Please use this identifier to cite or link to this item:
http://cimat.repositorioinstitucional.mx/jspui/handle/1008/877
A note on Hempel–McMillan coverings of 3-manifolds | |
JOSE CARLOS GOMEZ LARRAÑAGA | |
Acceso Abierto | |
Atribución-NoComercial-CompartirIgual | |
3 Variedades | |
Motivated by the concept of A-category of a manifold introduced by Clapp and Puppe, we give a different proof of a (slightly generalized) Theorem of Hempel and McMillan: If M is a closed 3-manifold that is a union of three open punctured balls then M is a connected sum of S3 and S2-bundles over S1. | |
Elsevier Science | |
2007 | |
Artículo | |
Inglés | |
Investigadores | |
VARIEDADES TOPOLÓGICAS | |
Versión publicada | |
publishedVersion - Versión publicada | |
Appears in Collections: | Matemáticas |
Upload archives