A note on Hempel-McMillan coverings of 3-manifolds

J.C. Gómez-Larrañaga ${ }^{\text {a }}$, F. González-Acuña ${ }^{\text {b }}$, Wolfgang Heil ${ }^{\text {c,* }}$
${ }^{\text {a }}$ Centro de Investigación en Matemáticas, AP 402, Guanajuato 36000, Gto. México, Mexico
b Instituto de Matemáticas, UNAM, Ciudad Universitaria, 04510 México DF, Mexico
${ }^{\text {c }}$ Department of Mathematics, Florida State University, Tallahasee, FL 32306, USA

Received 1 August 2005; received in revised form 11 April 2006; accepted 11 April 2006

Abstract

Motivated by the concept of \mathcal{A}-category of a manifold introduced by Clapp and Puppe, we give a different proof of a (slightly generalized) Theorem of Hempel and McMillan: If M is a closed 3-manifold that is a union of three open punctured balls then M is a connected sum of S^{3} and S^{2}-bundles over S^{1}.

© 2006 Published by Elsevier B.V.
MSC: 57M27

Keywords: Lusternik-Schnirelmann category; Coverings of 3-manifolds with special open subsets

1. Introduction

The concept of an \mathcal{A}-category of a manifold was introduced in [1]. A special case of this concept for a closed, connected 3 -manifold M is as follows: Let A be a point, a 1 -sphere S^{1}, a 2 -sphere S^{2}, a projective plane P^{2}, a 2 dimensional torus T^{2}, or a 2-dimensional Klein bottle K^{2}. An open set C of M is A-categorical if there exist maps $\phi: C \rightarrow A$ and $\rho: A \rightarrow M$ such that the inclusion map $\imath: C \rightarrow M$ is homotopic to $\rho \cdot \phi$.

The A-category of M, A-cat (M) is the minimal number of A-categorical open sets that cover M. When A is a point, the A-category of M is the classical Lusternik-Schnirelmann category cat (M) of M. This invariant was studied in [3]. In a forthcoming paper [5] we will study the case $A=S^{1}$.

In order to better understand the A-category invariant we start by studying what we will call the "HempelMcMillan" coverings of 3-manifolds. These are coverings of M by the interiors of given I^{k}-bundles over a fixed A, where $k+\operatorname{dim}(A)=3$. When A is a point then this is a covering of M by open balls. It is well known that if M is covered by two balls then $M=S^{3}$ (see e.g. [4]) and the existence of a Heegaard-splitting shows that every M can be covered by four open balls. Hempel and McMillan [8] proved that if M is covered by three open balls, then M is a connected sum of finitely many S^{2}-bundles over S^{1}. Up to the Poincarè Conjecture the same is true for cat (M) [3].

When A is as above the manifolds covered by the interiors of two I^{k}-bundles were classified in [4]. In order to study the classification of 3-manifolds covered by three sets of this type, we start with the case that A is a point or S^{2}

[^0]and give in this paper a new proof of (a generalized) Hempel-McMillan Theorem, which possibly can be adapted to classify manifolds M covered by three open I^{k}-bundles over S^{1}, P^{2}, T^{2}, or K^{2}.

2. Preliminaries

We first establish a corollary that allows us to work in the pl-category.
The following lemma is well known (see e.g. [2, Chapter VII, Theorem 6.1]) and easy to prove:
Lemma 1. If $\left\{U_{1}, \ldots, U_{m}\right\}$ is an open cover of the normal space X, then there is a closed cover $\left\{C_{1}, \ldots, C_{m}\right\}$ of X with $C_{i} \subset U_{i}(i=1, \ldots, m)$.

Lemma 2. Let $M^{n}, W_{1}, \ldots, W_{m}$ be smooth compact n-manifolds with M^{n} closed. Let $\left\{U_{1}, \ldots, U_{m}\right\}$ be an open cover of M^{n} with U_{i} diffeomorphic to int $W_{i}(i=1, \ldots, m)$. Then there exist smooth embeddings $f_{i}: W_{i} \rightarrow M^{n}$ such that
(1) $\bigcup_{i=1}^{m}$ int $f_{i}\left(W_{i}\right)=M^{n}$ and
(2) $f_{i}\left(\partial W_{i}\right)$ is transversal to $\bigcap_{j<i} f_{j}\left(\partial W_{j}\right)$ for $i=2, \ldots, m$.

Proof. By Lemma 1 there exist C_{1}, \ldots, C_{m} compact with $C_{i} \subset U_{i}(i=1, \ldots, m)$ and $\bigcup_{i=1}^{m} C_{i}=M^{n}$. For each i there are submanifolds of U_{i} diffeomorphic to W_{i} and with interior containing C_{i}. Let $f_{1}: W_{1} \rightarrow U_{1}$ be a smooth embedding with $C_{1} \subset$ int $f_{1}\left(W_{1}\right)$.

