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Entropy-Controlled Quadratic Markov Measure Field
Models for Efficient Image Segmentation

Mariano Rivera, Omar Ocegueda, and Jose L. Marroquin

Abstract—We present a new Markov random field (MRF) based
model for parametric image segmentation. Instead of directly
computing a label map, our method computes the probability that
the observed data at each pixel is generated by a particular in-
tensity model. Prior information about segmentation smoothness
and low entropy of the probability distribution maps is codified in
the form of a MRF with quadratic potentials so that the optimal
estimator is obtained by solving a quadratic cost function with
linear constraints. Although, for segmentation purposes, the mode
of the probability distribution at each pixel is naturally used as an
optimal estimator, our method permits the use of other estimators,
such as the mean or the median, which may be more appropriate
for certain applications. Numerical experiments and comparisons
with other published schemes are performed, using both synthetic
images and real data of brain MRI for which expert hand-made
segmentations are available. Finally, we show that the proposed
methodology may be easily extended to other problems, such as
stereo disparity estimation.

Index Terms—Bayesian methods, energy minimization, image
segmentation, magnetic resonance image (MRI) segmentation,
Markov random fields (MRFs).

I. INTRODUCTION

IMAGE segmentation is an important task in image anal-
ysis and image editing tasks. Its importance for low-level

image processing stems from several facts: boundaries between
segmented regions may be highly correlated with perceptually
significant edges or contours, thus, the relevance of segmenta-
tion for edge detection, edge-preserving filtering, and piecewise
image reconstruction and restoration. Besides, there are many
problems for which the core of the solution procedure is a seg-
mentation algorithm; for instance: medical image analysis (in-
cluding the localization of tumors and other pathologies; mea-
surement of tissue volumes; computer-aided surgery; anatom-
ical studies, etc.) [1], [2]; foreground extraction (image matting)
[3], [4]; motion computation [5]–[9]; interactive image segmen-
tation (trimap) [3], [10]–[13]; pattern recognition systems, etc.
Therefore, any improvement to segmentation methods in their
computational complexity, reduction in memory requirements,
or error reduction will have an important impact in many image
processing and computer vision applications.
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In its general form, image segmentation may be formulated as
follows: an image may be regarded as a mapping from a pixel
lattice to a state space . A segmentation of is a partition
of into a set of nonoverlapping (not necessarily connected)
regions such that and is
uniform in some sense over every region . In particular, one
may consider the case in which the values of the image in
each region may be represented as the sum of some fixed
deterministic functions plus noise. Considering these functions
as parametric models whose parameters are constant for each
region, one obtains

(1)

where denotes a pixel in ; is a function (parametric
model) that depends on the parameter vector ;

is a set of independent random variables and
is the indicator function of region , i.e., iff
and

(2)

for all . In what follows, will denote the vector
and will denote the set .

The appearance of the image will depend on the nature
of the functions ; for example, if each function is
smooth, will be a piecewise smooth image, with discon-
tinuities located at the boundaries between adjacent regions

. A particular instance of this case is related to the seg-
mentation of brain magnetic resonance images (MRI) in terms
of tissue type; in this case, represents the intensity
associated with tissue type and represents the portion
of the image classified as tissue (see Section III-2). Other
important problems that may also be formulated in these terms
include: edge-preserving smoothing [14]–[17], color-based
segmentation [18], [19], stereo disparity estimation [20]–[23],
motion-based segmentation [24], etc.

This problem has been approached from different perspec-
tives: if the parameters are known, the segmentation
problem has been solved using, for instance: the k-means
algorithm and its variants [25], [26], region merging [19],
region-growing [17], [27] and active contour [28] approaches,
eigendecomposition-based partitions [29]–[31], variational
methods [5], [32], and probabilistic (Bayesian) formulations
[14], [33], [34]. Of these, the Bayesian formulations are one
of the most powerful and general, since they allow for the
inclusion of spatial coherence constraints that regularize the
solution [via Markov random field (MRF) models] and makes
it more robust with respect to noise, although they may be
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computationally expensive. In the general case, when the pa-
rameters are not known, some of these methods may be
extended using two-step algorithms, in which one is given an
initial estimate , and then one iterates the following steps:

1) estimate given ;
2) estimate given ;

where denotes the collection of all parameter vectors , until
convergence [17], [35]–[38].

