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Chapter 1

Introduction

The main purpose of this thesis is the study of invertibility of unstructured and structured random
matrices, which have been intensively investigated for at least five decades. One of the oldest
references where the problem is mentioned goes back to 1964 in the work of Erdös and Rényi
[23], and its pioneering study is found in the work by Komlós [39] in 1967. The problem of the
singularity of random matrices arises in several areas of mathematics and its applications, such
as the circular law [9], [29], compressed sensing [60], geometric functional analysis [59], [60], [75],
smoothed analysis of algorithms [66], [67], and statistics [74],[60], among others.

Additionally, we include in this thesis a chapter with contributions on a different problem in
backbend percolation, which was also worked as part of the PhD studies.

With regard to the singularity of random matrices, we consider the following random matrix
models:

• Ginibre matrix: An n×n matrix (ξi,j)1≤i,j≤n is called a Ginibre matrix if ξi,j , i, j = 1, . . . , n
are independent random variables. It is an unstructured random matrix with n2 independent
entries.

• Wigner matrix: An n × n symmetric matrix (ξi,j)1≤i,j≤n is called a Wigner matrix if
ξi,j , 1 ≤ i ≤ j ≤ n are independent random variables. It is a structured random matrix with
n(n+ 1)/2 independent entries.

• Circulant random matrix: An n×nmatrix (ξi,j)1≤i,j≤n is called a circulant random matrix
if ξi,j = ξ1,j−i+1, where the subscripts are reduced modulo n and lie in the set {1, 2, . . . , n},
and the entries in the first row are independent random variables. It is a structured random
matrix with n independent entries.

When these matrices have entries with continuous distributions, we have that they are invertible
with probability one. But if the entries have discrete distributions, it is not immediate that they
are invertible. This poses the question of what are the features of the discrete distributions that
determine the invertibility of these models with high probability. Another question is how the
singularity of random matrices depends on the number of independent random entries used in the
construction of these matrices.

In the case of Ginibre matrices, Komlós [39] first considered a Ginibre matrix GB(n, 1/2)
whose entries are Bernoulli random variables, taking the values 0 or 1 with probability 1/2. Using
a very clever “growing rank analysis” together with the Littlewood–Offord inequality (which is
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8 CHAPTER 1. INTRODUCTION

a concentration inequality1), Komlós proved that P {rank(GB(n, 1/2)) < n} = o(1) as n → ∞.
Bollobás [8] presented an unpublished result due to Komlós about the rate of the probability of
the singularity of GB(n, 1/2). Employing the concept of “strong rank” and the Littlewood–Offord
inequality viz, Bollobás mentioned that P {rank(GB(n, 1/2)) < n} = O(n−1/2) as n → ∞. Komlós
[40] was also the first to consider the singularity of a Ginibre matrix whose entries have a common
arbitrary non-degenerate distribution, proving that the probability that such an n × n matrix is
singular has order o(1) as n → ∞. This result was improved by Kahn, Komlós and Szemerédi [31]
in the case of Ginibre matrices whose entries are i.i.d. taking the values −1 or 1 with probability
1/2, showing that the probability of singularity is bounded above by θn for θ = .999. The value of
θ has been improved by Tao and Vu [69], [70] to θ = 3/4+ o(1) and by Bourgain, Vu and Wood [5]
to θ = 1/

√
2 + o(1). Slinko [65] considered Ginibre random matrices whose entries have the same

uniform distribution taking values in a finite set, proving also that the probability of singularity is
O(n−1/2) as n → ∞.

In the Wigner matrix case, the study of singularity was initiated by Costello, Tao and Vu [11],
inspired by the work of Komlós [39]. They considered a Wigner matrix whose upper diagonal entries
ξi,j have Bernoulli distribution on {0, 1} with parameter 1/2, and showed that P {rank(Wn)) < n} =
O(n−1/8+α), for any positive constant α, where the implicit constant in O(·) depends on α. They
needed first to develop a quadratic Littlewood–Offord inequality, which is a concentration inequality
for random quadratic forms. Nguyen [50] considered a Wigner matrix Wn with entries taking the
values −1 or 1 with probability 1/2, subject to the condition that each row has exactly ⌊n/2⌋ entries
which are zero. He showed that the probability of Wn being singular is O(n−C), for any positive
constant C, and the implicit constant in O(·) depends on C. Vershynin [75] has considered the case
of a Wigner matrix Wn whose entries satisfy the following property: the above-diagonal entries
are independent and identically distributed with zero mean, unit variance, and are sub-Gaussian,
while the diagonal entries satisfy ξii ≤ K

√
n for some constant K. He showed that the probability

of Wn being singular is bounded above by 2 exp(−nc), where c depends only on the sub-Gaussian
distribution and on K.

The previous results assume some restrictions on the distribution of the entries of the Ginibre
or Wigner matrices. One of the first contributions of this thesis is to show that under the weaker
conditions that the entries are non-degenerate independent random variables, not necessarilly with
equal distribution or moments, and such that the maximum jumps of their distributions are bounded
by a number less than one (see Theorem 13 in Chapter 4), then the probability that the Ginibre or
Wigner matrices are singular decreases to zero at least polynomially. Actually, in our investigation
we establish universal rates of convergence and precise estimates for the probability of singularity
of Ginibre and Wigner matrices, which depend only on the size of the maximum jumps of the
distributions of the entries.

