γµ(n)

γµ(n − 1)

)1/2

Ψµ
n−1 , (5.1)

A∗
µΨµ

n :=

(

γµ(n + 1)

γµ(n)

)1/2

Ψµ
n+1 (5.2)

for every integer n ≥ 0, where Ψµ
−1 ≡ 0. Then, one can extend the definitions (5.1)

and (5.2) linearly to the dense subspace D2
µ of B2

µ, where D2
µ is defined to be the

set of all finite linear combinations of the Ψµ
n. While we have given these definitions

explicitly in Ref. 2, one can find them discussed in a quite general situation in Sec 5

of Rosenblum’s article25 and, in a form isomorphic to that given here, in formulas

(3.7.1) and (3.7.2) of Ref. 25. Moreover, it can be easily checked that

Aµf(z) = Dµf(z) := f ′(z) +
µ

z
(f(z) − f(−z)) , (5.3)

A∗
µf(z) = (Mµf)(z) := zf(z) , (5.4)

for all f ∈ D2
µ and all z ∈ C. Here f ′(z) is the complex derivative of f(z). (We

thank C. Pita for bringing formula (5.3) to our attention.) Of course, the formulas

(5.3) and (5.4) can be used to define Dµ and Mµ, and hence Aµ and A∗
µ as well, on

much larger space than D2
µ. For example, we will use these formulas for definitions

on B2
µ with the warning that the range will not then be a subspace of B2

µ. We also

use these formulas for definitions on H(C), the space of all holomorphic functions

on C, which is a domain invariant under the actions of Dµ and Mµ. (Note that the

singularity at z = 0 in the second term of (5.3) is removable since f is holomorphic.)

The operators Dµ and Mµ already appear on p. 373 of Ref. 25. Moreover, Dµ is

well known to be a special case of a Dunkl operator. (See Ref. 27 and references

therein.) From Eqs. (5.3) and (5.4) one sees immediately that

[Aµ, A∗
µ] = I + 2µJ (5.5)

on H(C). Of course, [Aµ, A∗
µ] = AµA∗

µ −A∗
µAµ is the usual commutator of the two

operators Aµ and A∗
µ, I is the identity operator, and J is the parity operator as

introduced earlier. The commutation relation (5.5), which differs from the canonical

commutation relation in the second term on the right, was essentially introduced by

Wigner in Ref. 39 in order to answer negatively the question whether the standard

quantum mechanical equations of motion determine the canonical commutation re-

lations. Actually, Wigner presented a commutation relation for µ-deformed position

and momentum operators (Qµ and Pµ) that is equivalent to (5.5). The paper39 by

Wigner is the starting point of all further research concerning operators like Qµ,

Pµ, Aµ and A∗
µ and the spaces on which they act.
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Up to this point in the discussion, Aµ and A∗
µ are two operators, each with its

own definition. More than anything else, the notation indicates a wish that Aµ and

A∗
µ should be adjoints of each other. But to define adjoints, one needs an inner

product, and such a structure is not available in H(C). However, we can realize Aµ

and A∗
µ as densely defined, closed unbounded operators in the Hilbert space B2

µ.

Then we do have the adjointness relation

〈A∗
µf, g〉B2

µ
= 〈f, Aµg〉B2

µ

for all f in the domain of A∗
µ and for all g in the domain of Aµ. As discussed further

in Ref. 36, this relation can be taken as the motivation for the definition of the inner

product for B2
µ.

The µ-deformed number operator (see Ref. 2) is defined by

Nµ := A∗
µAµ = MµDµ ,

and its associated quadratic form is then

〈f, Nµf〉B2
µ

= 〈f, A∗
µAµf〉B2

µ
= 〈Aµf, Aµf〉B2

µ
= ‖Dµf‖2

B2
µ

. (5.6)

This last expression justifies our calling this a Dirichlet form.

While the left of (5.6) has a natural domain given by the domain of Nµ, the

right has a natural domain given by the domain of Dµ, which is strictly larger.

Specifically we have

Domain(Nµ) = {f ∈ B2
µ: Nµf ∈ B2

µ} ,

Domain(Dµ) = {f ∈ B2
µ: Dµf ∈ B2

µ} .

Definition 5.1. The Dirichlet form energy (or the Dirichlet energy) is defined as

‖Dµf‖2
B2

µ
for all f in Domain(Dµ) and as +∞ otherwise.