One particularly important class of these two-step methods
is derived from the expectation–maximization (EM) algorithm,
which was originally proposed for computing maximum likeli-
hood estimators from incomplete data [35]. This approach has
also been used for computing estimators with respect to poste-
rior distributions for segmentation tasks (classification) in image
analysis and computer vision problems where the class model
parameters are unknown [14], [33]. However, prior probability
distributions based on MRF models introduce high correlation
among the variables (labels in the segmentation task) that incre-
ments the computational complexity of the EM algorithm [1],
[2], [39]–[42]. For this reason, instead of Monte-Carlo Markov
chain methods, approximations such as mean field theory [43]
or Gauss–Markov measure fields [44] have been used for com-
puting the marginal probabilities in the expectation (E) step with
relative success.

The problem with these approaches is their high computa-
tional complexity, and their high sensitivity with respect to noise
and to the choice of . The reason for this is that these
two-step approaches can be guaranteed to converge only to a
local maximum of the posterior distribution [35]; since, in most
cases, this distribution has multiple maxima, if one starts the it-
erations from a “bad” point , the local maximum to which
the method converges may not be the global maximum, i.e., one
may get suboptimal solutions [16].

One may get more robust methods if one formulates the
problem in such a way that and are progressively refined
at the same time, e.g., by the iterative minimization of a dif-
ferentiable function that depends on and on the probability
of assigning models to each pixel (i.e., on a “soft” version of
the segmentation ). These direct methods, such as the one
in [16], do exhibit a better performance than that of two-step
approaches; their computational complexity, however, is still
relatively high, since the solution involves the minimization
of a highly nonlinear function, and the hyperparameters of the
corresponding algorithms are in general not easy to tune.

The purpose of this work is to present a direct method, which
is rigorously based on a Bayesian framework, which is compu-
tationally efficient—since the solution is found by minimization
of a quadratic function with linear constraints—and whose hy-
perparameters are easy to tune. The derivation of the method
and its implementation are presented in Section II; in Section III,
the experimental performance of this approach is compared with
other published schemes, using both synthetic images and real
MRI volumes where expert segmentations are available. Finally,
in Section IV, some properties and extensions of the method are
discussed and some conclusions are drawn.

II. THEORETICAL DERIVATION AND IMPLEMENTATION

This section presents the mathematical derivation of the
proposed probabilistic segmentation method. The method is
initially presented by assuming that the noise, in (1), has a

Gaussian distribution and the intensity models’ parameters,
, are given; then, the generalization to other noise distribu-

tions and the problem of parameter estimation is presented.
Throughout this section we will use the following notation:

will denote the region to which pixel belongs, i.e.,
iff ; will denote the Kronecker delta

function; will denote the collection of all the parameter
vectors that correspond to each parametric
model ; will denote the first order neighborhood
of pixel , i.e., and will
denote its cardinality.

A. Entropy-Controlled Quadratic Markov Measure Field
Model

Assuming at first that the parameters are known, the goal
is to estimate the field defined in (1). To this end, one may
use a Bayesian approach and model as an MRF, so that prior
constraints may be introduced as a prior Gibbs distribution

(3)

where is a constant and is an “energy” function, which
we would like to be differentiable with respect to . To achieve
this, one may relax the constraint (2), and replace it by

(4)

(5)

(6)

Also, one would like to be spatially smooth almost every-
where, to control the granularity of the regions, i.e., to avoid
the proliferation of very small regions assigned to a particular
model, which may occur due to noise in the data. All these con-
straints may be expressed by the prior energy in (3)

(7)

The first term embodies the smoothness constraint: the sum is
taken over all nearest-neighbor pairs of sites , and the
interaction field controls the granularity of the resulting re-
gions; in what follows we assume for simplicity a constant in-
teraction , where is a positive hyperparameter (see,
however, Section IV). The second term, together with the con-
straints (4) and (5), enforces constraint (6), as explained in the
following; one may say that is a Markov random measure field
(MRMF)—since constraints (4) and (5) imply that each is
a discrete probability measure, where represents the prob-
ability that , i.e., we are assuming that given , each
label is obtained as an independent sample from , so
that . The entropy of each one of
these discrete distributions is equal to minus the expected value
of , taken with respect to the same distribution, i.e.,

. To obtain a quadratic form, one may take
instead the expected value of itself, to get .
This quantity (plus an additive constant) is known in the ma-
chine learning community as the Gini index [45], and it is known
to closely resemble the behavior of the entropy [46]: it is min-
imal when the distribution becomes a delta function, and it is
maximal for a uniform distribution. Thus, for positive values of
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, (7) constrains each to have low entropy, i.e., to approach
a delta function.

