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FUNCTIONAL LIMIT THEOREMS FOR TRACE PROCESSES

IN A DYSON BROWNIAN MOTION

VÍCTOR PÉREZ-ABREU AND CONSTANTIN TUDOR*

Abstract. In this paper we study functional asymptotic behavior of p-trace

processes of n × n Hermitian matrix valued Brownian motions, when n goes

to infinity. For each p ≥ 1 we establish uniform a.s. and Lq laws of large

numbers and study the a.s. convergence of the supremum (respectively infi-

mum) over a compact interval of the largest (respectively smallest) eigenvalue

process. We also prove that the fluctuations around the limiting process, con-

verge weakly to a one-dimensional centered Gaussian process Zp, given as a
Wiener integral with a deterministic Volterra kernel. This process depends

on Zp−1, ..., Z1 and a Gaussian martingale of independent interest whose in-
creasing process is explicitly derived. Our approach is based on stochastic
analysis and semimartingales tools.

1. Introduction

For n ≥ 1, let
{

B(n)(t)
}

t≥0
= {(Bjk(t))}t≥0 be an n × n Hermitian matrix-

valued Brownian motion scaled by 1/
√

n. That is, (Bjj(t))
n
j=1, (Re Bjk(t))j<k,

(Im Bjk(t))j<k is a set of n2 independent one-dimensional Brownian motions with

parameter t
2n (1+δjk). For each t > 0, B(n)(t) is a Gaussian Unitary (GU) random

matrix of parameter t/n ([11], [22]).

Let
{

λ(n)(t)
}

t≥0
= {(λ(n)

1 (t), λ
(n)
2 (t), ..., λ

(n)
n (t))}t≥0 be the n-dimensional sto-

chastic process of eigenvalues of B(n). In a pioneering and fundamental work,

Dyson [9] showed that if the eigenvalues start at different positions (λ
(n)
1 (0) <

λ
(n)
2 (0) < ... < λ

(n)
n (0) a.s.), then they never meet at any time (λ

(n)
1 (t) < λ

(n)
2 (t) <

... < λ
(n)
n (t) a.s. ∀ t > 0) and furthermore they form a diffusion process satisfying

the Itô Stochastic Differential Equation (SDE)

dλ
(n)
i (t) =

1√
n

dW
(n)
i (t) +

1

n

∑

j 6=i

dt

λ
(n)
i (t) − λ

(n)
j (t)

, t ≥ 0, 1 ≤ i ≤ n, (1.1)
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416 V. PÉREZ-ABREU AND C. TUDOR

where W
(n)
1 , ...,W

(n)
n are independent one-dimensional standard Brownian mo-

tions. The stochastic process
{

λ(n)(t)
}

t≥0
is called the Dyson non-colliding Brow-

nian motion corresponding to the Gaussian Unitary Ensemble (GUE), which we
refer here as the (n-dimensional) Dyson-Brownian model.

From the diffusion processes point of view, the SDE (1.1) governs a system of
interacting Brownian particles with a non-smooth drift coefficient.

An important object of study is the empirical measure process

µ
(n)
t =

1

n

n
∑

j=1

δ
λ

(n)
j

(t)
, t ≥ 0, (1.2)

where δx is the unit mass at x. From the celebrated Wigner theorem in random

matrices, one obtains that for each fix t > 0, µ
(n)
t converges a.s. to µsc

t , the Wigner
semicircle distribution of parameter t, that is

µsc
t (dx) =

1

2πt

√

4t − x21[−2
√

t,2
√

t](x)dx. (1.3)

(See for example [11], [22], [27] or [28]). Also for a fixed t > 0, the behavior of
the largest and smallest eigenvalues of GUE random matrices was established in
[2], [3] (see also [11]). In the framework of dynamics and stochastic processes it is

then natural to consider functional limit theorems for the process
(

µ
(n)
t

)

t≥0
.