We avoid the standard convention of writing 〈f, Nµf〉B2
µ

for the Dirichlet energy.

In fact, the operator Nµ does not enter the discussion here in any essential way,

and we will not make any further explicit reference to it.

Note that we can use the commutation relation (5.5) to obtain, at least formally,

‖Dµf‖2
B2

µ
= 〈Aµf, Aµf〉B2

µ
= 〈f, A∗

µAµf〉B2
µ

= 〈f, (AµA∗
µ − I − 2µJ)f〉B2

µ

= ‖A∗
µf‖2

B2
µ
− ‖f‖2

B2
µ
− 2µ〈f, Jf〉B2

µ
.

To make this rigorous, we will use the next result, whose proof is elementary. (See

Ref. 3 for a proof in the case µ = 0.)

Proposition 5.1. Suppose g(z) =
∑∞

k=0 bkzk for bk ∈ C is an entire function, that

is, it is holomorphic for all z ∈ C. Then,

‖g‖2
B2

µ
=

∞
∑

k=0

|bk|
2γµ(k) , (5.7)
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where both sides are defined to be elements in [0,∞]. In particular, g ∈ B2
µ if and

only if the series on the right of (5.7) is convergent.

We now prove the result which we derived formally above.

Proposition 5.2. For all f ∈ B2
µ we have that

‖Dµf‖2
B2

µ
= A∗

µf‖2
B2

µ
‖ − ‖f‖2

B2
µ
− 2µ〈f, Jf‖〉B2

µ
. (5.8)

In particular, ‖Dµf‖B2
µ

< ∞ if and only if ‖A∗
µf‖B2

µ
< ∞.

Proof. First we write f(z) =
∑∞

k=0 akzk, and we then calculate that

Dµf(z) =

∞
∑

k=0

ak(k + 2µχo(k))zk−1 ,

A∗
µf(z) =

∞
∑

k=0

akzk+1 ,

Jf(z) =
∞
∑

k=0

(−1)kakzk ,

where χo is the characteristic function of the odd integers. It then follows that

‖Dµf‖2
B2

µ
=

∞
∑

k=0

|ak|
2(k + 2µχo(k))2γµ(k − 1) ,

‖A∗
µf‖2

B2
µ

=

∞
∑

k=0

|ak|
2γµ(k + 1) ,

‖f‖2
B2

µ
=

∞
∑

k=0

|ak|
2γµ(k) ,

〈f, Jf〉B2
µ

=

∞
∑

k=0

(−1)k|ak|
2γµ(k) .

Here we use the convention that γµ(−1) = 0. So (5.8) is a direct consequence of

(k + 2µχo(k))2γµ(k − 1) = γµ(k + 1) − γµ(k) − (2µ)(−1)kγµ(k)

for all integers k ≥ 0, which in turn follows from the definition (3.1) of the µ-

deformed factorial γµ. Note that we have proved (5.8) for all f ∈ B2
µ in the sense

that one side is finite if and only if the other side is finite. Since the last two terms

on the right of (5.8) are finite for all f ∈ B2
µ, the last assertion of the theorem

follows directly. QED

The previous two propositions also appear in Ref. 31.
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Notice that

‖A∗
µf‖2

B2
µ

= ‖Mµf‖2
B2

µ
=

∫

C

dνe,µ(z)|z|2|fo(z)|2 +

∫

C

dνo,µ(z)|z|2|fe(z)|2 , (5.9)

since (zf(z))e = zfo(z) and (zf(z))o = zfe(z). While the last two integrals in (5.9)

are reminiscent of the µ-deformed energies, Ee,µ(fe) and Eo,µ(fo), they are in fact

new quantities. One way to think of this is that the integrals in (5.9) are “mixed”

in terms of parity in the sense that the expression involving fo in the first integral

is integrated with respect to dνe,µ and, vice versa, the expression involving fe in

the second integral is integrated with respect to dνo,µ. However, in Ee,µ(fe) an even

function fe is integrated with respect to dνe,µ, and in Eo,µ(fo) an odd function fo

is integrated with respect to dνo,µ.