If one assumes that the random variables in
(1) are independent, zero-mean Gaussian random variables with
variance , the likelihood of the observed image is obtained
from (1) as

(8)

where is a constant. Since the prior on , whose Gibbsian
energy is given by (7) depends only on the spatial granularity
of the segmentation and not on the model parameters, we have
that , with given by (3). Also, noting that

is just a normalizing constant—since the observations
are given—one gets from (7) and (8), using Bayes rule, the pos-
terior distribution

where is a normalizing constant and

(9)

Note that, because of (5)

In the low-entropy limit, for each , only one of the be-
comes almost equal to one, and all the others become almost
equal to zero, so that (6) holds and

(10)

so that one may write the posterior energy in the simple form

(11)

The maximum a posteriori (MAP) estimator for may, there-
fore, be found by minimization of the quadratic form (11) sub-
ject to the constraints (4) and (5). This is the basis for the main
contribution of this work.

It is possible to remove the Gaussian assumption for and
obtain a more general expression. Let

(12)

Note that in the model we are using, given that
is obtained by , so that is not
affected by the probability with which was selected,
namely, , and also, if is independent of ,
for . Therefore, one may write

Similarly, because the probability with which is se-
lected does not depend on , one has that

. We may, therefore, write

(13)

Using Bayes rule as before, one obtains the posterior distri-
bution , where the energy

is

but in the low-entropy limit, since only one of the becomes
almost equal to one, and the rest become almost equal to zero,
one may write

so that one finally gets the general expression

(14)

which, in the Gaussian case, noting that the normalizing con-
stant , may be absorbed in , reduces to (11). Note
that even in the general case, (14) is still quadratic in . For
this reason, we call models (11) and (14) entropy-controlled
quadratic markov measure field (ECQMMF) models.
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The equality constraints (5) may be easily handled using La-
grange multipliers: the Lagrangian associated with the objective
function is

(15)

where are the Lagrange multipliers. Setting the gradient
of (15) with respect to and equal to zero, solving for
and substituting in the equality constraint (5) to eliminate the
multipliers, one obtains the update equation

(16)

where

(17)

and

(18)

Note that computed with (16) does not necessarily satisfy
the non-negativity constraint (4). If this constraint is violated, it
is necessary to project back to the feasible region, which
is the M-dimensional simplex defined by the constraints (4) and
(5). A simple way to perform this projection is to make the nega-
tive equal to zero (so that (4) is satisfied) and renormalize
the vector so that (5) is satisfied. Note that other projection
schemes are possible, e.g., finding the point in the simplex that
is closest to , but we have found that the proposed projection
is faster and works properly. In order to guarantee the conver-
gence of this method, one should check if the energy (12) does
not increase at the updated ; if it increases, it is necessary to
find a linear combination of the old and updated where the
constraints are satisfied and the energy does not increase, and re-
place the updated with this point. In our experiments, how-
ever, we have found that this additional checking is unnecessary,
since the method always converges with the simple projection
and re-normalization procedure that enforces the constraints.

B. Model Parameter Estimation

If the parameters are not known, one may apply Bayes rule
again to obtain . With a uniform prior on , the pos-
terior energy is still given by (11) and (14), and the optimal es-
timators for and may be obtained by minimization of either
one of these functions with respect to both groups of variables,
subject to the constraints (4) and (5). In order to get estimators
that are robust with respect to the initial values, it is desirable
that in this minimization the values of both and are incre-
mentally updated; one usually starts with a coarse estimate for

and for all and , i.e., a completely “fuzzy”
segmentation that sharpens gradually, as the estimates for be-
come more reliable. In contrast, a typical two-step procedure
(e.g., [17] based on the swap graph-cut algorithm [7])
may produce sharp segmentations at the beginning of the pro-
cedure which are based on wrong estimates for , which may

send the algorithm off-track to a local minimum from which it
cannot recover.

