

Topology and its Applications 154 (2007) 1363–1367

Topology and its Applications

www.elsevier.com/locate/topol

A note on Hempel-McMillan coverings of 3-manifolds

J.C. Gómez-Larrañaga a, F. González-Acuña b, Wolfgang Heil c,*

^a Centro de Investigación en Matemáticas, AP 402, Guanajuato 36000, Gto. México, Mexico
 ^b Instituto de Matemáticas, UNAM, Ciudad Universitaria, 04510 México DF, Mexico
 ^c Department of Mathematics, Florida State University, Tallahasee, FL 32306, USA

Received 1 August 2005; received in revised form 11 April 2006; accepted 11 April 2006

Abstract

Motivated by the concept of A-category of a manifold introduced by Clapp and Puppe, we give a different proof of a (slightly generalized) Theorem of Hempel and McMillan: If M is a closed 3-manifold that is a union of three open punctured balls then M is a connected sum of S^3 and S^2 -bundles over S^1 .

© 2006 Published by Elsevier B.V.

MSC: 57M27

Keywords: Lusternik-Schnirelmann category; Coverings of 3-manifolds with special open subsets

1. Introduction

The concept of an A-category of a manifold was introduced in [1]. A special case of this concept for a closed, connected 3-manifold M is as follows: Let A be a point, a 1-sphere S^1 , a 2-sphere S^2 , a projective plane P^2 , a 2-dimensional torus T^2 , or a 2-dimensional Klein bottle K^2 . An open set C of M is A-categorical if there exist maps $\phi: C \to A$ and $\rho: A \to M$ such that the inclusion map $\iota: C \to M$ is homotopic to $\rho \cdot \phi$.

The A-category of M, A-cat(M) is the minimal number of A-categorical open sets that cover M. When A is a point, the A-category of M is the classical Lusternik–Schnirelmann category cat(M) of M. This invariant was studied in [3]. In a forthcoming paper [5] we will study the case $A = S^1$.

In order to better understand the A-category invariant we start by studying what we will call the "Hempel–McMillan" coverings of 3-manifolds. These are coverings of M by the interiors of given I^k -bundles over a fixed A, where $k + \dim(A) = 3$. When A is a point then this is a covering of M by open balls. It is well known that if M is covered by two balls then $M = S^3$ (see e.g. [4]) and the existence of a Heegaard-splitting shows that every M can be covered by four open balls. Hempel and McMillan [8] proved that if M is covered by three open balls, then M is a connected sum of finitely many S^2 -bundles over S^1 . Up to the Poincarè Conjecture the same is true for cat(M) [3].

When A is as above the manifolds covered by the interiors of two I^k -bundles were classified in [4]. In order to study the classification of 3-manifolds covered by three sets of this type, we start with the case that A is a point or S^2

E-mail addresses: jcarlos@cimat.mx (J.C. Gómez-Larrañaga), fico@math.unam.mx (F. González-Acuña), heil@math.fsu.edu (W. Heil).

^{*} Corresponding author.

and give in this paper a new proof of (a generalized) Hempel–McMillan Theorem, which possibly can be adapted to classify manifolds M covered by three open I^k -bundles over S^1 , P^2 , T^2 , or K^2 .

2. Preliminaries

We first establish a corollary that allows us to work in the pl-category.

The following lemma is well known (see e.g. [2, Chapter VII, Theorem 6.1]) and easy to prove:

Lemma 1. If $\{U_1, \ldots, U_m\}$ is an open cover of the normal space X, then there is a closed cover $\{C_1, \ldots, C_m\}$ of X with $C_i \subset U_i$ $(i = 1, \ldots, m)$.

Lemma 2. Let M^n , W_1, \ldots, W_m be smooth compact n-manifolds with M^n closed. Let $\{U_1, \ldots, U_m\}$ be an open cover of M^n with U_i diffeomorphic to int W_i $(i = 1, \ldots, m)$. Then there exist smooth embeddings $f_i : W_i \to M^n$ such that

- (1) $\bigcup_{i=1}^{m} \operatorname{int} f_i(W_i) = M^n$ and
- (2) $f_i(\partial W_i)$ is transversal to $\bigcap_{i \le i} f_i(\partial W_i)$ for i = 2, ..., m.