The question now is how to relate the µ-deformed energies to these new quanti-

ties on the right of (5.9), and hence to the Dirichlet energy. First consider the case

µ > 0. The inequality νe,µ(z) < νo,µ(z) of densities for 0 6= z ∈ C given in (2.1)

allows us to write for 0 6= fe ∈ B2
e,µ that

Ee,µ(fe) =

∫

C

dνe,µ(z)|z|2|fe(z)|2 <

∫

C

dνo,µ(z)|z|2|fe(z)|2 . (5.10)

Similarly, for 0 6= fo ∈ B2
o,µ we have that

∫

C

dνe,µ(z)|z|2|fo(z)|2 <

∫

C

dνo,µ(z)|z|2|fo(z)|2 = Eo,µ(fo) . (5.11)

However, for µ > 0, we do not have an inequality νo,µ(z) ≤ Cνe,µ(z) as we can see

from the asymptotic behavior near zero of each side. Nonetheless, we claim that

reverse inequalities corresponding to (5.10) and (5.11) can be proved. The complete

result for all the possible cases for µ is as follows.

Theorem 5.1. For every µ > 0 there exists positive constants Ce,µ > 1 and Co,µ <

1 such that

Ee,µ(fe) <

∫

C

dνo,µ(z)|z|2|fe(z)|2 ≤ Ce,µEe,µ(fe) (5.12)

for all 0 6= fe ∈ B2
e,µ and

Co,µEo,µ(fo) ≤

∫

C

dνe,µ(z)|z|2|fo(z)|2 < Eo,µ(fo)

for all 0 6= fo ∈ B2
o,µ.

For the case µ = 0, we have that

Ee,0(fe) =

∫

C

dνo,0(z)|z|2|fe(z)|2

and

Eo,0(fo) =

∫

C

dνe,0(z)|z|2|fo(z)|2 .
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Finally, for the case −1/2 < µ < 0 we have

Ee,µ(fe) >

∫

C

dνo,µ(z)|z|2|fe(z)|2 ≥ Ce,µEe,µ(fe)

for all 0 6= fe ∈ B2
e,µ and

Co,µEo,µ(fo) ≥

∫

C

dνe,µ(z)|z|2|fo(z)|2 > Eo,µ(fo)

for all 0 6= fo ∈ B2
o,µ, where 0 < Ce,µ < 1 and Co,µ > 1.

Proof. Assume that fe ∈ B2
e,µ. We claim that Ee,µ(fe) < ∞ if and only if

∫

C
dνo,µ(z)|z|2|fe(z)|2 < ∞. Actually, Ee,µ(fe) < ∞ if and only if

∫

C

dxdy|z|2µ+3 exp(−|z|2)|fe(z)|2 < ∞ (5.13)

by the asymptotic behavior of the MacDonald function Kµ−1/2 near infinity. The

point here is that fe has no local singularities, being holomorphic, and so only

its behavior near infinity matters for the convergence of the integral that defines

Ee,µ(fe). But
∫

C
dνo,µ(z)|z|2|fe(z)|2 < ∞ if and only if (5.13) holds, since again

only the asymptotic behavior near infinity matters, and the behavior of Kµ+1/2 to

first order near infinity is the same as that of Kµ−1/2 near infinity. This establishes

the claim. (Actually, in this part of the proof only the continuity of fe plays a role.)

The expressions

(‖fe‖
2 + Ee,µ(fe))

1/2

and

(

‖fe‖
2 +

∫

C

dνo,µ(z)|z|2|fe(z)|2
)1/2

define Hilbert norms in B2
e,µ, and the result of the previous paragraph says that

they define the same finite norm subspace, say F , of B2
e,µ. Moreover, this subspace

F is closed in the corresponding entire L2 space with respect to either one of these

norms, and so F is a Hilbert space with respect to either one of these norms. (It is at

this point that the holomorphicity of the functions is used in a standard argument

already seen in Proposition 1.1.) We now consider the case µ > 0. But then the open

mapping theorem (see p. 82 of Ref. 24) together with the first inequality in (5.12),

which we proved just before stating this theorem, implies the second inequality in

(5.12) for all f ∈ F . But (5.12) is trivially true for all f ∈ B2
e,µ\F , since all three

expressions are then equal to +∞.

The case when −1/2 < µ < 0 follows by similar arguments. Finally, the case

µ = 0 follows from the fact that dνe,0 = dνo,0, something that we have already

noted. QED
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Remark. It would be desirable to give a constructive proof of this theorem for

the case µ 6= 0 with explicit formulas for Ce,µ and Co,µ. It also remains an open

problem to identify the optimal values for the constants Ce,µ and Co,µ when µ 6= 0.

