Please use this identifier to cite or link to this item:
http://cimat.repositorioinstitucional.mx/jspui/handle/1008/586
Global and Nonglobal Solutions of a System of Nonautonomous Semilinear Equations with Ultracontractive Lévy Generators | |
JOSE ALFREDO LOPEZ MIMBELA | |
Acceso Abierto | |
Atribución-NoComercial | |
Procesos de Levy | |
We consider a semilinear system of the form @ui(t; x)=@t = k(t)Aui(t; x) + ui i0 (t; x), with Dirichlet boundary conditions on a bounded open set D Rd, where k : [0;1) ! [0;1) is continuous, A is the initesimal generator of a symmetric Levy process Z fZ(t)gt0, i > 1, i 2 f1; 2g and i0 = 3 i. We give conditions on D and on the Levy measure of Z under which our system possesses global positive solutions, or exhibits blow up in fnite time. Our approach is based on the intrinsic ultracontractivity property of the semigroup generated by the process Z killed on leaving D. | |
Centro de Investigación en Matemáticas AC | |
20-05-2014 | |
Reporte | |
Inglés | |
Investigadores | |
PROCESOS ESTOCÁSTICOS | |
Versión publicada | |
publishedVersion - Versión publicada | |
Appears in Collections: | Reportes Técnicos - Probabilidad y Estadística |
Upload archives
File | Size | Format | |
---|---|---|---|
I-14-02.pdf | 1.69 MB | Adobe PDF | View/Open |