Por favor, use este identificador para citar o enlazar este ítem:
http://cimat.repositorioinstitucional.mx/jspui/handle/1008/529
Contributions on Non–Asymptotic Singularity of Random Matrices and on Backbend Percolation | |
PAULO CESAR MANRIQUE MIRON | |
Acceso Abierto | |
Atribución-NoComercial | |
Matrices Aleatorias | |
The main purpose of this thesis is the study of invertibility of unstructured and structured random matrices, which have been intensively investigated for at least five decades. Chapter 2 contains a brief introduction to the problem of the singularity of random matrices. Chpater 3 presents the main probabilistic tools to prove that Ginibre and Wigner matrices are invertible with hihg probability. Chapter 4 presents some of the main results in this thesis. Theorem 13 in this chapter establishes the universality rate of the probability of non--singularity of the Ginibre and Wigner matrices. Chpater 5 contains another set of the main contributions in this thesis, Theorem 14 in this chapter determines the behavior of the minimum singular value of a circulant random matrix whose entries have moment generating functions. For our proof of Theorem 14, it is used a remarkable result about the roots of a random polynomial. Finally, Chapter 6 is about our contributions on backbend percolation. | |
09-02-2017 | |
Tesis de doctorado | |
OTRAS | |
Versión aceptada | |
acceptedVersion - Versión aceptada | |
Aparece en las colecciones: | Tesis del CIMAT |
Cargar archivos:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
TE 611.pdf | 735.19 kB | Adobe PDF | Visualizar/Abrir |