One of the main probability tools to prove that Ginibre and Wigner random matrices are invert-
ible with high probability has been Levy’s concentration function, which measures the maximum
probability that a random variable lies in an interval. The problem of estimating the maximum
probability that a linear combination of independent random variables belongs to a ball with given
small radious is generally known as Small Ball Probabilities [51]. In 1943, Littlewood and Offord,
in conection with their studies of random polynomials, estimated the small ball probability for
a linear combination of Rademacher independent random variables [44]. Erdös studied the same
case as Littlewood and Offord, but he analyzed the problem from a combinatorial point of view
[22]. The small ball probabilty phenomenon was also studied in probability by Kolomogorov [37],
[38], Rogozin [57], and others, and recently by Tao and Vu [72]. For the general assumptions we

1Some authors use the term “anti-concentration” instead “concentration.”
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consider in this work, we need first to establish an appropriate concentration inequality for a linear
combination of independent random variables (linear Littlewood–Offord inequality) which is used
in the Ginibre case. A suitable concentration inequality for a random quadratic form (quadratric
Littlewood–Offord inequality) is also proved, which is used in the Wigner case. In both cases, we
clearly exhibit the role of the maximum jumps of the distributions in these concentration inequal-
ities.

Our Theorem 13 also handles the case when the entries of the Ginibre or Wigner matrices
depend on the dimension of the matrix. This kind of random matrices appear in the study of
random graphs [12], sparse matrices [13], [20], and some other models that have recently been
extensively considered, like the so-called generalized, universal and banded Wigner ensembles [21],
[64] among other works. See also the non i.i.d. Wigner case in, for example, [2, pp 26].

As another example where random matrices possess identifiable properties without moment
assumptions, we have that a Ginibre matrix has large rank with exponentially small probability.
Namely, let A be an n × n Ginibre matrix. Suppose that all the entries ξi,j of A are random
variables with different distributions, satisfying the following condition: for some ς ∈ (0, 1)

sup
x∈R

P{ξi,j = x} ≤ ς.

Then for all δ ∈ (0, 1), we have

P (rank(A) < δn) < Cnς(1−δ)2n2
,

for some suitable constant C > 0 which depends possibly on ς. This simple statement2 shows that
under weaker conditions, random matrices have “good qualities.”

It is notable that if one considers the minimum singular value of a rectangular random matrix, we
can see a similar phenomenon for the probability of the singularity of Ginibre and Wigner random
matrices without moment assumptions. For a strictly rectangular matrix with i.i.d. random entries
without moment assumptions, it was recently found by Tikhomirov [73] that the probability that
its minimum singular value is large goes to one exponentially. For square matrices, estimating the
minimum singular value (known also as the hard edge of spectrum) has been considerably more
difficult [74].

Recall that if A is an n × n matrix with real or complex entries, the singular values3 sk(A),
k = 1, . . . , n of A are the eigenvalues of |A| =

√
A∗A arranged in non-increasing order.

Note sn(A) > 0 if and only if A is not singular, moreover sn(A) measures the distance of A to
the set of singular matrices. The study of extreme singular values are interesting since, for example,
they control the distortion of a Euclidean geometry under the action of the linear transformation
A: the distance between any two points can increase by at most the factor s1(A) and decrease by at
least the factor sn(A). The extreme singular values are clearly related to the operator norm of the
linear operators A and A−1 acting between Euclidean spaces: s1(A) = ∥A∥ and if A is invertible,
then sn(A) = 1/∥A−1∥. In numerical linear algebra, the condition number κn(A) := s1(A)/sn(A)
frequently serves as a measure of the stability of a matrix algorithm [60].

When A is a Ginibre matrix, one has, e.g., if its entries have sub-Gaussian moments with some
additional weak assumptions, that for every ε ≥ 0

P(sn(A)) ≤ εn−1/2) ≤ Cε+ cn, (1.1)

where C > 0 and c ∈ (0, 1) depend on the sub-Gaussian moments [61]. Note that if ε ̸= 0, the

2The idea of how to prove this statement is found in Lemma 13 in Chapter 4.
3This notation can be extended to rectangular matrices.
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previous probabilities are not decreasing exponentially fast. If A is a Wigner random matrix, one
has the same result as that in the expression (1.1) [75].

A second set of main contributions of this thesis is about the minimum singular value of a
circulant random matrix. This n × n random matrix has a strong structure (great dependencies
among the entries) since it can use at most n independent random variables. First, a result similar
to (1.1) is obtained. Our approch to prove this new result for a circulant random matrix is different
of the one used for Ginibre and Wigner matrices in [10], [61], [75], where they use the advantage
that all or more than half of the entries are independent random variables.

Circulant matrices play a crucial role in the study of large-dimensional Toeplitz matrices. The
study of random Toeplitz matrices is a relatively new field of research. The question of establishing
the limiting spectral distribution of random Toeplitz matrices with independent entries was first
posed in the review paper by Bai [1]. Bose, Subhra and Saha [6], [7], studied the probabilistic
properties of the spectral norm (maximum singular value) of the scaled eigenvalues of circulant
matrices. Sen and Virág [62] used circulant matrices to study the maximum singular value of a
random symmetric Toeplitz matrix. Meckes [48], [49], who also studied the maximum singular value
of symmetric Toeplitz matrices, was the first to give an estimate of the probability that a circulant
random matrix is singular when its entries are Rademacher independent random variables, and he
posed the problem of estimating the minimum singular value of a circulant random matrix.