The study of the limit of interacting diffusions, but with smooth drift and
diffusion coefficients, goes back to the pioneering work on propagation of chaos of
McKean [21]. His result is a law of large numbers: the sequence of corresponding

empirical measure processes µ
(n)
t converges to µt in probability, where µt(dx)

is the probability distribution of a real valued stochastic process satisfying an
Itô SDE. The corresponding central limit theorem or limit of the fluctuations

Sn(t) = n1/2(µ
(n)
t −µt) was considered by several authors in the Nineteen Eighties;

see for example [14], [18], [23], [25], [26]. In particular, Hitsuda and Mitoma [14]
have shown that the measure valued processes Sn(t) converge weakly to a Gaussian
process in the dual of a nuclear Fréchet space.

Systems of Itô SDE with non smooth drift coefficients arise naturally in the
study of eigenvalue processes of matrix valued stochastic processes; see for exam-
ple [6], [19], [20] and references therein. The asymptotic behavior of the empirical

measure µ
(n)
t of eigenvalues of matrix valued Ornstein-Uhlenbeck (OU) processes

(matrices whose entries are one-dimensional OU processes rather than Brownian
motions) was initially considered by Chan [8] and Rogers and Shi [24] (see also

[7]). They realized that µ
(n)
t converges weakly in the space of continuous probabil-

ity measure valued processes to a deterministic law µt. Moreover, the limit has a
unique stationary measure µ∞ which follows a scaled semicircle law. Although for-
mally their systems of eigenvalues processes contain the classical Dyson Brownian
model (1.1), not all their proofs and results hold for this model.

From the stochastic realization point of view, it is not known if the family of
semicircle laws governs a real Itô equation. Rather, it is well known that (1.3) is
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the (spectral) distribution of the so called free Brownian motion, the analogous in
free probability of the classical Brownian motion ([4, Example 5.16]).

As for the central limit theorem, also in the general framework of eigenvalues
systems of matrix-valued OU processes, Israelson [15] proved that the fluctuations

Yn(t) = n(µ
(n)
t − µt) converge weakly to a Gaussian process in the dual of a

nuclear Fréchet space, whose mean and covariance functions were explicitly derived
recently by Bender [5]. These models include the case of the classical Dyson-
Brownian motion (1.1), but no formulation nor proof for the corresponding result
is given [15, Remark pp 27]. It is important to notice that the fluctuation process
is considered with the scale factor n instead

√
n, as it is done for interacting

diffusions with smooth coefficients and other classical cases.
In the present paper we are concerned with functional limit theorems for the

p-moment or p-trace processes associated to µ
(n)
t in the Dyson-Brownian motion

model (1.1), for any p ≥ 0. Namely, we consider propagation of chaos and fluctu-
ations for the one-dimensional stochastic processes ({Mn,p(t)}t≥0 , n ≥ 1), p ≥ 0,

defined by the semimartingales

Mn,p(t) = Tr(
[

B(n)(t)
]p

) =

∫

R

xpµ
(n)
t (dx) =

1

n

n
∑

j=1

[

λ
(n)
j (t)

]p

. (1.4)

For a fixed t > 0, the importance of the study of moments for the GUE is
illustrated, for example, in the works by Metha [22], Haagerup and Thorbjørnsen
[11], Harer-Zagier [12] and Johanson [17], amongst others. An important role in
those papers is played by the moments of the semicircle law µsc

t for fix t > 0.
It is then natural to consider functional limit theorems for the dynamics of the
p-trace stochastic processes, specially in the framework of stochastic analysis and
semimartingales.

In the propagation of chaos direction, in Section 3 we show that for the Dyson

Brownian model, the sequence of measure-valued processes µ
(n)
t converges weakly

to µsc
t in the space of continuous functions from R+ into probability measures in R,

endowed with the uniform convergence on compact intervals of R+. We also prove
uniform a.s. and in L2k laws of large numbers. In proving these results we first
show in Section 2 that the family (µsc

t )t≥0 is characterized by the property that
its Cauchy-Stieltjes transforms is the unique solution of an initial value problem,
a result formally suggested from the work in [24]. In Section 3 we also prove the
a.s. convergence of the supremum over the interval [0, T ] of the largest eigenvalue

process
{

λ
(n)
n (t)

}

t≥0
to 2

√
T as well as the corresponding result for the infimum

of the smallest eigenvalue process
{

λ
(n)
1 (t)

}

t≥0
.

