Por favor, use este identificador para citar o enlazar este ítem:
http://cimat.repositorioinstitucional.mx/jspui/handle/1008/903
Functional limit theorems for trace processes in a Dyson Brownian motion | |
VICTOR MANUEL PEREZ ABREU CARRION | |
Acceso Abierto | |
Atribución-NoComercial-CompartirIgual | |
Movimiento Browniano | |
In this paper we study functional asymptotic behavior of p-trace processes of n £ n Hermitian matrix valued Brownian motions, when n goes to in¯nity. For each p ¸ 1 we establish uniform a.s. and Lq laws of large numbers and study the a.s. convergence of the supremum (respectively in¯- mum) over a compact interval of the largest (respectively smallest) eigenvalue process. We also prove that the °uctuations around the limiting process, converge weakly to a one-dimensional centered Gaussian process Zp, given as a Wiener integral with a deterministic Volterra kernel. This process depends on Zp¡1; :::;Z1 and a Gaussian martingale of independent interest whose increasing process is explicitly derived. Our approach is based on stochastic analysis and semimartingales tools. | |
Serials Publications | |
2007 | |
Artículo | |
Inglés | |
Investigadores | |
OTRAS | |
Versión publicada | |
publishedVersion - Versión publicada | |
Aparece en las colecciones: | Probababilidad Y Estadística |
Cargar archivos:
Fichero | Tamaño | Formato | |
---|---|---|---|
VPA2.pdf | 456.37 kB | Adobe PDF | Visualizar/Abrir |