For the study of the singularity of a circulant random matrix in this thesis, we use a remarkable
relation among circulant random matrices and random polynomials. More specifically, the eigen-
values of a circulant matrix are the values that a certain polynomial takes on the roots of unity. A
classic result in the theory of random polynomials says that the roots of a random polynomial are
concentrated in the unit circle when the degree of the polynomial goes to infinity with probability
one [4]. We show in Theorem 15 in Chapter 5 how the roots of a random polynomial move towards
the unit circle at a certain speed, which implies that the minimum singular value is different from
zero with high probability. Many results on the roots of random polynomials are about the behav-
ior of the empirical distribution of the roots [4], [27], [63] without treating the speed with which
the roots move towards the unit circle. Actually, the only references that we could find about the
minimum value of a random polynomial on the unit circle were [34] and [42]. But in [34] there
was no proof. Our Theorem 15 follows closely the ideas in [42]. In the proof of Theorem 15, we
can extend the classic Salem–Zygmund’s inequality for trigonometric random polynomial with i.i.d.
coefficients, such that they have moment generating function. Actually, we show that a random
variable ξ with E (ξ) = 0, E

(
ξ2
)
= σ2 > 0, and moment generating function Mξ(t) for |t| < ∆ is

locally sub-Gaussian random variable, i.e., there is ∆ ≥ δ > 0 such that Mξ(t) ≤ eγt
2/2 for |t| < δ

and γ > σ2.
Theorem 14 in Chapter 5 establishes that the mininum singular value sn(Cn) of an n×n circulant

random matrix Cn whose entries have moment generating functions has the property that for all
ε > 0 and for all large n, P(sn(Cn) ≥ εn−1/2) ≥ 1 − Cε. This expression is similar to (1.1). This
similitude was unexpected to the author since despite the large amount of dependency that exists
among the entries, the minimum singular value of circulant matrices is roughly speaking similar as
in the Ginibre and Wigner cases considered in [29], [75], also under some moment assumptions.

When the dimension of a circulant random matrix is a prime number, we can estimate the prob-
ability of its singularity when its entries have general distribution, without moment assumptions.
Theorem 16 in Chapter 5 shows that a circulant random matrix with prime dimension is invertible
with hign probability.

As a final contribution on circulant random matrices, we investigate the singularity phenomenon
in g-circulant random matrices, which is a generalization of circulant matrices, with the same strong
dependence among its entries. The g-circulant matrices have been an active research field of applied
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mathematics and computational mathematics [6], [7], [76]. There are many examples from statistics
and information theory that illustrate applications of g-circulant matrices [76].

As a third and final set of contributions of this thesis, we include some results on backbend
percolation that were also part of the PhD work of the author, which is different from the subject
of random matrices. Backbend percolation is a generalization of oriented percolation by Durrett
in [18], and was introduced by Roy, Sarkar and White [58]. Backbend model considers a path as
defined in [18], with the diference that the path is allowed to go down until some depth b. We
show that there exists a critical probability of this model as in oriented percolation, and we also
study properties of the backbend model and similarities and diferences with unoriented percolation
in two dimensions. Specifically, we establish the critical probability in terms of the “slope” of
the right edge process. Our approach follows the ideas in [18], however the dependency inherent
in the backbend model unlike in oriented percolation requieres a different analysis. Indeed, in
oriented percolation the right edge process is built from independent random variables, while in
our backbend model the right edge process is made from dependent random variables.

The remainder of this thesis is structured as follows.

• Chapter 2 contains a brief introduction to the problem of the singularity of random matrices.
Section 2.2 mentions the singularity problem over finite fields and its differences from matrices
over R or C. Section 2.3 shows that some kind of models of random matrices are invertible
with probability one when some of their entries have continuous distributions. Section 2.4
presents a result about the minimum singular value of a Ginibre matrix with i.i.d. entries,
which was used in the proof of the circular law by Götze and Tikhomirov [29], with the goal
of exemplifying the techniques used to analyze it.

• Chapter 3 presents the main probabilistic tools to prove that Ginibre and Wigner matrices
are invertible with high probability. Section 3.2 introduces the notion of Levy’s concen-
tration function of a random variable. Section 3.3 presents our concentration inequalities
for sums of random variables. This section includes: Theorem 11, which establishes a gen-
eral concetration inequality for a linear combination of independent random variables (linear
Littlewood–Offord inequality), and Theorem 12, which gives a general concentration inequal-
ity for random quadratic forms (quadratic Littlewood–Offord inequality).

• Chapter 4 presents some of the main results in this thesis. Sections 4.2 contains Theorem 13
where is established the universality rate of the probability of non-singularity of the Ginibre
and Wigner matrices, for n large. Also, it is given an application of Theorem 13.b to Erdö-
Rényi. Section 4.3 gives the proof of Theorem 13 for the case of the Ginibre matrices. The
principal tools used for the Ginibre case are a suitable linear Littlewood–Offord inequality
and the concept of “strong rank.” Section 4.4 gives the proof of Theorem 13 for the case
of Wigner matrices. The main tools used for the Wigner case are an appropiate quadratic
Littlewood–Offord inequality and a slightly different concept of strong rank.

• Chapter 5 contains another set of the main contributions in this thesis. In Section 5.2 is
presented the main theorems in this chapter, Theorem 14, 15 and 16. Theorem 14 determines
the behavior of the minimum singular value of a circulant random matrix whose entries have
moment generating functions. For our proof of Theorem 14, it is used a remarkable result
about the roots of a random polynomial. This is found in Theorem 15. Theorem 16 shows
that if the dimension of a circulant matrix is prime, it is possible to obtain an estimate for the
probability of the singularity of a circulant matrix when its entries have general distributions.
Sections 5.3, 5.4 and 5.5 are given the proofs of Theorem 14, 15 and 16, respectively. Section
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5.6 includes some additional contributions about the extreme singular values of circulant
random matrices and g-circulant matrices.