In the Gaussian case, and assuming that the functions
are linear in , i.e., are of the form

(19)

where are some basis functions (which,
in general, may be nonlinear in ), that are chosen depending
on the particular application, this minimization problem is par-
ticularly simple, since (11) is quadratic in given and also
quadratic in given . In this case, the incremental updates
of and may be effected very efficiently by a generalized
Gauss–Seidel scheme: is updated using (16) as before. The
update is effected by solving the linear system that results from
setting the gradient of (11) with respect to equal to zero. This
system is

(20)

for and .
In the special case where and (i.e., the case

of constant models), the update is simply

(21)

for (note that in this case is a scalar). In the
general case, however, one cannot give an explicit formula and
the system (20) must be solved numerically.

This scheme for the minimization of (11) bears some resem-
blance with a generalized EM procedure in which the M step
is only partially implemented [36], improving the likelihood,
but not necessarily maximizing it. The update, however, is
different from the one that would be obtained from a classical
EM formulation; moreover, if one uses a different optimization
scheme this resemblance will be lost.

C. Hyperparameters Selection

An important issue for the successful application of this
method is the determination of appropriate values for the
hyperparameters of the system. In the case of (11), these
hyperparameters are: the noise variance , the entropy control
parameter , and the regularization parameter . The noise
variance can usually be obtained from the data, for instance,
as the mode of the empirical distribution of the local variance,
which may be estimated using sliding windows (e.g., of 3 3
pixels). For the determination of , one notes that the numerical
stability of the iterative procedure described above can only be
guaranteed if the quadratic function is positive definite. A
sufficient condition for this to happen is that the coefficients of

in the first term of (11) are non-negative for all and ,
which happens if
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We have found, however, that in practice this condition may be
relaxed, and it is enough if it holds on average, i.e., if

(22)

where denotes average over all . Since under the Gaussian
noise assumption

(23)

the constraint (22) is simply . Since one wants to be as
large as possible in order to have an adequate entropy control,
an appropriate choice is .

Regarding parameter , we have found that a value of
gives very good results, regardless of the noise level. Therefore,
for all the experiments reported in the next section, we use:
estimated from the data; and .

III. EXPERIMENTAL RESULTS

In the first set of experiments, we compare the performance
of the ECQMMF method with three of the most competitive
published schemes: a two-step algorithm based on a multiway
( swap) graph-cut method [7], [17], the MPM-MAP algo-
rithm of [37], and the hidden Markov measure field (HMMF)
direct method of [16].

In the first case, following [17], the hard segmentation was
computed by alternating minimizations with respect to the label
map, , with the swap algorithm [7] and with respect to
the parameters, , by performing a half-quadratic minimization
[47]–[50]. In our notation, that corresponds to the minimization
of the cost function

(24)

where (with ) are robust potentials, such as [7],
[47], and [48]: Ising: ; L1: ; truncated
quadratic (TQ): ; or Leclerc:

, where is a parameter. In Fig. 1, we show the
computed MSE for different combinations . According to
our experiments, using Leclerc’s potential for both and
is better for nonparametric graph cut-based segmentation than
using any of the potentials proposed in [7].

The synthetic test images were generated with the model

(25)

i.e., with piecewise constant intensity models
(a scalar) and with . The task is to estimate
both the segmentation (i.e., the field ) and the parameters

Fig. 1. MSE as a function of the noise level. First acronym indicates the po-
tential used in the data term. Second acronym indicates the potential used in the
regularization term.

. The actual parameter values (assumed
unknown) were , and the actual images
appear in Fig. 2. We tested the performance of the four methods
for noise levels . In all cases,
the initial estimate for the models was obtained by dividing the
dynamic range of the observed image into four equal intervals
and setting equal to the extremes and dividing points.
The hyperparameters for the MPM-MAP, HMMF, and GC
methods were determined by sampling the parameter space
near the parameter values recommended in the corresponding
publications; a total of 200 sets of values for each noise level
were explored in each case, and the best set [in terms of mean
squared error (MSE)] was selected for each noise level; for the
ECQMMF method the same value for the hyperparameters,
with estimated from the data as explained above, was used in
all cases. Examples of the results of typical runs are shown in
Fig. 2 in [51]. Average performances, over ten realizations for
each noise level, are shown in Fig. 2. As one can see, the perfor-
mance of direct methods (HMMF and ECQMMF) is better than
that of two-step approaches based on “hard” segmentations,
such as MPM-MAP and GC. This confirms the results in [16].
The performance of ECQMMF, however, is better than that of
HMMF. The computational load is also significantly smaller,
as one can see in Fig. 2.