Suppose that inductively we have defined for $i=1, \ldots, k$ smooth embeddings $f_{i}: W_{i} \rightarrow U_{i}$ with $C_{i} \subset$ int $f_{i}\left(W_{i}\right)$ and such that (2) holds. Then, if $k<m$, by the Transversality Theorem and the Stability Theorem for embeddings [7, p. 68, p. 35(e), respectively] there exists an embedding $f_{k+1}: W_{k+1} \rightarrow U_{k+1}$ with $C_{k+1} \subset$ int $f_{k+1}\left(W_{k+1}\right)$ such that (2) holds, completing the inductive construction of the f_{i}. Note that (1) holds also since $C_{i} \subset$ int $f_{i}\left(W_{i}\right), i=1, \ldots, m$.

Remark. The second condition is equivalent to the following:
If $x \in f_{i_{1}} \partial\left(W_{i_{1}}\right) \cap f_{i_{2}} \partial\left(W_{i_{2}}\right) \cap \cdots \cap f_{i_{r}} \partial\left(W_{i_{r}}\right)$ with $i_{1}<i_{2}<\cdots<i_{r}, r \geqslant 2$, and if $n_{i_{j}}(x)$ is a nonzero vector of $T_{x}\left(M^{n}\right)$ perpendicular to the tangent space of $f_{i_{j}} \partial\left(W_{i_{j}}\right)$ at $x(j=1, \ldots, r)$, then $n_{i_{1}}(x), n_{i_{2}}(x), \ldots, n_{i_{r}}(x)$ are linearly independent.

In particular, for $m=3$, we obtain the following
Corollary 3. Suppose M is a closed 3-manifold covered by three open sets H_{1}, H_{2}, H_{3}, such that H_{i} is homeomorphic to the interior of a compact connected 3-manifold $V_{i}(i=1,2,3)$. Then M admits a covering $M=V_{1} \cup V_{2} \cup V_{3}$ such that ∂V_{1} is transversal to ∂V_{2}, and $\partial V_{3} \subset \operatorname{int}\left(V_{1} \cup V_{2}\right)$, and V_{1}, V_{2}, V_{3} are pl embedded.

We will use the following notations throughout this paper:
$\mathbb{B} \quad$ denotes a connected sum of S^{3} and S^{2}-bundles over S^{1} (with finitely many factors);
H or H_{i} denotes a punctured ball with finitely many punctures (possibly no punctures);
W or W_{i} denotes a handlebody (orientable or non-orientable).
By an n-times punctured M we mean a manifold obtained from M by removing interiors of n disjoint balls in $\operatorname{int}(M)$. We allow $n=0$. Note that a connected punctured $M=M \# H$, for some punctured ball H.

By an open punctured ball we mean a manifold homeomorphic to an open ball with a finite number of points removed.

Lemma 4. Suppose N is a connected 3-manifold that is a union of punctured balls B_{1}, \ldots, B_{n} such that $\partial B_{i} \cap \partial B_{j}=\emptyset$ for $i \neq j$, then $N=\mathbb{B} \# H$.

Proof. For a fixed index $i(1 \leqslant i \leqslant n)$ the collection of 2-spheres $\left(\partial B_{1} \cup \cdots \cup \partial B_{n}\right) \cap$ int B_{i} cuts B_{i} into punctured balls $B_{i_{1}}, \ldots, B_{i_{n}}$. Now N is obtained from a collection of punctured balls by identifying (some) boundary spheres in pairs. The result follows.

A 3-manifold N is obtained from a collection of 3-manifolds N_{1}, \ldots, N_{n} by successive 1-handle attachments if we start by attaching a 1-handle to $N_{1} \cup \cdots \cup N_{n}$ (either to one component N_{i} or two components N_{i}, N_{j}) and then successively repeat attaching 1 -handles to the resulting collections of 3 -manifolds (a finite number of times).

The following lemma is easily proved by induction on the number of 1 -handle attachments (see e.g. [6, Lemma 2(a)]).

Lemma 5. If N is a connected 3-manifold obtained from a collection of punctured balls B_{1}, \ldots, B_{m} by successive 1 -handle attachments then $N=\mathbb{B} \# W_{1} \# \cdots \# W_{n} \# H$, for some $n \geqslant 0$.