• Chapter 6 is about our contributions on backbend percolation. Section 6.2 describes the
backbend percolation model. In Section 6.3 we give a characterization of the critical prob-
ability of backbend percolation. In Section 6.4 we show that there is an initial distribution
on nonpositive integers such that the right edge process has stationary increments. Section
6.5 is about the strict monotocity of the “slope” of banckbend percolation. Section 6.6 con-
tains our analysis of the sub–critical probability of backbend percolation model. Section 6.7
presents our first approach about the behavior of the “slope” of banckbend percolation when
the models are near to unoriented percolation in two dimension. Section 6.8 considers the
super–critical probability of the backbend percolation model.

• Appendix A provides some properties of sub-Gaussian random variables, material that is used
in Chapter 5.

Every new result that the author provides is marked with a ⋆.



Chapter 2

On the Singularity of Random
Matrices

2.1 Introduction

This chapter contains a brief introduction to the problem of the singularity of random matrices with
the goal of exhibiting some different contexts where the problem arises and the distinct behavior
where the probability of the singularity changes drastically. First, Section 2.2 refers to the case
of random matrices over a finite field, since the probability of the singularity of some models is
asymptotically non-zero. This is in contrast with the case where the random matrix is over R or
C—which is the one considered in this thesis—where this probability is asymptotically zero. For
these situations, the study of non-singularity is commonly done using an analysis of the rank of the
matrix ever since the pioneering work of Komlós [39]. Second, Section 2.3 presents first a proof of a
result that is part of the folklore of the literature: unstructured random matrices whose entries have
continuous distributions are invertible with probability one. Moreover, for some structured random
matrices, we also prove that if the principal diagonal has entries which are independent continuous
random variables and independent of the entries in the non-diagonal part (the distributions of the
entries in the this part are arbitrary) are invertible with probability one. These proofs are carried
out by an analysis of the determinant of the matrix. Hence, the non-trivial problem is when the
entries have discrete distributions. Finally, in Section 2.4 we recall another feature of the singularity
of matrices: the extreme singular values. We also include a result about the minimum singular
value of a Ginibre matrix with i.i.d. entries, which is one of the keys behind the circular law as
shown in Götze and Tikhomirov [29]. This is an example where the problem of singularity via
minimum singular values comes out in very relevant situations in the theory of random matrices.
It is not surprising that in this proof there appears naturally the use of concentration inequalities,
which is the subject of Chapter 3.

2.2 Random matrices over finite fields

We would like to start by introducing the following “good” problem1.

1. There are 16 2 by 2 matrices whose entries are 1’s and 0’s. How many are invertible?

1There is an affable anecdote about this problem [14], where we can note the interest in it. This problem appears
as a “regular” exercise in [68].

13
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2. (Much harder!) If you put 1’s and 0’s at random into the entries of a 10 by 10 matrix, is it
more likely to be invertible or singular?

The first question is very easy. To check how many matrices are invertible we only need to list
them. However, the second one is difficult, as we need to consider 2100 possibilities.

Binary matrices are studied in combinatorics, information theory, cryptology, and graph theory.
In 1964, Erdös and Rényi [23] stated, at the end of their paper on the permanent of binary random
matrices, the question of how many binary random matrices are non-singular (in R). The invert-
ibility of binary matrices is especially important in encoding, since it helps to encrypt messages
and compress communication signals in an effective manner.

Note that the number of n × n binary matrices are 2n
2
. Let F (n, k) be the number of n × n

binary matrices of rank k, and P (n) = F (n, n)/2n
2
the proportion of non-singular binary matrices.

If we have a random matrix whose entries are independent Bernoulli random variables taking the
value 1 with probability of 1/2 and the value 0 with probability 1/2, then P (n) is the probability
of non-singularity of this random matrix.

In 1967, Kómlos [39] showed that P (n) → 1, but he studied the invertibility of this random
matrix in R. But in the case that the random matrix is over F2, finite field with two elements, we
have that P (n) ≤ 1/2 for all n > 0. This will be discussed in detail later. In Table 2.1 we can see
the number of binary matrices which are invertible in F2 and R.

n Total F (n, n) in F2 F (n, n) in R P (n) in F2 P (n) in R
1 21 1 1 0.5 0.5

2 24 6 10 0.375 0.375

3 29 168 338 0.328125 0.33984. . .

4 216 20160 42976 0.307617. . . 0.34424. . .

5 225 9999360 21040112 0.298004. . . 0.37296. . .

6 236 2015870960 39882864736 0.293347. . . 0.41963. . .

7 249 163849992929280 292604283435872 0.291056. . . 0.48024. . .

Table 2.1: Number of non-singular matrices in F2 and R.

Given a finite field Fq with q elements, the cardinality of the set GL(n, q) of invertible matrices
over Fq can be explicitly calculated and then we have the exact probability of non-singularity over
Fq when the entries are independent discrete uniform random variables on all Fq.