In section 4 we address the question of weak convergence for the fluctuations

of the moment processes Vn,p(t) =
∫

xpY
(n)
t (dx). It is shown that for each p ≥ 0,

Vn,p converges to a one-dimensional Gaussian process Zp given in terms of the
previous (p − 1)th limiting processes Z1,...,Zp−1, the Catalan numbers of order

up to (p − 2)/2 and a Gaussian martingale which is a p+1
2 −self-similar process.

The process Zp is also written as a Wiener integral with a deterministic Volterra
kernel.
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2. Families of moments of semicircle laws

Consider the family {µsc
t }t>0 of Wigner semicircle laws given by (1.3). In this

section we recall some useful properties of the moments µsc
k (t) for t > 0 fixed and

present new functional relations for the families {µsc
k (t)}t>0 and their correspond-

ing Cauchy-Stieltjes transforms.
It is well known that for t > 0 fixed, the odd moments µsc

2p+1(t) are 0 while the
even moments are given by

µsc
2p(t) = Cpt

p, p ≥ 0, (2.1)

where Cp =
(

2p
p

)

/(p + 1) are the so called Catalan numbers (see [10], [13]). We

write µsc
0 = δ0.

The following functional recursive equation for the families of moments of semi-
circle laws holds.

Lemma 2.1. For each r ≥ 2 and t > 0

µsc
r (t) =

r

2

r−2
∑

j=0

∫ t

0

µsc
r−2−j(s)µ

sc
j (s)ds. (2.2)

Proof. The result is trivial if r is odd. For r = 2p, p ≥ 1, using the fact that the
odd moments are 0 (from the RHS of (2.2), relation (2.1) and the following well
known formula for the Catalan numbers

Ck+1 =
k
∑

j=0

CjCk−j ,

it is easily seen that (2.2) is satisfied. ¤

We next present a characterization of the family of distributions (µsc
t )t≥0 in

terms of an initial valued problem for the corresponding Cauchy-Stieltjes trans-
forms. Recall that for a finite non-negative measure ν on R, its Cauchy-Stieltjes
transform is defined by

Gν(z) =

∫

R

ν(dx)

x − z
,

for all z ∈ C with Im(z) 6= 0. It is well known that Gν is analytic in Cr R, Gν(z) =
Gν(z̄), Gν : C+ → C+, where C+ := {z : Im(z) > 0} and limη→∞ η |Gν(iη)| < ∞
(see for example [13]).

For the semicircle law µsc
t , writing Gsc

t = Gµsc
t , we have the relation

Gsc
t (z) =

1

2t

(

√

z2 − 4t − z
)

, t > 0, Im(z) 6= 0. (2.3)

where
√

z2 − 4t denotes the branch that has the asymptotic behavior
√

z2 − 4σ2 = z + O(|z|−1
), z → ∞.

Lemma 2.2. The family (µsc
t )t≥0 is characterized by the property that its Cauchy-

Stieltjes transforms is the unique solution of the initial value problem
{

∂Gt(z)
∂t = Gt(z)∂Gt(z)

∂z , t > 0,
G0(z) = − 1

z , z ∈ C+,
(2.4)
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which satisfies Gt(z) ∈ C+ for z ∈ C+ and

lim
η→∞

η |Gt(iη)| < ∞, for each t > 0. (2.5)

Proof. It is easily seen that (2.3) satisfies (2.4). To show the uniqueness of the so-
lution we proceed as in [24, Section 4]. Consider the following differential equation
in C+,

żt = −Gt(zt), z0 = h ∈ C+. (2.6)

From (2.4) it follows that z̈t = 0, that is żt = ż0 = − G0(h) = 1
h and hence

zt = t
h + h.

For fixed t0 > 0, θ ∈ C+, choose for (2.6) the initial condition h = h(t0, θ) ∈ C+

such that

zt0 (θ) =
t0

h(t0, θ)
+ h(t0, θ) = θ,

i.e.,

h(t0, θ) =
θ ±

√
θ2 − 4t0
2

.

Then we obtain that

Gt0(θ) = −żt0 = −ż0 =
1

h(t0, θ)
=

1

2t0

(

√

θ2 − 4t0 ∓ θ
)

∈ C+.