The second set of experiments is meant to illustrate the per-
formance of the ECQMMF method in a practical, more complex
application, namely, the segmentation of brain MRI in terms of
tissue type [white matter (WM), gray matter (GM), and cere-
brospinal fluid (CSF)]. This is an important problem in bio-
medicine, which has received a lot of attention [37], [52]–[55].
What makes it difficult is that the intensity of each tissue type
is, in general, not constant across the volume, due to irregular-
ities in the magnetic fields, spatially varying magnetic proper-
ties of the biological tissues, etc. The methods used to perform
this segmentation involve, in general, several steps, computa-
tional processes and model specifications that influence the re-
sults [56]–[59]; some of these factors are as follows.
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Fig. 2. EC-QMMF performance comparison. (a) Average mean squared error
(MSE) for ten independent realizations of the noise fields for the images of
Fig. 2, as a function of the noise level. (b) Average execution time (in hundredths
of seconds) over ten images distorted with the first noise level (� = 0:5), as a
function of the number of models. All methods were run until convergence.

1) The use of spatially varying intensity models for each
tissue type: in many cases a single smooth multiplicative
bias field is assumed to affect equally the mean intensity
of all tissues [1], [60]; other choices are finite element
membrane models [37], spline functions [16], etc.

2) The use of spatially varying prior probabilities for each
tissue type, taken from statistical studies [37], [61]. This
requires the registration of the specimen to be segmented
with a reference volume (anatomical atlas), and the regis-
tration method used clearly affects the result.

3) Preprocessing of the data: sometimes edge-preserving fil-
tering (e.g., anisotropic diffusion [62]) is used to eliminate
noise prior to the segmentation; also, some form of inten-
sity normalization is often applied.

4) The use of separate intensity models for each slice vs the
use of coupled 3-D models.

5) The use of a 2-D segmentation algorithm for each slice vs
a 3-D segmentation scheme.

Since we are interested in the evaluation of precisely the
image segmentation algorithm, we make the simplest choices
for the other factors; specifically, we use the 2-D ECQMMF
segmentation scheme described above and assume no spatially

Fig. 3. Control points in the tensor product B-splines model.

varying prior probabilities and no preprocessing. To model
the spatially varying intensity of each tissue on each slice, we
use a 2-D spline-based model with a Gibbsian prior on the
corresponding coefficients. In particular, the intensity of tissue
type is modeled by (19), where the basis functions are
tensor product quadratic splines

where are the pixel coordinates and
are the coordinates of the nodes of

a coarse grid, where is the node spacing (see Fig. 4). The
coefficients are assumed to have a prior Gauss–Markov
distribution

where is a normalizing constant and the sum is taken over
nearest-neighbor pairs of nodes of the coarse grid. This
model produces smoothly varying intensities, with the degree
of smoothness controlled by the parameter .

Assuming additive, Gaussian observation noise, one gets
the following ECQMMF posterior energy for the segmentation
problem:

(26)

The performance of this simplified segmenter is evaluated
using a set of 20 real brain MRI volumes which can be ob-
tained from [63], and for which expert hand made segmenta-
tions are available. In this data set, each voxel corresponds to
an actual volume of 1 1 3 mm, where the higher resolution
corresponds to coronal slices. Due to the low resolution (3 mm)
in the other dimension, the partial volume effect is significant; in
particular, when considering a coronal slice, there is a substan-
tial number of voxels whose intensity corresponds to a mixture
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Fig. 4. Tanimoto coefficient for the segmentation results on the 20
1� 1� 3-mm-thick MRI volumes data set of [63]. Sample volumes in
the same order as in Table II. (a) White matter. (b) Gray Matter (see text).

of GM and CSF; although there are several strategies for dealing
with this partial volume effect [54], [64], in this case, we simply
consider four tissue classes: CSF (0), CSF GM (1), GM (2),
and WM(3). Observing the expert segmentations, one can see
that there are only three classes, since classes (1) and (2) are as-
signed to GM. Therefore, we performed the same grouping after
the four-class segmentation.