If A ∈ GL(n, q), we can see A as a set of n linearly independent vectors in Fq. We can construct
A in the following way. The first vector in A should be different from zero, there are qn−1 choices.
This vector spans a one-dimensional subspace, which contains q1 elements. The second vector
should not be in this subspace, so we have qn − q1 possibilities. In fact, if we have a set of k − 1
independent vectors, there are qn − qk possible ways to create an independent set with k vectors.
Hence, the number of ways to choose vectors that will form an n× n invertible matrix is

(
qn − q0

) (
qn − q1

)
· · ·
(
qn − qn−1

)
=

n∏
k=1

(
qn − qk−1

)
.
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In other words, the probability of invertibility of an n×n matrix over the field Fq whose entries
are independent random variables with discrete uniform distribution on all Fq is exactly

1

qn2

n∏
k=1

(
qn − qk−1

)
=

n∏
k=1

(
1− q−k

)
< 1− 1

q
.

For q = 2, we have
∏n

k=1

(
1− 2−k

)
< 1/2, i.e., less than half of the matrices over F2 are invertible.

Moreover the number of invertible matrices decreases as n increases. Also, we can compute the
number G(n, r, q) of n× n matrices over Fq with rank r. Note that if r = 0, then G(n, 0, q) = 1.

Theorem 1.

G(n, r, q) = (qr)n−r
r∏

k=1

(
qn − qk−1

)
.

Proof. The number of ways we can choose r linearly independent random vectors in Fq is∏r
k=1

(
qn − qk−1

)
. Now, observe that the other n − r vectors should be a linear combination

of these r first vectors. This gives us the result. □

From Theorem 1 we obtain the exact probability that a random matrix over Fq whose entries
are independent random variables with discrete uniform distribution has rank r.

When q → ∞,
∏n

k=1

(
1− q−k

)
→ 1, i.e., if the number of elements of the finite field increases,

the number of matrices which are invertible increases too. From Table 2.1, it can be observed
that the probability of singularity decreases when we consider random matrices with independent
Bernoulli random entries over F2 or R. But, we will see that random matrices in R with independent
continuous or discrete random entries are invertible with high probability. First, we want to show
what happens with the probability of the singularity in the case of a symmetric random matrix
over Fq with independent uniform random entries.

The next result2 shows how to count the number of symmetric matrices over Fq with rank r.
For this, we define W(n, r, q) as the number of n×n symmetric matrices over Fq with rank r. Write
d(n, j, q) for the number of j dimensional subspaces of Fn

q . Define
∏

n(x) = (1−x)(1−x2) · · · (1−xn).
It is well known [17] that

d(n, j, q) =

∏
n(q)∏

n−j(q)
∏

j(q)
.

Theorem 2.
W(n, n− j, q) = d(n, j, q)W(n− j, n− j, q).

Proof. Let ej be the n dimensional vector over Fn
q that has a 0 in each entry except for the jth

entry. Let E = span{e1, . . . , ej}. Then there are W(n− j, n− j, q) n× n matrices with rank n− j
that have kernel E. To see this, we note that if M is an n× n matrix, then Mej is the jth row of
M . Hence, if A is a symmetric matrix with Aej = 0, then the jth row and the jth column of M is
the zero vector.

Let A be a symmetric n × n matrix with rank n − j that has kernel E. Since Av = 0 for all
v ∈ E, then A has j rows and j columns equal to the zero vector. If we look at A without these j
columns and the corresponding j rows, we have a symmetric (n− j)× (n− j) matrix that should
have rank n − j. So, there are W(n − j, n − j, q) symmetric n × n matrices with rank n − j that
have kernel E.

2The proof of this theorem is the same as given by Prof. Robert C. Rhoades. The proof has been circulated on
the Internet, http://math.stanford.edu/~rhoades/FILES/rank_symmetric_matrices.pdf
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Let S be any j dimensional subspace of Fn
q with basis {v1, . . . , vj}. We define S as the set of

all n× n matrices of rank n− j with kernel S and E is the set of all n× n matrices of rank n− j
with kernel E. Our goal is to show that |S| = |E|.

There are k1, . . . , kn−j such that {v1, . . . , vj , ek1 , . . . , ekn−j
} is a basis for Fn

q . Let B be the
change of basis matrix defined by es 7→ vs for 1 ≤ s ≤ j and ej+t 7→ ekt for 1 ≤ t ≤ (n− j).

Define the map ϕ : S → E by ϕ(A) = BtAB. Since B is an invertible matrix, Bt is too. Note,
BtABv = 0 if and only if ABv = 0, but this implies Bv ∈ S. Since B is the change of basis matrix
from {e1, . . . , ej} to {v1, . . . , vj}, we have v ∈ E. Therefore, BtABv = 0 if and only if v ∈ E , i.e.,
the map ϕ is well defined.

Since B is invertible, ϕ is a 1–1 map. Now, we consider X ∈ E and Y = (Bt)−1AB−1. We have
ϕ(Y ) = BtY B = Bt((Bt)−1XB−1)B = X. Then it is enough to show that Y ∈ S. But, Y v = 0
if and only if XB−1v = 0, and since B−1 is also a change of the basis matrix from {v1, . . . , vj} to
{e1, . . . , ej}, we have v ∈ S. So Y ∈ S, i.e., ϕ is surjective.

This completes the proof. Then W(n, n− j, q) = d(n, j, q)W(n− j, n− j, q). □

Theorem 2 gives the exact probability that a symmetric n×n matrix has rank r when its entries
are independent uniform random entries over Fq.

Random matrices over a finite field have been studied for many years [26]. Even though this
thesis is about random matrices over R or C, we would like to present some additional results about
the singularity of random matrices over finite fields, since there are significance differences from
the cases over R or C.