But only in the case Gt0(θ) = 1
2t0

(√
θ2 − 4t0 − θ

)

the condition (2.5) is satisfied.
¤

3. Propagation of chaos for the moments

In this section we prove the weak convergence of
(

µ
(n)
t

)

t≥0
to a measure valued

process satisfying an evolution equation and prove uniform a.s. and Lq laws of
large numbers for the moment processes Mn,p(t) = Tr(

[

B(n)(t)
]p

), t ≥ 0, given by
(1.4).

Let Pr(R) be the space of probability measures on R endowed with the topology
of weak convergence and let C (R+,Pr(R)) be the space of continuous functions
from R+ into Pr(R), endowed with the topology of uniform convergence on com-
pact intervals of R+. As it is usual, for a probability measure µ and a µ-integrable
function f we use the notation 〈µt, f〉 =

∫

f(x)µ(dx).

Proposition 3.1. Assume that µ
(n)
0 converges weakly to δ0.

Then the family of measure-valued processes
(

µ
(n)
t

)

t≥0
converges weakly in

C (R+,Pr(R)) to the unique continuous probability-measure valued function sat-
isfying that for each f ∈ C2

b (R)

〈µt, f〉 = f(0) +
1

2

∫ t

0

ds

∫

R2

f ′(x) − f ′(y)

x − y
µs(dx)µs(dy). (3.1)

Moreover, the unique continuous solution of (3.1) is the family of semicircle laws
(µsc

t )t≥0 .
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Proof. An application of Itô’s formula to (1.1) gives that for f ∈ C2
b ,

〈

µ
(n)
t , f

〉

=
〈

µ
(n)
0 , f

〉

+
1

n
3
2

n
∑

j=1

∫ t

0

f ′
(

λ
(n)
j (s)

)

dW
(n)
j (s)

+
1

2

∫ t

0

ds

∫

R2

f ′(x) − f ′(y)

x − y
µ(n)

s (dx)µ(n)
s (dy), t ≥ 0. (3.2)

The proof of tightness of the sequence of processes

{

(

µ
(n)
t

)

t≥0

}

n≥1

in the space

C (R+,Pr(R)) is the same as in [24, Section 3].
By Doob’s inequality, for any ε, T > 0, we have

∑

n

P



 sup
0≤t≤T

∣

∣

∣

∣

∣

∣

1

n
3
2

n
∑

j=1

∫ t

0

f ′
(

λ
(n)
j (s)

)

dW
(n)
j (s)

∣

∣

∣

∣

∣

∣

> ε





≤ 4

ε2

∑

n

1

n3

n
∑

j=1

∫ T

0

[

f ′
(

λ
(n)
j (s)

)]2

ds ≤ K
∑

n

1

n2
< ∞,

and therefore

sup
0≤t≤T

∣

∣

∣

∣

∣

∣

1

n
3
2

n
∑

j=1

∫ t

0

f ′
(

λ
(n)
j (s)

)

dW
(n)
j (s)

∣

∣

∣

∣

∣

∣

a.s.−→ 0, as n → ∞.

Now, it is clear that any weak limit (µt)t≥0 of a subsequence
(

µ
(nk)
t

)

t≥0
should

satisfy (3.1). Applying (3.1) to the determining sequence of functions

fj(x) =
1

x − zj
, zj ∈ (Q × Q) ∩ C+,

and using a continuity argument, we get that the Cauchy-Stieltjes transform
(Gt)t≥0 of (µt)t≥0 satisfies the integral equation

Gt(z) = −1

z
+

1

2

∫ t

0

ds

∫

R2

µs(dx)µs(dy)

(x − z) (y − z)
2 , t ≥ 0, z ∈ C+. (3.3)

From (3.3) it easily seen that (2.4) is satisfied and consequently (µt)t≥0 is the

family (µsc
t )t≥0 . Therefore all limits of subsequences of

{

(

µ
(n)
t

)

t≥0

}

n≥1

coincide

with (µsc
t )t≥0 and thus the sequence

(

µ
(n)
t

)

t≥0
converges weakly to (µsc

t )t≥0 .

The above reasoning also shows that (µsc
t )t≥0 is the unique continuous solution

of (3.1). ¤

Remark 3.2. The Ornstein-Uhlenbeck case when
{(

λ
(n)
1 (t), ..., λ

(n)
n (t)

)}

t≥0
satisfy

the SDE

dλ
(n)
i (t) =

σ√
n

dW
(n)
i (t) − θλ

(n)
i (t)dt +

α

n

∑

j 6=i

dt

λ
(n)
i (t) − λ

(n)
j (t)

, t ≥ 0, (3.4)
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with σ, θ, α > 0, is considered by [8] and [24]. The method used to prove Propo-
sition 3.2 is similar as in [24].

