Por favor, use este identificador para citar o enlazar este ítem: http://cimat.repositorioinstitucional.mx/jspui/handle/1008/529
Contributions on Non–Asymptotic Singularity of Random Matrices and on Backbend Percolation
PAULO CESAR MANRIQUE MIRON
Acceso Abierto
Atribución-NoComercial
Matrices Aleatorias
The main purpose of this thesis is the study of invertibility of unstructured and structured random matrices, which have been intensively investigated for at least five decades. Chapter 2 contains a brief introduction to the problem of the singularity of random matrices. Chpater 3 presents the main probabilistic tools to prove that Ginibre and Wigner matrices are invertible with hihg probability. Chapter 4 presents some of the main results in this thesis. Theorem 13 in this chapter establishes the universality rate of the probability of non--singularity of the Ginibre and Wigner matrices. Chpater 5 contains another set of the main contributions in this thesis, Theorem 14 in this chapter determines the behavior of the minimum singular value of a circulant random matrix whose entries have moment generating functions. For our proof of Theorem 14, it is used a remarkable result about the roots of a random polynomial. Finally, Chapter 6 is about our contributions on backbend percolation.
09-02-2017
Tesis de doctorado
OTRAS
Versión aceptada
acceptedVersion - Versión aceptada
Aparece en las colecciones: Tesis del CIMAT

Cargar archivos:


Fichero Descripción Tamaño Formato  
TE 611.pdf735.19 kBAdobe PDFVisualizar/Abrir