Por favor, use este identificador para citar o enlazar este ítem: http://cimat.repositorioinstitucional.mx/jspui/handle/1008/908
Diffusion Basis Functions Decomposition for Estimating White Matter Intravoxel Fiber Geometry
MARIANO JOSE JUAN RIVERA MERAZ
Acceso Abierto
Atribución-NoComercial-CompartirIgual
Resonancia Magnética
In this paper, we present a new formulation for recovering the fiber tract geometry within a voxel from diffusion weighted magnetic resonance imaging (MRI) data, in the presence of single or multiple neuronal fibers. To this end, we define a discrete set of diffusion basis functions. The intravoxel information is recovered at voxels containing fiber crossings or bifurcations via the use of a linear combination of the above mentioned basis functions. Then, the parametric representation of the intravoxel fiber geometry is a discrete mixture of Gaussians. Our synthetic experiments depict several advantages by using this discrete schema: the approach uses a small number of diffusion weighted images (23) and relatively small values (1250 s mm 2), i.e., the intravoxel information can be inferred at a fraction of the acquisition time required for datasets involving a large number of diffusion gradient orientations. Moreover our method is robust in the presence of more than two fibers within a voxel, improving the state-of-the-art of such parametric models. We present two algorithmic solutions to our formulation: by solving a linear program or by minimizing a quadratic cost function (both with non-negativity constraints). Such minimizations are efficiently achieved with standard iterative deterministic algorithms. Finally, we present results of applying the algorithms to synthetic as well as real data.
IEEE
2007
Artículo
Inglés
Investigadores
ORDENADORES DIGITALES
Versión publicada
publishedVersion - Versión publicada
Aparece en las colecciones: Ciencias de la Computación

Cargar archivos:


Fichero Tamaño Formato  
MRivera1.pdf1.32 MBAdobe PDFVisualizar/Abrir