Por favor, use este identificador para citar o enlazar este ítem:
http://cimat.repositorioinstitucional.mx/jspui/handle/1008/908
Diffusion Basis Functions Decomposition for Estimating White Matter Intravoxel Fiber Geometry | |
MARIANO JOSE JUAN RIVERA MERAZ | |
Acceso Abierto | |
Atribución-NoComercial-CompartirIgual | |
Resonancia Magnética | |
In this paper, we present a new formulation for recovering the fiber tract geometry within a voxel from diffusion weighted magnetic resonance imaging (MRI) data, in the presence of single or multiple neuronal fibers. To this end, we define a discrete set of diffusion basis functions. The intravoxel information is recovered at voxels containing fiber crossings or bifurcations via the use of a linear combination of the above mentioned basis functions. Then, the parametric representation of the intravoxel fiber geometry is a discrete mixture of Gaussians. Our synthetic experiments depict several advantages by using this discrete schema: the approach uses a small number of diffusion weighted images (23) and relatively small values (1250 s mm 2), i.e., the intravoxel information can be inferred at a fraction of the acquisition time required for datasets involving a large number of diffusion gradient orientations. Moreover our method is robust in the presence of more than two fibers within a voxel, improving the state-of-the-art of such parametric models. We present two algorithmic solutions to our formulation: by solving a linear program or by minimizing a quadratic cost function (both with non-negativity constraints). Such minimizations are efficiently achieved with standard iterative deterministic algorithms. Finally, we present results of applying the algorithms to synthetic as well as real data. | |
IEEE | |
2007 | |
Artículo | |
Inglés | |
Investigadores | |
ORDENADORES DIGITALES | |
Versión publicada | |
publishedVersion - Versión publicada | |
Aparece en las colecciones: | Ciencias de la Computación |
Cargar archivos:
Fichero | Tamaño | Formato | |
---|---|---|---|
MRivera1.pdf | 1.32 MB | Adobe PDF | Visualizar/Abrir |