Please use this identifier to cite or link to this item: http://cimat.repositorioinstitucional.mx/jspui/handle/1008/586
Global and Nonglobal Solutions of a System of Nonautonomous Semilinear Equations with Ultracontractive Lévy Generators
JOSE ALFREDO LOPEZ MIMBELA
Acceso Abierto
Atribución-NoComercial
Procesos de Levy
We consider a semilinear system of the form @ui(t; x)=@t = k(t)Aui(t; x) + ui i0 (t; x), with Dirichlet boundary conditions on a bounded open set D Rd, where k : [0;1) ! [0;1) is continuous, A is the initesimal generator of a symmetric Levy process Z fZ(t)gt0, i > 1, i 2 f1; 2g and i0 = 3 􀀀 i. We give conditions on D and on the Levy measure of Z under which our system possesses global positive solutions, or exhibits blow up in fnite time. Our approach is based on the intrinsic ultracontractivity property of the semigroup generated by the process Z killed on leaving D.
Centro de Investigación en Matemáticas AC
20-05-2014
Reporte
Inglés
Investigadores
PROCESOS ESTOCÁSTICOS
Versión publicada
publishedVersion - Versión publicada
Appears in Collections:Reportes Técnicos - Probabilidad y Estadística

Upload archives


File SizeFormat 
I-14-02.pdf1.69 MBAdobe PDFView/Open