Proof. By Lemma 1 there exist C_1, \ldots, C_m compact with $C_i \subset U_i$ $(i = 1, \ldots, m)$ and $\bigcup_{i=1}^m C_i = M^n$. For each i there are submanifolds of U_i diffeomorphic to W_i and with interior containing C_i . Let $f_1: W_1 \to U_1$ be a smooth embedding with $C_1 \subset \inf f_1(W_1)$.

Suppose that inductively we have defined for $i=1,\ldots,k$ smooth embeddings $f_i:W_i\to U_i$ with $C_i\subset\inf f_i(W_i)$ and such that (2) holds. Then, if k< m, by the Transversality Theorem and the Stability Theorem for embeddings [7, p. 68, p. 35(e), respectively] there exists an embedding $f_{k+1}:W_{k+1}\to U_{k+1}$ with $C_{k+1}\subset\inf f_{k+1}(W_{k+1})$ such that (2) holds, completing the inductive construction of the f_i . Note that (1) holds also since $C_i\subset\inf f_i(W_i)$, $i=1,\ldots,m$. \square

Remark. The second condition is equivalent to the following:

If $x \in f_{i_1}\partial(W_{i_1}) \cap f_{i_2}\partial(W_{i_2}) \cap \cdots \cap f_{i_r}\partial(W_{i_r})$ with $i_1 < i_2 < \cdots < i_r, r \geqslant 2$, and if $n_{i_j}(x)$ is a nonzero vector of $T_x(M^n)$ perpendicular to the tangent space of $f_{i_j}\partial(W_{i_j})$ at x (j = 1, ..., r), then $n_{i_1}(x), n_{i_2}(x), ..., n_{i_r}(x)$ are linearly independent.

In particular, for m = 3, we obtain the following

Corollary 3. Suppose M is a closed 3-manifold covered by three open sets H_1 , H_2 , H_3 , such that H_i is homeomorphic to the interior of a compact connected 3-manifold V_i (i=1,2,3). Then M admits a covering $M=V_1\cup V_2\cup V_3$ such that ∂V_1 is transversal to ∂V_2 , and $\partial V_3\subset \operatorname{int}(V_1\cup V_2)$, and V_1 , V_2 , V_3 are P0 embedded.

We will use the following notations throughout this paper:

 \mathbb{B} denotes a connected sum of S^3 and S^2 -bundles over S^1 (with finitely many factors);

H or H_i denotes a punctured ball with finitely many punctures (possibly no punctures);

W or W_i denotes a handlebody (orientable or non-orientable).

By an *n*-times punctured M we mean a manifold obtained from M by removing interiors of n disjoint balls in int(M). We allow n = 0. Note that a connected punctured M = M # H, for some punctured ball H.

By an open punctured ball we mean a manifold homeomorphic to an open ball with a finite number of points removed.

Lemma 4. Suppose N is a connected 3-manifold that is a union of punctured balls B_1, \ldots, B_n such that $\partial B_i \cap \partial B_j = \emptyset$ for $i \neq j$, then $N = \mathbb{B} \# H$.

Proof. For a fixed index i $(1 \le i \le n)$ the collection of 2-spheres $(\partial B_1 \cup \cdots \cup \partial B_n) \cap \operatorname{int} B_i$ cuts B_i into punctured balls $B_{i_1}, \ldots, B_{i_{n_i}}$. Now N is obtained from a collection of punctured balls by identifying (some) boundary spheres in pairs. The result follows. \square

A 3-manifold N is obtained from a collection of 3-manifolds N_1, \ldots, N_n by successive 1-handle attachments if we start by attaching a 1-handle to $N_1 \cup \cdots \cup N_n$ (either to one component N_i or two components N_i, N_j) and then successively repeat attaching 1-handles to the resulting collections of 3-manifolds (a finite number of times).

The following lemma is easily proved by induction on the number of 1-handle attachments (see e.g. [6, Lemma 2(a)]).

Lemma 5. If N is a connected 3-manifold obtained from a collection of punctured balls B_1, \ldots, B_m by successive 1-handle attachments then $N = \mathbb{B} \# W_1 \# \cdots \# W_n \# H$, for some $n \ge 0$.