Let q = pf be a prime power and let Fq be a finite field with q elements. Suppose ξ is a
random variable that takes values in Fq with probability distribution µ. We say that µ is α-dense
for 0 < α < 1 if for every additive subgroup T ≤ Fq and s ∈ Fq,

P(ξ ∈ s+ T ) ≤ 1− α.

Theorem 3. [46] Let Fq with q = pj and suppose A is a n × n random matrix with i.i.d. entries
which take values from an α-dense probability distribution. Then we have the estimate

P (A is non-singular) =

∞∏
k=1

(1− q−k) +O
(
e−cαn

)
,

where the implied constant and c > 0 are absolute.

□

Theorem 4. [47] Let Qn be a n×n symmetric random matrix where the entries above and on the
diagonal are independent copies of ξ, where ξ is a random variable with P(ξ ≡ t mod q) < 1 − c
for all t ∈ Fq with c > 0. Then we have the estimate for the total variation

dTV (n− rank, ν) = O
(
n−1/8

)
,

where the implied constant depends on c and q, and ν is the probability distribution on Z+ :=
{0, 1, 2, . . .} given by

ν(k) := q−
k2+k

2

∞∏
l=k+1

(1− q−l).

□
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2.3 Random matrices with continuous random entries

If a random matrix A has entries 3 which are independent random variables with continuous distri-
bution on R or C, it is easy to check that P(det(A) = 0) = 0. A reason for this is that probability
that the sum of independent random variables with continuous distribution takes a particular value
is zero. The following results show that some structured random matrices with few continuous ran-
dom entries are also invertible with probability one.

We first show that under the condition that the principal diagonal has entries which are inde-
pendent with continuous distributions and independent of the upper and lower triangular parts, the
random matrix is invertible with probability one, whatever the distributions of the non-diagonal
entries. This theorem provides us a first guide when we want to find “good matrices” to test some
algorithms, because it gaves an indication of what are the “bad matrices.”

Theorem 5 (⋆ Singularity: Continuous case). Let Gn = (ξi,j)1≤i,j≤n be an n × n random matrix
such that {ξi,i : i = 1, . . . , n} is a set of independent random variables and independent of {ξi,j :
1 ≤ i, j ≤ n with i ̸= j}. If ξi,i has continuous distribution for all i, then

P (Gn is non-singular) = 1.

Proof. The proof is by induction on n. For n = 1 the statement is trivial. We can suppose the
statement is true for all n ≤ k for some k. Now, we consider n = k + 1. Since

det(Gk+1) = ξ1,1 det(Gk) +

k+1∑
j=2

ξ1,jc1,j ,

where c1,j is the (1, j)-cofactor of Gk+1, we have by independence and the inductive hypothesis

P (Gk+1 is singular) = P

ξ1,1 det(Gk) +

k+1∑
j=2

ξ1,jc1,j = 0


= P

(
ξ1,1 = −

∑k+1
j=2 ξ1,jc1,j

det(Gk)

)

= E

(
P

(
ξ1,1 = −

∑k+1
j=2 ξ1,jc1,j

det(Gk)

∣∣∣∣∣ ξi,j with i, j = 1, . . . , n and (i, j) ̸= (1, 1)

))
= E (0)

= 0.

Therefore P (Gk+1 is non-singular) = 1. □

We note that if G is a Ginibre or Wigner matrix, then by Theorem 5 we have P(det(G) = 0) = 0.

Moreover, it is possible to consider a strong dependency among the entries of a random matrix.
For example, if T is a random Toeplitz matrix, we can prove that the probability that det(T ) = 0 is
zero only under the hypothesis that the entries of T are independent continuous random variables.

3In fact, this statement is also verified when the rows or columns are independent continuous random vectors.
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We recall that a Toeplitz matrix is defined as Tn = (ξi−j)
n
i,j=1, i.e., Tn looks like

Tn =



ξ0 ξ−1 ξ−2 · · · · · · ξ−(n−1)

ξ1 ξ0 ξ−1
. . .

...

ξ2 ξ1 ξ0
. . .

. . .
...

...
. . .

. . .
. . . ξ−1 ξ−2

...
. . . ξ1 ξ0 ξ−1

ξn−1 · · · · · · ξ2 ξ1 ξ0


.

Theorem 6 (⋆ Singularity: Toeplitz case). Let Tn = (ξi,j)1≤i,j≤n be an n× n random matrix such
that {ξi : i = −(n− 1), . . . , n− 1} is an independent set of random variables. If ξi has continuous
distribution for all i, then

P (Tn is non-singular) = 1.

Proof. The proof is by induction on n. For n = 1 the statement is trivial. We can suppose the
statement is true for all n ≤ k for some k. Now, we consider n = k + 1. Since

det(Tk+1) = ξ−k det(Tk) +

0∑
j=−(k−1)

ξjc1,|j|+1,

where c1,|j|+1 is the (1, |j| + 1)-cofactor of Tk+1. We have by independence and the inductive
hypothesis

P (det(Tk+1) = 0) = P

ξ−k det(Tk) +
0∑

j=−(k−1)

ξjc1,|j|+1 = 0


= P

(
ξ−k = −

∑0
j=−(k−1) ξjc1,|j|+1

det(Tk)

)

= E

(
P

(
ξ−k = −

∑0
j=−(k−1) ξjc1,|j|+1

det(Tk)

∣∣∣∣∣ ξi with i = k, . . . ,−(k − 1)

))
= E (0)

= 0.