3. Union of two balls

Suppose B_{1}, B_{2} are two punctured balls embedded in the interior of some 3-manifold with ∂B_{1} transversal to ∂B_{2}. Let $N=B_{1} \cup B_{2}$. If F is an innermost planar surface of $\partial B_{1} \cap B_{2}$, not a disk, we attach 2-handles to B_{2} (near F) to obtain a new punctured ball B_{2}^{*} so that N is homeomorphic to $B_{1} \cup B_{2}^{*}$ and the component F of $\partial B_{1} \cap B_{2}$ is replaced by a disk component \widehat{F} of $\partial B_{1} \cap B_{2}^{*}$. We call this process a 2 -handle move on B_{2} near F (see Fig. 1).

Theorem 6. Suppose B_{1}, B_{2} are two punctured balls embedded in the interior of some 3-manifold with ∂B_{1} transversal to ∂B_{2} and let $N=B_{1} \cup B_{2}$. Then $N=\mathbb{B} \# W_{1} \# \cdots \# W_{n} \# H$ for some $n \geqslant 0$.

Proof. If $\partial B_{1} \cap \partial B_{2}=\emptyset$ then Lemma 4 applies. Otherwise the components of $\partial B_{1} \cap B_{2}$ are planar surfaces.
Step 1: Suppose there is a disk component \widehat{F} of $\partial B_{1} \cap B_{2}$.
Do surgery on \widehat{F} to cut B_{2} into two punctured balls with copies \widehat{F}^{\prime} and $\widehat{F}^{\prime \prime}$ of \widehat{F} in their boundaries.
Step 2: Suppose F is an innermost planar surface of $\partial B_{1} \cap B_{2}$, not a disk.
Perform a 2 -handle move on B_{2} near F and then do step (1) on the resulting disk component \widehat{F}.

Fig. 1. A 2-handle move.

Fig. 2.
Doing steps 1 and 2 repeatedly starting with disk components of $\partial B_{1} \cap B_{2}$ and then with innermost planar components, we convert B_{2} into a collection of punctured balls \widetilde{B}_{k}. This is illustrated in Fig. 2, doing step 1 on \widehat{F}_{1} and then step 2 on F_{2}. We may ignore those \widetilde{B}_{k} 's that lie in B_{1}. Then N is obtained from B_{1} and a collection of punctured balls \widetilde{B}_{k} by successive 1 -handle attachments (in the picture first identity the two copies $\widehat{F}_{2}^{\prime}, \widehat{F}_{2}^{\prime \prime}$ of \widehat{F}_{2}, then two copies \widehat{F}_{1}^{\prime}, $\widehat{F}_{1}^{\prime \prime}$ of \widehat{F}_{1}) and the Theorem follows from Lemma 5.

4. Unions of three balls

We now prove the main theorem.
Theorem 7. If M is a closed 3-manifold that is a union of three open punctured balls then $M=\mathbb{B}$.
Proof. By Corollary 3 we may assume that ∂B_{1} is transversal to ∂B_{2} and $\partial B_{3} \subset \operatorname{int}\left(B_{1} \cup B_{2}\right)$. Then the manifold $N=B_{1} \cup B_{2}$ is as in Theorem 6 and $M=N \cup B_{3}$, with $\partial B_{3} \cap N=\emptyset$.

We represent N as

$$
N=H \cup K_{1} \cup \cdots \cup K_{m} \cup W_{1} \cup \cdots \cup W_{n}
$$

where H is a punctured ball, K_{j} is a once-punctured S^{2}-bundle over $S^{1}(j=1, \ldots, m)$ and W_{i} is a once-punctured handlebody; furthermore $K_{j} \cap K_{i}=W_{j} \cap W_{i}=\emptyset$ for $i \neq j, H \cap K_{j}=\partial H \cap \partial K_{j}=C_{j}^{\prime}$ is a 2-sphere $(j=1, \ldots, m)$ and $H \cap W_{i}=\partial H \cap \partial W_{i}=C_{i}$ is a 2 -sphere $(i=1, \ldots, n)$.

Let S_{j} be a non-separating 2 -sphere in int K_{j}. We may assume that $C_{i}, C_{j}^{\prime}, S_{j}$ are transversal to ∂B^{3}.
If $B_{3} \cap S_{j}$ consists of planar surfaces perform 2-handle moves on B_{3} and cut along disks in a regular neighborhood of S_{j} as in the proof of Theorem 6. Do the same for planar surfaces of $B_{3} \cap C_{j}^{\prime}$ and $B_{3} \cap C_{i}(j=1, \ldots, m$, $i=1, \ldots, n$).

Since $S_{j}, C_{j}^{\prime}, C_{i}$ are in int(N) this process converts B_{3} into a disjoint collection \widetilde{B}_{k} of punctured balls so that $M=N \cup \bigcup_{k} \widetilde{B}_{k}$ where $\partial \widetilde{B}_{k} \cap C_{j}^{\prime}=\partial \widetilde{B}_{k} \cap C_{i}=\partial \widetilde{B}_{k} \cap S_{j}=\emptyset$ for all k and $i=1, \ldots, n, j=1, \ldots, m$.