3. Union of two balls

Suppose B_1 , B_2 are two punctured balls embedded in the interior of some 3-manifold with ∂B_1 transversal to ∂B_2 . Let $N = B_1 \cup B_2$. If F is an innermost planar surface of $\partial B_1 \cap B_2$, not a disk, we attach 2-handles to B_2 (near F) to obtain a new punctured ball B_2^* so that N is homeomorphic to $B_1 \cup B_2^*$ and the component F of $\partial B_1 \cap B_2$ is replaced by a disk component \widehat{F} of $\partial B_1 \cap B_2^*$. We call this process a 2-handle move on B_2 near F (see Fig. 1).

Theorem 6. Suppose B_1 , B_2 are two punctured balls embedded in the interior of some 3-manifold with ∂B_1 transversal to ∂B_2 and let $N = B_1 \cup B_2$. Then $N = \mathbb{B} \# W_1 \# \cdots \# W_n \# H$ for some $n \ge 0$.

Proof. If $\partial B_1 \cap \partial B_2 = \emptyset$ then Lemma 4 applies. Otherwise the components of $\partial B_1 \cap B_2$ are planar surfaces.

Step 1: Suppose there is a disk component \widehat{F} of $\partial B_1 \cap B_2$.

Do surgery on \widehat{F} to cut B_2 into two punctured balls with copies \widehat{F}' and \widehat{F}'' of \widehat{F} in their boundaries.

Step 2: Suppose F is an innermost planar surface of $\partial B_1 \cap B_2$, not a disk.

Perform a 2-handle move on B_2 near F and then do step (1) on the resulting disk component \widehat{F} .

Fig. 1. A 2-handle move.

Fig. 2.

Doing steps 1 and 2 repeatedly starting with disk components of $\partial B_1 \cap B_2$ and then with innermost planar components, we convert B_2 into a collection of punctured balls \widetilde{B}_k . This is illustrated in Fig. 2, doing step 1 on \widehat{F}_1 and then step 2 on F_2 . We may ignore those \widetilde{B}_k 's that lie in B_1 . Then N is obtained from B_1 and a collection of punctured balls \widetilde{B}_k by successive 1-handle attachments (in the picture first identity the two copies \widehat{F}_2' , \widehat{F}_2'' of \widehat{F}_2 , then two copies \widehat{F}_1' , \widehat{F}_1'' of \widehat{F}_1) and the Theorem follows from Lemma 5. \square

4. Unions of three balls

We now prove the main theorem.

Theorem 7. If M is a closed 3-manifold that is a union of three open punctured balls then $M = \mathbb{B}$.

Proof. By Corollary 3 we may assume that ∂B_1 is transversal to ∂B_2 and $\partial B_3 \subset \operatorname{int}(B_1 \cup B_2)$. Then the manifold $N = B_1 \cup B_2$ is as in Theorem 6 and $M = N \cup B_3$, with $\partial B_3 \cap N = \emptyset$.

We represent N as

$$N = H \cup K_1 \cup \cdots \cup K_m \cup W_1 \cup \cdots \cup W_n$$

where H is a punctured ball, K_j is a once-punctured S^2 -bundle over S^1 $(j=1,\ldots,m)$ and W_i is a once-punctured handlebody; furthermore $K_j \cap K_i = W_j \cap W_i = \emptyset$ for $i \neq j$, $H \cap K_j = \partial H \cap \partial K_j = C'_j$ is a 2-sphere $(j=1,\ldots,m)$ and $H \cap W_i = \partial H \cap \partial W_i = C_i$ is a 2-sphere $(i=1,\ldots,n)$.

Let S_j be a non-separating 2-sphere in int K_j . We may assume that C_i , C'_j , S_j are transversal to ∂B^3 .

If $B_3 \cap S_j$ consists of planar surfaces perform 2-handle moves on B_3 and cut along disks in a regular neighborhood of S_j as in the proof of Theorem 6. Do the same for planar surfaces of $B_3 \cap C'_j$ and $B_3 \cap C_i$ (j = 1, ..., m, i = 1, ..., n).