Therefore P (Tk+1 is non-singular) = 1. □

Another example of a matrix with entries having a strong dependence is a circulant random
matrix4. When the entries are independent continuous random variables, then a circulant ran-
dom matrix is non-singular with probability one. However, the structure of a random matrix can
drastically change the probability of singularity. This is shown in the following simple example.

Example 1. Let ξ0, ξ1, . . . be independent random variables such that there is a ς ∈ (0, 1) with

4This kind of matrix will be studied in more detail in Chapter 5.



2.4. MINIMUM SINGULAR VALUE OF SQUARE MATRICES 19

supx∈R P{ξk = x} ≤ ς for all k. Let A be the n× n random matrix defined as

An =


ξ0 ξ1 ξ2 · · · ξn
ξ1 ξ0 ξ2 · · · ξn
ξ1 ξ2 ξ0 · · · ξn

· · ·
ξ1 ξ2 ξ3 · · · ξ0

 .

It is not difficult to show that det(An) = XnYn, where

Xn =

n∑
i=0

ξi and det(Yn) =

∏n

i=1
(ξ0 − ξi).

Suppose P(ξ0 = ξ1) = p ∈ [0, 1] and P(ξ0 = ξi) = 0 for all i ̸= 0, 1. By the Kolmogorov–Rogozin
inequality (Theorem 8 in Chapter 3),

p = P(Yn = 0) ≤ P(Xn = 0 or Yn = 0)

≤ P(Xn = 0) + P(Yn = 0)

≤ Cn−1/2 + p.

Then
P(det(An) = 0) → p as n→ ∞.

□

In the proofs of the previous results we used the determinant. Then a natural question is:
what is the behavior of the determinant of a random matrix? The study of the distribution of the
determinant of a Ginibre matrix was considered in [52]. We do not pursue this problem in the
present thesis.

The previous results show that under hypothesis that the random entries have continuous
distribution, the random matrix is invertible with probability one. So, the complicated scenario
appears when one considers discrete random entries. This situation will be analyzed in Chapters 4
and 5.

2.4 Minimum singular value of square matrices

We would like to finish this introductory chapter by mentioning some results on the extreme singular
values of randommatrices with independent entries. To understand the behavior of extreme singular
values is actually one of the keys to the circular law theorem [9]. This is an example where the
problem of singularity comes out in very relevant situations in the theory of random matrices [29].
We know that the minimum singular value of a matrix is positive if and only if the matrix is
non-singular. The next result states that the matrix should be invertible if the maximum singular
value is not large. This lemma and its proof can be found in the review of the circular law in [9].
We include it here to highlight the role of the minimum singular value in the study of the spectral
asymptotic distribution of Ginibre matrices.

Recall that the extreme singular values are defined for a matrix A by the variational formulas

s1(A) = max
x:∥x∥2=1

∥Ax∥2, sn(A) = min
x:∥x∥2=1

∥Ax∥2.
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Lemma 1 (Small singular values of random matrices with independent entries). If (Xij)1≤i,j≤n is
a random matrix with independent and non-constant entries in C and if a > 0 is a positive real
number such that

b := min
1≤i,j≤n

P(|Xij | ≤ a) and σ2 := Var(Xij1{|Xij |≤a}) > 0,

then there exists c = c(a, b, σ) > 1 such that for any n×n matrix M in C, n ≤ c, s ≤ 1, 0 < t ≤ 1,

P
(
sn(X +M) ≤ t√

n
; s1(X +M) ≤ s

)
≤ c
√

log(cs)

(
ts2 +

1√
n

)
.

The proof of Lemma 1 is divided into two parts, which correspond to a subdivision of the unit
sphere Sn−1 of Cn. For two real positive parameters δ, ρ > 0 that will be fixed later, we define the
set of sparse vectors

Sparse := {x ∈ Cn : card(supp(x)) ≤ δn},

where supp(x) := {i : xi ̸= 0}, and we split Sn−1 into the set of compressible vectors and the set of
incompressible vectors as follows:

Comp := {x ∈ Sn−1 : dist(x, Sparse) ≤ ρ} and Incomp := Sn−1 \ Comp.

We note that for A an n× n matrix over C,

sn(A) = min
x∈Sn−1

||Ax||2 = min

(
min

x∈Comp
||Ax||2, min

x∈Incomp
||Ax||2

)
. (2.1)

Compressible vectors

Lemma 2 (Distance of a random vector from a small subspace). There exist ε, c, δ0 > 0 such that
for all n sufficently large, all 1 ≤ i ≤ n, any deterministic vector v ∈ Cn and any subspace H of
Cn with 1 ≤ dim(H) ≤ δ0n, we have, denoting C := (X1i, . . . , Xni) + v,

P(dist(C,H) ≤ εσ
√
n) ≤ c exp(−cσ2n).

Proof. Let ηk = 1{|Xki|≤a}. Then η1 . . . , ηn are independent, ηk ∈ {0, 1} and E (ηk) ≥ b for all k.
Then, from Hoeffding’s deviation inequality [9],

P

(
n∑

k=1

ηk ≤ nb

2

)
= P

(
n∑

k=1

ηk − bn ≤ −nb
2

)

≤ P

(
n∑

k=1

ηk −
n∑

k=1

E (ηk) ≤ −nb
2

)

≤ exp

(
−nb

2

2

)
.