Though we will not use the next result in the form stated, we feel that it is

worthwhile to include it here since it is the idea behind the remaining results in

this section. It is an immediate consequence of (5.8), (5.9) and Theorem 5.1.

Corollary 5.1. We have the following equivalences of µ-deformed and Dirichlet

energies:

(1) For all g ∈ B2
e,µ we have that the µ-deformed energy Ee,µ(g) is finite if and

only if the Dirichlet energy ‖Dµg‖2
B2

µ
is finite.

(2) For all h ∈ B2
o,µ we have that the µ-deformed energy Eo,µ(h) is finite if and

only if the Dirichlet energy ‖Dµh‖2
B2

µ
is finite.

(3) For all f ∈ B2
µ we have that the µ-deformed energy Eµ(f) is finite if and only

if the Dirichlet energy ‖Dµf‖2
B2

µ
is finite.

We can now put together the results of Sec. 4 and Theorem 5.1 to get direct

and reverse inequalities for the Dirichlet energy ‖Dµf‖2
B2

µ
and Shannon entropy.

We continue using the notation from Sec. 4 and Theorem 5.1. We only state the

case µ ≥ 0. The case −1/2 < µ < 0 is quite similar.

Theorem 5.2. (Reverse log-Sobolev inequalities in B2
e,µ and B2

o,µ for Dirichlet

energy) Suppose that µ ≥ 0 and that c > 1. For every fe ∈ B2
e,µ we have that

‖Dµfe‖
2
B2

µ
≤ cCe,µSL2(νe,µ)(fe) + (Ce,µτe(c) − (1 + 2µ))‖fe‖

2
L2(νe,µ) .

For every fo ∈ B2
o,µ we have that

‖Dµfo‖
2
B2

µ
≤ cSL2(νo,µ)(fo) + (τo(c) − (1 − 2µ))‖fo‖

2
L2(νo,µ) .

For every f = fe + fo ∈ B2
µ we have that

‖Dµf‖2
B2

µ
≤ cCe,µSL2(νe,µ)(fe) + cSL2(νo,µ)(fo)

+ (Ce,µτe(c) − (1 + 2µ))‖fe‖
2
L2(νe,µ) + (τo(c) − (1 − 2µ))‖fo‖

2
L2(νo,µ) .

Proof. The first two inequalities follow immediately from Theorems 4.5 and 5.1 as

well as the identities (5.8) and (5.9). The last inequality is the sum of the previous

two inequalities. It can be simplified slightly by estimating the sum of the norm

terms. QED

Theorem 5.3. (Log-Sobolev inequalities in B2
e,µ and B2

o,µ for Dirichlet energy)

Suppose that µ ≥ 0. Then there are real constants ae > 0, be > 0 and ce ≥ 0 such

that for all fe ∈ B2
e,µ we have

aeSL2(νe,µ)(fe) ≤ be‖Dµfe‖
2
B2

µ
+ (be(1 + 2µ) + ce)‖fe‖

2
L2(νe,µ) .
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Also there are real constants ao > 0, bo > 0 and co ≥ 0 such that for all fo ∈ B2
o,µ

we have

aoSL2(νo,µ)(fo) ≤ boC
−1
o,µ‖Dµfo‖

2
B2

µ
+ (boC

−1
o,µ(1 − 2µ) + co)‖fo‖

2
L2(νo,µ) .

Finally, for every f = fe + fo ∈ B2
µ we have that

aeSL2(νe,µ)(fe) + aoSL2(νo,µ)(fo) ≤ be‖Dµfe‖
2
B2

µ
+ boC

−1
o,µ‖Dµfo‖

2
B2

µ

+ (be(1 + 2µ) + ce)‖fe‖
2
L2(νe,µ)

+ (boC
−1
o,µ(1 − 2µ) + co)‖fo‖

2
L2(νo,µ) .

Proof. The first two inequalities follow immediately from Theorems 4.6 and 5.1

as well as the identities (5.8) and (5.9). The last inequality is the sum of the previ-

ous two inequalities. It can also be simplified in form by using appropriate trivial

estimates. QED

It seems reasonable to conjecture that the inequalities in Theorem 5.3 hold

without the norm term, since this is known to be true in the case µ = 0. However,

the situation is not as clear for Theorem 5.2. It remains an open problem to de-

termine the optimal coefficient of the norm term for each of these inequalities in

Theorems 5.2 and 5.3, given that the other coefficients are fixed.