Since S_j , C'_j , C_i are in int(N) this process converts B_3 into a disjoint collection \widetilde{B}_k of punctured balls so that $M = N \cup \bigcup_k \widetilde{B}_k$ where $\partial \widetilde{B}_k \cap C'_j = \partial \widetilde{B}_k \cap C_i = \partial \widetilde{B}_k \cap S_j = \emptyset$ for all k and i = 1, ..., n, j = 1, ..., m.

We now cut N along the non-separating 2-spheres S_j into $N' = \widetilde{H} \cup W_1 \cup \cdots \cup W_n$ where $W_i \cap \widetilde{H} = \partial W_i \cap \partial \widetilde{H} = C_i$ (i = 1, ..., n) and let

$$M' = N' \cup \bigcup_{k} \widetilde{B}_{k} = \widetilde{H} \cup W_{1} \cup \dots \cup W_{n} \cup \bigcup_{k} \widetilde{B}_{k}$$

$$(*)$$

Note that M is obtained from M' by identifying some 2-spheres in $\partial M'$ in pairs (corresponding to the S'_i).

Let $\partial W_i = T_i \cup C_i$. Since M is closed we have $\partial \widetilde{B}_k \cap T_i = \emptyset$ hence $\partial \widetilde{B}_k \subset \operatorname{int} \widetilde{H} \cup \operatorname{int} W_i$ (i = 1, ..., m).

If a component S of $\partial \widetilde{B}_k \cap \operatorname{int} W_i$ bounds a ball B in W_i we look at an innermost such B. Then either $\widetilde{B}_k = B$, in which case we delete \widetilde{B}_k from the collection in (*), or $\widetilde{B}_k \cap B = S$, in which case we replace \widetilde{B}_k in (*) by $\widetilde{B}_k \cup B$. Thus we may assume (since handlebodies are irreducible) that each component S of $\partial \widetilde{B}_k \cap W_i$ is parallel in W_i to C_i , and we can push all components of $\bigcup_k \partial \widetilde{B}_k \cap W_i$ across C_i into int \widetilde{H} by an isotopy.

Hence we now assume that in (*) $\partial \widetilde{B}_k \subset \operatorname{int} \widetilde{H}$ for all k. Since M is closed, $T_i \subset \operatorname{int} \widetilde{B}_k$ for some k.

Let P be a point of $W_i \setminus T_i$. We join P by an arc α in W_i to a point Q in T_i such that int $\alpha \subset \operatorname{int} W_i$. Suppose P does not lie in \widetilde{B}_k . Then since $Q \subset \widetilde{B}_k$, the arc α must intersect $\partial \widetilde{B}_k$. This is impossible since $\alpha \subset W_i$ and $\partial \widetilde{B}_k \cap W_i = \emptyset$.

Hence $W_i \subset \widetilde{B}_k$ and we may delete W_i in (*) to obtain $M' = \widetilde{H} \cup \bigcup_k \widetilde{B}_k$ as in Lemma 4 (since $\partial \widetilde{H} \cap \partial \widetilde{B}_k = \emptyset$). Hence $M' = \mathbb{B} \# H$ and $M = \mathbb{B}$. \square

References

- [1] M. Clapp, D. Puppe, Invariants of the Lusternik–Schnirelmann type and the topology of critical sets, Trans. Amer. Math. Soc. 298 (1986) 603–620
- [2] J. Dugundji, Topology, Allyn and Bacon, 1967.
- [3] J.C. Gómez-Larrañaga, F. González-Acuña, Lusternik-Schnirelmann category of 3-manifolds, Topology 31 (1992) 791-800.
- [4] J.C. Gómez-Larrañaga, F. González-Acuña, W.H. Heil, 3-manifolds that are covered by two open Bundles, Bol. Soc. Mat. Mexicana (3) 10 (2004) (special issue).
- [5] J.C. Gómez-Larrañaga, F. González-Acuña, W.H. Heil, 3-manifolds with S¹-category 2, in preparation.
- [6] J.C. Gómez-Larrañaga, W.H. Heil, Seifert unions of solid tori, Math. Z. 240 (4) (2002) 767-785.
- [7] V. Guillemin, A. Pollack, Differential Topology, Prentice-Hall, 1974.
- [8] J. Hempel, D.R. McMillan, Covering three-manifolds with open cells, Fund. Math. 64 (1969) 99-104.