The next goal is to prove uniform a.s. and L2k, for each k ≥ 1, laws of large
numbers for the trace processes Mn,p. The first part of the next result gives useful
recursive equations systems for the semimartingales Mn,p in terms of the martin-
gales

Xn,p(t) =
1

n
3
2

n
∑

j=1

∫ t

0

[

λ
(n)
j (s)

]p

dW
(n)
j (s), t ≥ 0, (3.5)

whose increasing processes are given by

〈Xn,p〉t =
1

n2

∫ t

0

Mn,2p(s)ds, t ≥ 0, (3.6)

for any p ≥ 0 and n ≥ 1.

Theorem 3.3. (i) The following relations hold for n ≥ 1, r ≥ 1 and t ≥ 0

Mn,r(t) = Mn,r(0) + rXn,r−1(t) +
r

2

r−2
∑

j=0

∫ t

0

Mn,r−2−j(s)Mn,j(s)ds, t ≥ 0, (3.7)

where Xn,p(t) is the martingale given by (3.5).
(ii) Assume that for each p ≥ 1, k ≥ 1,

sup
n

E
(

M2k
n,2p(0)

)

< ∞, (3.8)

Mn,2p(0)
a.s.−→ 0 as n → ∞. (3.9)

Then for every T > 0 there exist a constant K(p, k, T ) such that

sup
n

E

(

sup
0≤t≤T

M2k
n,2p(t)

)

≤ K(p, k, T ) < ∞, (3.10)

and

sup
0≤t≤T

∣

∣Mn,2p(t) − µsc
2p(t)

∣

∣

a.s.−→ 0 as n → ∞, (3.11)

E

(

sup
0≤t≤T

∣

∣Mn,2p(t) − µsc
2p(t)

∣

∣

2k
)

−→ 0 as n → ∞. (3.12)

Proof. (i) The relation (3.7) follows from (3.2) with f(x) = xr.
(For example, from (3.7) we have

Mn,0(t) = Mn,0(0) + 1,

Mn,1(t) = Mn,1(0) + Xn,0(t),

Mn,2(t) = Mn,2(0) + 2Xn,1(t) + t, etc.) (3.13)

(ii) The Harer-Zagier formula recursion formula for the moments Mn,2q(t) =

Tr(
[

B(n)(t)
]2q

) for t > 0 fixed (see [11, Corollary 4.2], [12, pp 460], [22, pp 117-

120]) and the equality in law between Bl,n
ij (t) and

√
tBl,n

ij (1), l = 1, 2, imply the
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equality

E (Mn,2q(t)) =







[ q

2 ]
∑

j=0

αj(q)n
−2j






tq, q ≥ 0, n ≥ 1, (3.14)

where

αj(q) =

{

= 0, j ≥
[

q
2

]

+ 1,
= Cq, j = 0, q ≥ 0

,

and

αj(q + 1) =
4q + 2

q + 2
αj(q) +

q(4q2 − 1)

q + 2
αj−1(q − 1), q, j ≥ 1.

Then, from the above relations and Jensen’s inequality we have the estimate

E
(

M2k
n,2p(t)

)

≤ E (Mn,4kp(t)) ≤ K(p, k)t2kp. (3.15)

Next, by Burkholder’s inequality and using (3.6) we obtain

E

(

sup
0≤t≤T

|Xn,p(t)|2k

)

≤ K(T, p, k)

n2k
E





∣

∣

∣

∣

∣

∫ T

0

Mn,2p(s)ds

∣

∣

∣

∣

∣

k




≤ K1(T, p, k)

n2k

∫ T

0

E
(

Mk
n,2p(s)

)

ds (3.16)

and then, by (3.15),

E

(

sup
0≤t≤T

|Xn,p(t)|2k

)

≤ K2(T, p, k)

n2k
≤ K2(T, p, k) < ∞. (3.17)

Hence, (3.10) follows using the Minkovski and Hölders inequalities, (3.8), (3.15)
and (3.17) in (3.7).