Just as in the previous section, we obtain the next immediate but important

consequence.

Corollary 5.2. We have these equivalences of entropies and Dirichlet energies:

(1) For all g ∈ B2
e,µ we have that the Shannon entropy SL2(νe,µ)(g) is finite if and

only if the Dirichlet energy ‖Dµg‖2
B2

µ
is finite.

(2) For all h ∈ B2
o,µ we have that the Shannon entropy SL2(νo,µ)(h) is finite if and

only if the Dirichlet energy ‖Dµh‖2
B2

µ
is finite.

(3) For all f ∈ B2
µ we have that the µ-deformed entropy Sµ(f) is finite if and only

if the Dirichlet energy ‖Dµf‖2
B2

µ
is finite.

In Ref. 21 another quadratic form, called the dilation energy, is introduced in

the µ-deformed Segal–Bargmann space. It is shown there that this dilation energy

is comparable to the µ-deformed energy. So it is straightforward to obtain results

analogous to those in this section with the dilation energy replacing the µ-deformed

energy. The details are left to the interested reader. Actually, the log-Sobolev in-

equality proved in Theorem 6.3 of Ref. 21 can be used to prove a log-Sobolev

inequality in the Segal–Bargmann space, though those authors did not state this

explicitly. Nor did we realize this until we concluded this paper. It turns out that

the log-Sobolev inequality proved in Ref. 21 has a very different flavor to it, since in

general it relates entropies in two different spaces to each other much in the manner

of a Hirschman inequality.
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6. Concluding Remarks

Besides the problem of determining the best constants for all the inequalities proved

here, another open problem is to establish a hypercontractivity result for this scale

of µ-deformed Segal–Bargmann spaces. Note that in Ref. 2 we have shown reverse

hypercontractivity in this scale of spaces.

We can consider formulating this theory in terms of holomorphic functions de-

fined on C
n instead of on C. This can be done where one replaces the Coxeter group

Z2 = {I, J} used here with the Coxeter group (Z2)
n generated by the reflections Jk

in Cn given by Jk(z1, . . . , zk, . . . , zn) := (z1, . . . ,−zk, . . . , zn) for k = 1, . . . , n. We

thank C. Pita for telling us about this formulation, which is also discussed in Ref. 4.

However, the resulting theory is in some sense trivial in that everything factorizes

as an n-fold product of the structures discussed here. It may be the case that with

other choices of Coxeter group the theory in dimension n could be nontrivial. Refer

to Ref. 4 for more details. Of course, there is also the possibility of doing this sort

of theory in infinite dimension.

Finally, there is a “configuration” space L2(R, |x|2µdx) associated with B2
µ via a

µ-deformed Segal–Bargmann transform. (See Ref. 36 or Ref. 20 for more details.) In

this space there is a naturally defined number operator and its associated quadratic

form. It seems reasonable to conjecture that there is a log-Sobolev inequality in

this space as well as a hypercontractivity result on the scale of Banach spaces

Lp(R, |x|2µdx) for p > 1. Moreover, we conjecture that neither a reverse log-Sobolev

inequality nor a reverse hypercontractivity result holds in this context.

Dedication

This work owes much to Marvin Rosenblum at a purely scientific level. (See Ref. 25,

a work chock full of interesting results.) But Marvin was also a wonderful teacher,

from whom the second author learned a lot of analysis and operator theory, in-

cluding his first ever introduction to the Segal–Bargmann space. References 33–36

indicate just how important that introduction was for the second author. And our

work in Ref. 2 owes much to Ref. 25. The news of Marvin’s death saddened us

greatly. As a friend has remarked, “He was one of the good guys.” He certainly

was. That alone is more than reason enough to dedicate this paper to his memory.
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Séminaire de Probabilités XXXVI, Lecture Notes in Mathematics, Vol. 1801, eds.
J. Azéma, M. Émery, M. Ledoux and M. Yor (Springer, 2003), pp. 1–134.

15. B. C. Hall, Holomorphic methods in analysis and mathematical physics, in First

Summer School in Analysis and Mathematical Physics, Contemp. Math., Vol. 260,
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