We now cut N along the non-separating 2-spheres S_{j} into $N^{\prime}=\widetilde{H} \cup W_{1} \cup \cdots \cup W_{n}$ where $W_{i} \cap \widetilde{H}=\partial W_{i} \cap \partial \widetilde{H}=C_{i}$ ($i=1, \ldots, n$) and let

$$
\begin{equation*}
M^{\prime}=N^{\prime} \cup \bigcup_{k} \widetilde{B}_{k}=\widetilde{H} \cup W_{1} \cup \cdots \cup W_{n} \cup \bigcup_{k} \widetilde{B}_{k} \tag{*}
\end{equation*}
$$

Note that M is obtained from M^{\prime} by identifying some 2 -spheres in ∂M^{\prime} in pairs (corresponding to the S_{j}^{\prime}).
Let $\partial W_{i}=T_{i} \cup C_{i}$. Since M is closed we have $\partial \widetilde{B}_{k} \cap T_{i}=\emptyset$ hence $\partial \widetilde{B}_{k} \subset \operatorname{int} \widetilde{H} \cup \operatorname{int} W_{i}(i=1, \ldots, m)$.
If a component S of $\partial \widetilde{B}_{k} \cap$ int W_{i} bounds a ball B in W_{i} we look at an innermost such B. Then either $\widetilde{\widetilde{B}}_{k}=B$, in which case we delete \widetilde{B}_{k} from the collection in $(*)$, or $\widetilde{B}_{k} \cap B=S$, in which case we replace \widetilde{B}_{k} in $(*)$ by $\widetilde{B}_{k} \cup B$. Thus we may assume (since handlebodies are irreducible) that each component S of $\partial \widetilde{B}_{k} \cap W_{i}$ is parallel in W_{i} to C_{i}, and we can push all components of $\bigcup_{k} \partial \widetilde{B}_{k} \cap W_{i}$ across C_{i} into int \widetilde{H} by an isotopy.

Hence we now assume that in (*) $\partial \widetilde{B}_{k} \subset$ int \widetilde{H} for all k. Since M is closed, $T_{i} \subset$ int \widetilde{B}_{k} for some k.
Let P be a point of $W_{i} \backslash T_{i}$. We join P by an arc α in W_{i} to a point Q in T_{i} such that int $\alpha \subset$ int W_{i}. Suppose P does not lie in \widetilde{B}_{k}. Then since $Q \subset \widetilde{B}_{k}$, the arc α must intersect $\partial \widetilde{B}_{k}$. This is impossible since $\alpha \subset W_{i}$ and $\partial \widetilde{B}_{k} \cap W_{i}=\emptyset$.

Hence $W_{i} \subset \widetilde{B}_{k}$ and we may delete W_{i} in (*) to obtain $M^{\prime}=\widetilde{H} \cup \cup_{k} \widetilde{B}_{k}$ as in Lemma 4 (since $\partial \widetilde{H} \cap \partial \widetilde{B}_{k}=\emptyset$). Hence $M^{\prime}=\mathbb{B} \# H$ and $M=\mathbb{B}$.

References

[1] M. Clapp, D. Puppe, Invariants of the Lusternik-Schnirelmann type and the topology of critical sets, Trans. Amer. Math. Soc. 298 (1986) 603-620.
[2] J. Dugundji, Topology, Allyn and Bacon, 1967.
[3] J.C. Gómez-Larrañaga, F. González-Acuña, Lusternik-Schnirelmann category of 3-manifolds, Topology 31 (1992) 791-800.
[4] J.C. Gómez-Larrañaga, F. González-Acuña, W.H. Heil, 3-manifolds that are covered by two open Bundles, Bol. Soc. Mat. Mexicana (3) 10 (2004) (special issue).
[5] J.C. Gómez-Larrañaga, F. González-Acuña, W.H. Heil, 3-manifolds with S^{1}-category 2, in preparation.
[6] J.C. Gómez-Larrañaga, W.H. Heil, Seifert unions of solid tori, Math. Z. 240 (4) (2002) 767-785.
[7] V. Guillemin, A. Pollack, Differential Topology, Prentice-Hall, 1974.
[8] J. Hempel, D.R. McMillan, Covering three-manifolds with open cells, Fund. Math. 64 (1969) 99-104.

[^0]: * Corresponding author.

 E-mail addresses: jcarlos@cimat.mx (J.C. Gómez-Larrañaga), fico@math.unam.mx (F. González-Acuña), heil@math.fsu.edu (W. Heil).