On the other hand, using Chebyshev inequality and (3.17) we have that for each
ε > 0

∑

n

P

(

sup
0≤t≤T

|Xn,p(t)| > ε

)

≤ K
∑

n

1

n2k
< ∞,

and thus

sup
0≤t≤T

|Xn,p(t)| a.s.−→ 0 as n → ∞. (3.18)

The almost surely convergence in (3.11) follows from (3.9), (3.18) and (3.7) by an
induction argument, since the family (µsc

r (t))t,r≥0 satisfies uniquely the relation

(2.2). Now (3.10) and (3.11) yield (3.12). ¤

Approximating the continuous functions with compact support by polynomials
we obtain the following consequences of the above theorem.

Corollary 3.4. Assume (ii) in Theorem 3.3. Then
a) For any bounded continuous function f : R −→ R we have

lim
n→∞

sup
0≤t≤T

∣

∣

∣

∣

∫

f(x)µ
(n)
t (dx) −

∫

f(x)µsc
t (dx)

∣

∣

∣

∣

= 0 a.s. (3.19)
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b) For any interval (a, b) ⊂ R

lim
n→∞

max
0≤t≤T

∣

∣

∣

∣

1

n
#
{

1 ≤ j ≤ n : λ
(n)
j (t) ∈ (a, b)

}

− µsc
t ((a, b))

∣

∣

∣

∣

= 0 a.s. (3.20)

Remark 3.5. As a consequence of the above theorem we obtain Arnold’s extension
of the Wigner semicircle law (see [1], [11]), since the moments determines uniquely
the semicircle law.

Remark 3.6. The recursive relation (3.7) suggests that the moment processes
Mn,2p are continuous functionals for the martingales Xn,0, Xn,1, ..., Xn,2p−1. An
explicit formula of Mn,2p would be useful (in particular to obtain (3.14)).

The behavior of the largest and smallest eigenvalues of GUE random matrices
was established in [2], [3] (see also [11]). In the next theorem we extend these
results for the supremum of the largest eigenvalue process as well as for the infimum
of the smallest eigenvalue process from a Dyson Brownian motion.

Theorem 3.7. Assume (ii) of Theorem 3.3. Then, for each T > 0 we have

max
0≤t≤T

λ(n)
n (t)

a.s.−→ 2
√

T as n → ∞, (3.21)

min
0≤t≤T

λ
(n)
1 (t)

a.s.−→ −2
√

T as n → ∞. (3.22)

Proof. From the estimate (3.6) of [11] we have

E
[

exp
(

αλ(n)
n (t)

)]

≤ n exp

(

α2t

2n
+ 2α

√
t

)

, ∀α, t > 0. (3.23)

Next, if t1 < t2 from (1.1) and the fact that

exp

(

α√
n

W (n)
n (t) − α2t

2n

)

is a martingale, we have

E
[

exp
(

αλ(n)
n (t2)

)

| B(n)(s) : s ≤ t1

]

= E



exp





α√
n

W (n)
n (t2) +

α

n

n−1
∑

j=1

∫ t2

0

ds

λ
(n)
n (s) − λ

(n)
j (s)



 | B(n)(s) : s ≤ t1





≥ exp





α

n

n−1
∑

j=1

∫ t1

0

ds

λ
(n)
n (s) − λ

(n)
j (s)



E

[

exp

(

α√
n

W (n)
n (t2)

)

| B(n)(s) : s ≤ t1

]

= exp





α2t2
2n

+
α

n

n−1
∑

j=1

∫ t1

0

ds

λ
(n)
n (s) − λ

(n)
j (s)





×E

[

exp

(

α√
n

W (n)
n (t2) −

α2t2
2n

)

| B(n)(s) : s ≤ t1

]

= exp





α2 (t2 − t1)

2n
+

α

n

n−1
∑

j=1

∫ t1

0

ds

λ
(n)
n (s) − λ

(n)
j (s)



 exp

(

α√
n

W (n)
n (t1)

)
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≥ exp
(

αλ(n)
n (t1)

)

,

i.e., exp
{

αλ
(n)
n (t)

}

t
is a submartingale.

