Por favor, use este identificador para citar o enlazar este ítem: http://cimat.repositorioinstitucional.mx/jspui/handle/1008/909
Entropy-Controlled Quadratic Markov Measure Field Models for Efficient Image Segmentation
MARIANO JOSE JUAN RIVERA MERAZ
Acceso Abierto
Atribución-NoComercial-CompartirIgual
Resonancia Magnética
We present a new Markov random field (MRF) based model for parametric image segmentation. Instead of directly computing a label map, our method computes the probability that the observed data at each pixel is generated by a particular intensity model. Prior information about segmentation smoothness and low entropy of the probability distribution maps is codified in the form of a MRF with quadratic potentials so that the optimal estimator is obtained by solving a quadratic cost function with linear constraints. Although, for segmentation purposes, the mode of the probability distribution at each pixel is naturally used as an optimal estimator, our method permits the use of other estimators, such as the mean or the median, which may be more appropriate for certain applications. Numerical experiments and comparisons with other published schemes are performed, using both synthetic images and real data of brain MRI for which expert hand-made segmentations are available. Finally, we show that the proposed methodology may be easily extended to other problems, such as stereo disparity estimation.
IEEE
2007
Artículo
Inglés
Investigadores
SIMULACIÓN
Versión publicada
publishedVersion - Versión publicada
Aparece en las colecciones: Ciencias de la Computación

Cargar archivos:


Fichero Tamaño Formato  
MRivera2.pdf2.42 MBAdobe PDFVisualizar/Abrir