The results are summarized in Fig. 4 and Table I. To evaluate
the performance of our method with higher resolution and better
quality data, we also tested it with 18 additional volumes with
1 1 1.5 mm resolution, which are also available in [63]; the
results, presented in Figs. 5 and 7 and in the second column of
Table II, indicate a good, consistent performance in this case as
well. In all cases, we used the same parameter values as before:

and estimated from each slice as explained
above. For the parameters related to the spline model we used

and (32 32 control points). The compar-
ison with the expert (ground truth) segmentations is done using
the Tanimoto coefficient (Jaccard similarity measure), which is
defined as

TABLE I
TANIMOTO COEFFICIENTS FOR DIFFERENT METHODS ON

THE 1� 1� 3-MM RESOLUTION DATA SET OF [63]

Fig. 5. Tanimoto coefficient for the segmentation results on the 1.5 mm thick
in the data set of [63]. Sample volumes in the same order as in Table II (see text).

where denotes the number of voxels classified as class
by both the proposed method and the expert (taken in this

case as ground truth) and denotes the number of voxels
classified as class by either the proposed method or the expert.
In all cases, the brain parenchyma was presegmented by hand.

A meaningful comparison with other published methods for
this task is not easy to do, since, as we pointed out above, pub-
lished approaches include different processes and model spec-
ifications, besides the image segmentation algorithm itself. As
a reference, however, we also include in Fig. 4 and Table I the
performances (in the 3-mm slices data set) of other published
schemes taken from [63] and also with the method of [37] (la-
beled MPM-MAP). In Fig. 6, we show as an example, the seg-
mentation of a “difficult” volume (i.e., [63, vol. ibsr2-4]), where
most published methods show poor accuracy, mostly due to the
high spatial inhomogeneities that are present in this case. The
segmentation obtained by the method in [37] is also shown as a
reference. As one can see, the performance of ECQMMF, even
with the simplified algorithm used, is highly competitive. This
good performance should be attributed mainly to the superi-
ority of the segmentation algorithm itself, which was also shown
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TABLE II
TANIMOTO COEFFICIENTS OBTAINED BY ECQMMF FOR EACH

INDIVIDUAL VOLUME ON THE DATA SET OF [63]

in the experiments with synthetic images described above. An-
other reason may be related to the fact that the noise variance is
estimated for each individual slice separately, which effectively
adapts the amount of smoothing to the local granularity of the
data.

Our method may be extended to 3-D in a straightforward way;
it is enough to add to the energy (14) the term

(27)

where the sum is taken over all nearest-neighbor pairs of voxels
that belong to different slices and is a positive parameter
that controls the degree of interslice coupling. We performed the
segmentations of the 18 1.5-mm-thick volumes from [63] using
the 3-D version, hand-adjusting the value of to 0.1, which
gave the best results. The computation time increased from an
average of 3.2 h per volume in the 2-D version to 4.1 h per
volume (on a 3-GHz machine), and we obtained only a mar-
ginal increase (less than 0.5 %) in the average Tanimoto coef-
ficients, so that it may not be worthwhile to use this additional
complexity. We think that the reason why one obtains such a
small improvement with the 3-D version is twofold: on one hand
the performance of the 2-D segmenter is already quite good, and
it introduces practically no artifacts, as one can verify from the
axial and sagittal views of the segmented volumes (see Fig. 7 for
an example segmentation). On the other hand, the hand-made
expert segmentations are quite likely also done slice by slice, so
that a good 2-D method should approximate them quite well.

Fig. 6. Segmented results for the volume 2–4 from [63] (1� 1� 3 mm).
From top to bottom: data, expert segmentation, MPM-MAP segmentation
and EC-QMMF segmentation. The columns correspond to coronal, axial
and sagittal views, respectively. Note that the pixels in columns 2 and 3 are
rectangular to reflect the voxel size.

Fig. 7. Segmented results for the volume ibsr02 from [63] (1� 1� 1.5 mm).
From top to bottom: data, expert segmentation and EC-QMMF segmentation.
The columns correspond to coronal, axial and sagittal views, respectively. Note
that the pixels in columns 2 and 3 are rectangular to reflect the voxel size.

IV. DISCUSSION AND CONCLUSIONS

We have presented a general model for parametric segmen-
tation based on a hidden QMMF model with controlled en-
tropy. This method is closely related to the ones in [37] and
[16], which also use a Markov measure field model with prior
quadratic potentials. The main contribution of this work derives
from a new quadratic term that is included in the prior energy,
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Fig. 8. Edge preserving image restoration using different estimators provided
by EC-QMMF (see text).