From (3.23) and Doob’s inequality we obtain

P

(

max
0≤t≤T

λ(n)
n (t) > ε + 2

√
T

)

≤ P

(

max
0≤t≤T

exp
(

αλ(n)
n (t)

)

> exp(α
(

ε + 2
√

T
)

)

)

≤ exp
(

−α
(

ε + 2
√

T
))

E
(

exp
(

αλ(n)
n (T )

))

≤ n exp

(

−αε +
α2T

2n

)

,

and the function

α −→ exp

(

−αε +
α2T

2n

)

, α > 0,

attains its minimum for α = nε, and replacing above, we get the inequality

P

(

max
0≤t≤T

λ(n)
n (t) > ε + 2

√
T

)

≤ n exp

(

−nε2

2

)

. (3.24)

Hence from (3.24) and Borel-Cantelli lemma

lim sup
n−→∞

max
0≤t≤T

λ(n)
n (t) ≤ 2

√
T , a.s.. (3.25)

Next, from (3.20) we have

max
0≤t≤T

∣

∣

∣

∣

1

n
#
{

1 ≤ j ≤ n : λ
(n)
j (t) ∈ [a, b]

}

∣

∣

∣

∣

a.s.−→ max
0≤t≤T

µsc
t ([a, b]) as n → ∞,

and then

max
0≤t≤T

#
{

1 ≤ j ≤ n : λ
(n)
j (t) ∈

[

2
√

T − ε, 2
√

T
]}

a.s.−→ ∞ as n → ∞,

and consequently

lim inf
n−→∞

max
0≤t≤T

λ(n)
n (t) ≥ 2

√
T , a.s.. (3.26)

From (3.25), (3.26) we obtain (3.21). Finally, (3.22) follows from (3.21) applied to
(

−B(n)(t)
)

t≥0
. ¤

4. Fluctuations of the moments

In this section we consider the asymptotic fluctuations of the moments processes
{Mn,p(t)}t≥0 around the corresponding moments

{

µsc
p (t)

}

t≥0
of the semicircle

distribution. Let

Y
(n)
t = n

(

µ
(n)
t − µsc

t

)

, (4.1)

Vn,0(t) = 0 and for p ≥ 1

Vn,p(t) =

∫

xpY
(n)
t (dx) = n

(

Mn,p(t) − µsc
p (t)

)

. (4.2)
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The relation (3.1) and (3.2) imply that for f ∈ C2 and t ≥ 0,
〈

Y
(n)
t , f

〉

=
〈

Y
(n)
0 , f

〉

+
1√
n

n
∑

j=1

∫ t

0

f ′
(

λ
(n)
j (s)

)

dW
(n)
j (s) −

∫ t

0

∫

xf ′(x)Y (n)
s (dx)ds

+
1

2

∫ t

0

ds

∫

R2

f ′(x) − f ′(y)

x − y

[

µ(n)
s (dx)Y (n)

s (dy) + µsc
s (dx)Y (n)

s (dy)
]

.

(4.3)

The martingales

Nn,p(t) =
1√
n

n
∑

j=1

∫ t

0

[

λ
(n)
j (s)

]p

dW
(n)
j (s), t ≥ 0, p ≥ 0, (4.4)

play an important role in the Dyson Brownian model (1) and in particular in the
sequel. In the next result we prove their weak convergence to an additive Gaussian
processes.

Proposition 4.1. The martingale Nn,p converges weakly in C(R+, R), when n
goes to infinity, to a centered Gaussian martingale Np with covariance function

E (Np(s)Np(t)) =
Cp

p + 1
(s ∧ t)

p+1
(4.5)

and increasing process

〈Np〉t =

∫ t

0

µsc
2p(s)ds =

Cp

p + 1
tp+1. (4.6)

Proof. Since

〈Nn,p〉t =

∫ t

0

Mn,2p(s)ds,

by Burkholder’s inequality and (3.15) we have that for t1 < t2 ≤ T,

E
(

|Nn,p(t1) − Nn,p(t2)|4
)

≤ K1E

(

∣

∣

∣

∣

∫ t2

t1

Mn,2p(s)ds

∣

∣

∣

∣

2
)

≤ K2 (t2 − t1)

∫ t2

t1

E
(

M2
n,2p(s)ds

)

≤ K(T, p) (t2 − t1)
2

(4.7)

and thus the sequence (Nn,p)n is tight in C(R+, R).
Let (Nnk,p)k be a weakly convergent subsequence to a limit Np. By [16, Corol-

lary 1.19, pp 486] it follows that Np is a continuous local martingale (in fact is a
martingale) and by [16, Corollary 6.6, pp 342] the vector (Nnk,p, 〈Nnk,p〉) converges
weakly to a limit (Np, 〈Np〉) .

