Por favor, use este identificador para citar o enlazar este ítem: http://cimat.repositorioinstitucional.mx/jspui/handle/1008/903
Functional limit theorems for trace processes in a Dyson Brownian motion
VICTOR MANUEL PEREZ ABREU CARRION
Acceso Abierto
Atribución-NoComercial-CompartirIgual
Movimiento Browniano
In this paper we study functional asymptotic behavior of p-trace processes of n £ n Hermitian matrix valued Brownian motions, when n goes to in¯nity. For each p ¸ 1 we establish uniform a.s. and Lq laws of large numbers and study the a.s. convergence of the supremum (respectively in¯- mum) over a compact interval of the largest (respectively smallest) eigenvalue process. We also prove that the °uctuations around the limiting process, converge weakly to a one-dimensional centered Gaussian process Zp, given as a Wiener integral with a deterministic Volterra kernel. This process depends on Zp¡1; :::;Z1 and a Gaussian martingale of independent interest whose increasing process is explicitly derived. Our approach is based on stochastic analysis and semimartingales tools.
Serials Publications
2007
Artículo
Inglés
Investigadores
OTRAS
Versión publicada
publishedVersion - Versión publicada
Aparece en las colecciones: Probababilidad Y Estadística

Cargar archivos:


Fichero Tamaño Formato  
VPA2.pdf456.37 kBAdobe PDFVisualizar/Abrir