which controls the entropy of the discrete distributions associ-
ated with each pixel. This term plays a crucial role, since it per-
mits the derivation of a data term which, unlike the one in [16],
is quadratic on the variables given , and, in the important case
of Gaussian noise, is also quadratic in given , unlike [37] and
[44]. This term also improves the convergence of the method
when and are simultaneously estimated, so that it leads to op-
timal estimators that are both accurate and efficient to compute,
with hyperparameters that are easy to tune. This scheme is quite
flexible: it allows for piecewise constant or piecewise smooth
solutions, such as the ones presented in the previous section.
Besides, unlike other methods that produce only “hard” seg-
mentations, the fact that in our case one has a probability vector
associated to each pixel, opens the possibility of using optimal
estimators different from the mode, such as the mean or median,
which in certain cases may be preferable. As an example, con-
sider the edge-preserving image restoration problem illustrated
in Fig. 8. Using piecewise constant intensity models

, where now denotes a scalar, one may segment
the noisy input image of Fig. 8(a) and obtain, taking the mode
of each probability vector, the piecewise constant restoration of
Fig. 8(b); as one can see, the noise has been eliminated, but the
discretization causes many artifacts. If one takes the mean or
the median (obtained via linear interpolation of the cumulative
distribution) of each , however, one obtains the piecewise
smooth restorations of Fig. 8(c) and (d), respectively, that have
a much better appearance.

In the examples presented so far, we have used a constant
regularization parameter for the complete image. It is also pos-
sible to use the general, spatially varying field that was in-
troduced in (7) to introduce a coupling between different per-

ceptual modalities via a spatially varying field that modulates
the amount of smoothness imposed over the field . As an il-
lustration, consider the problem of stereo disparity estimation,
which is one of the most extensively studied problems in com-
putational vision (see, for instance, references in [65] and, re-
cently, [21]–[23], and [66]–[68]). Consider, without loss of gen-
erality, that the optical axes of the two cameras that take the
stereo pair are parallel, so that the epipolar lines are horizontal
(otherwise, the images may be prewrapped, so that this condi-
tion is fulfilled). The observation model takes the form

(28)

where are the right and left images, is
the disparity vector associated to pixel , and is a zero-mean,
Gaussian, white noise field with variance . If one assumes
constant, integer-valued disparity models
that span the total disparity range of the stereo pair, one may
compute the likelihood as

where and is a normalizing constant.
One may now modify the model (14) by including in the prior

a term that expresses the constraint that disparity discontinuities
often coincide with intensity edges in the reference image. In
particular, if one defines an edge indicator variable to be
equal to 1 if there is an intensity edge between pixels and of

, and equal to zero otherwise, one may use the general prior
energy (7) with , where is a
parameter (we use ), so that the presence of an intensity
edge partially decouples the measure field at sites and and,
thus, favors the appearance of a disparity discontinuity. As a
result, the term in (14) is replaced by

The field may be precomputed in a variety of ways; here, we
simply set if there is a zero crossing of the Laplacian of

between pixels and and is greater than
0.2 times the dynamic range of .

A piecewise constant disparity field may now be estimated
by running the procedure described in Section III. Note that one
is using fixed, integer-valued models in this case, so that the
model update step is omitted. An example of the obtained results
(using the standard “Tsukuba” stereo pair [65], [69], [70]) is
presented in Fig. 9. Fig. 9(c) shows the disparity field estimated
with the constant interaction field . As one can see,
there is an apparent over-smoothing of some of the boundaries
between constant disparity regions, due to the fact that in areas
with low texture (i.e., almost constant intensity) disparity is not
well defined, since the likelihood term may give almost the same
value for a whole range of disparities. Therefore, the smoothness
term of the posterior energy dominates and produces a partial
“spilling” over these areas.

The disparity obtained using the spatially varying interaction
field is shown in Fig. 9(f). As one can see, the inclusion of
this field effectively improves the localization of the disparity
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Fig. 9. (a) Frame from the Tsukuba sequence. (b) Simple edge detection (see
text). (c), (d) Computed piecewise constant disparity without and with edge in-
formation, respectively (see text).

discontinuities; note that this is possible only because of the
entropy control term, which makes and peaked at
different disparities at opposite sides of a discontinuity. These
results should be taken only as an illustration of the potential
of this approach for solving the stereo disparity computation
problem. A competitive approach should incorporate features
like automatic occlusion detection, use of color information,
more refined models that obtain disparities with subpixel accu-
racy, etc. What we think we have shown, however, is that the
ECQMMF model presented here may be used as a flexible and
computationally efficient component to develop sophisticated
systems that produce high quality solutions for this and other
specific problems.

This paper extends our previous results in [51].
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