Since

〈Nnk,p〉t =

∫ t

0

Mnk,2p(s)ds,
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by using (3.11) we get (4.6). Then, from [16, Theorem 4.4 pp 102] we have that
that Np is a Gaussian martingale, whose covariance is given by (4.5). Therefore
all weak limits are the same and consequently the sequence Nn,p converges weakly
to Np. ¤

Remark 4.2. It is clear that the additive centered Gaussian process is such that

Np(t)
L
= C

1
2
p

∫ t

0

s
p

2 dWs, (4.8)

where W is a Brownian motion and Np is p+1
2 −self-similar.

In the final result of this paper we show for each p ≥ 1, the fluctuation processes
Vn,p converge weakly to a one dimensional Gaussian process Zp, which is given by a
recursive expression that involves Zp−1, ..., Z1, the Gaussian martingale Np−1 and
the families of moments {µsc

k (t)}t≥0 , k = 1, ..., p − 2. It is mentioned in Israelson

[15, Remark pp 27], that the proof of a result from which the following theorem is
obtained, can be adapted from a general result (θ > 0) in [15]. For the sake of the
reader convenience, we present here a simpler and direct proof and in addition we
identify the limiting trace processes explicitly.

Theorem 4.3. Assume that for each p, k ≥ 1

sup
n

E
(

V 2k
n,p(0)

)

< ∞, (4.9)

and that Vn,p(0) converges weakly to V
(0)
p ∈ R as n → ∞. Then Vn,p converges

weakly in C(R+, R) to the centered Gaussian process Zp satisfying Z0 = 0,

Zp(t) + p

∫ t

0

Zp(s)ds = V (0)
p +

p

2

∫ t

0

{

2
[

µsc
p−2(s) + µsc

p−3(s)Z1(s)

+... + µsc
1 (s)Zp−3(s)] + Zp−2(s)} ds + pNp−1(t), (4.10)

where Np is given by (4.8).

Remark 4.4. Two alternative expression for the process Zp is given as follows.
a)Write

ap(t) = V (0)
p +

p + 1

2

∫ t

0

{

2
[

µsc
p−1(s) + µsc

p−2(s)Z1(s)

+... + µsc
1 (s)Zp−2(s)] + Zp−1(s)} ds + (p + 1)Np(t), p ≥ 1,

then

Zp(t) = ap−1(t) − p

∫ t

0

e−p(t−s)ap−1(s)ds. (4.11)

b) There is a measurable deterministic Volterra kernel Kp such that

Zp(t) =

∫ t

0

Kp(t, s)dWs. (4.12)
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Proof. of Theorem 4.3 . Taking f(x) = xp in (4.3) we obtain the equality

Vn,p(t) = Vn,p(0) − p

∫ t

0

Vn,p(s)ds

+
p

2

∫ t

0

{

Mn,p−2(s) + µsc
p−2(s) +

[

Mn,p−3(s) + µsc
p−3(s)

]

Vn,1(s)

+... + [Mn,1(s) + µsc
1 (s)] Vn,p−3(s) + Vn,p−2(s)} ds + pNn,p−1(t). (4.13)

By the Skorohod representation of the weak convergence (eventually in a new
probability space) we can assume that

((Vn,k(0)1≤k≤p) , (Mn,k)1≤k≤p−2) , (Nn,k)0≤k≤p−1))

converges almost surely in Rp × C(R+, R2(p−1)) to
(

(

V
(0)
k

)

1≤k≤p
, (µsc

k )1≤k≤p−2 , (Nk)0≤k≤p−1)

)

,

and still (4.13) is satisfied.
Then, by induction we deduce that Vn,p converges almost surely to Zp given by

(4.10). From (4.11) and by induction again it is easily seen that (4.12) holds and
consequently Zp is Gaussian. ¤
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