Then it is enough to prove

P(dist(C,H) ≤ εσ
√
n
∣∣Em) ≤ c exp(−cσ2n),

where Em := {|X1i| ≤ a, . . . , |Xmi| ≤ a} with m := ⌈nb/2⌉.
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Let Em[·] := E[·|Em;Fm] denote the conditional expectation given Em and the filtration Fm

generated by Xm+1,i, . . . , Xn,i. Let W = span{H, v, u, w} where

u := (0, . . . , 0, Xm+1,i, . . . , Xn,i) and

w := (E[X1i||X1i| ≤ a], . . . ,E[Xmi||Xmi| ≤ a], 0, . . . , 0).

So, dim(W ) ≤ dim(H) + 3 and W is Fm-measurable. Also, we have that

dist(C,H) ≤ dist(C,W ) = dist(Y,W ),

where

Y := (X1i − E[X1i||X1i| ≤ a], . . . , Xmi − E[Xmi||Xmi| ≤ a], 0, . . . , 0)

= C − u− v − w.

By assumption, for 1 ≤ k ≤ m,

Em[Yk] = 0 and Em[|Yk|2] ≥ σ2.

Let D = {z : |z| ≤ a}. We define the function f : Dm → R+ by

f(x) = dist((x1, . . . , xm, 0, . . . , 0),W ).

This function is convex and 1-Lipschitz, and by Talagrand’s inequality, for all t ≥ 0

Pm(|dist(Y,M)−Mm| ≥ t) ≤ 4 exp

(
− t2

16a2

)
,

where Mm is the median of f under Pm. From this inequality, we obtain for all t ≥ 0

Pm(−dist(Y,M) +Mm ≤ −t) ≤ 4 exp

(
− t2

16a2

)
. (2.2)

We want to prove that

Mm ≥
√

Em[dist2(Y,M)]− ca.

We consider the event dist(Y,M) ≥
√

Em[dist2(Y,M)]− ca. Then

P
(
dist(Y,M) ≥

√
Em[dist2(Y,M)]− ca

)
= P

(
dist2(Y,M) ≥

(√
Em[dist2(Y,M)]− ca

)2
)
.

If we take t =

∣∣∣∣√Em[dist2(Y,M)]− ca

∣∣∣∣ from (2.2), we have that there is a c = c(a, b, σ) > 1 such

that

P

(
dist2(Y,M) ≥

(√
Em[dist2(Y,M)]− ca

)2
)

≤ 1

2
.

So, Mm ≥
√

Em[dist2(Y,M)] − ca. On the other hand, if P denotes the orthogonal projection on
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the orthogonal of W , we find

Em[dist2(Y,M)] =
m∑
k=1

Em[Y 2
k ]Pkk

≥ σ2

(
n∑

k=1

Pkk −
n∑

k=m+1

Pkk

)
≥ σ2(n− dim(H)− 3− (n−m))

≥ σ2
(
nb

2
− dim(H)− 3

)
.

For n large enough, the last expression is bounded below by cσ2n if δ0 = b/4. From (2.2) there
follows the result. □

Let 0 < ε < 1 and s ≥ 1 be as in Lemma 2. We set

ρ =
1

4
min

{
1,

εσ

s
√
δ

}
,

in particular ρ ≤ 1/4. The parameter δ ∈ (0, 1) is still to be specified, we only assume that δ < δ0.
We note that if A is an n × n matrix over C and y ∈ Cn is such that supp(y) ⊂ π ⊂ {1, . . . , n},
then

||Ay||2 ≥ ||y||2sn(A|π),

where A|π is an n× |π| matrix formed by the columns of A selected by π. So

min
x∈Comp

||A||2 ≥
3

4
min

π⊂{1,...,n}:|π|=⌊δn⌋
sn(A|π)− ρs1(A). (2.3)

Write Ci for the ith column of A and

Hi := span{Ci : j ∈ π, j ̸= i}.

Then for any x ∈ C|π|,

||A|πx||22 =

∣∣∣∣∣
∣∣∣∣∣∑
i∈π

xiCi

∣∣∣∣∣
∣∣∣∣∣
2

2

≥ max
i∈π

|xi|2dist2(Ci,Hi) ≥
1

|π|
∑
i∈π

|xi|2min
i∈π

dist2(Ci,Hi).

In particular
sn(A|π) ≥ min

i∈π
dist(Ci,Hi)/

√
|π|.

Since Hi has dimension at most δn and is independent of Ci, by Lemma 2, we can see that the
event minπ dist(Ci,Hi) ≥ εσ

√
n has probability at least 1− cδn exp(−cσ2n) for n sufficiently large.

Hence, for A = X +M ,

P
(
sn((X +M)|π) ≤

εσ√
δ

)
≤ cδn exp(−cδ2n).
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Therefore, using the union bound and our choice of ρ, we have from (2.3)

P

(
min

x∈Comp
||(X +M)x||2 ≤

εσ

2
√
δ
; s1(X +M) ≤ s

)
≤

(
n

⌊δn⌋

)
cδne−cσ2n

= cδn exp(H(δ)(1 + o(1))− cσ2),

where H(δ) := −δ log(δ)− (1− δ) log(1− δ). If we pick δ small enough so that H(δ) < cσ2/2, we
have that there is a c1 := c1(σ) > 0 such that

P

(
min

x∈Comp
||(X +M)x||2 ≤

εσ

2
√
δ
; s1(X +M) ≤ s

)
≤ exp(−c1n). (2.4)

From now on, we fix

δ =
c2σ

2

| log σ|
,

small enough so δ < δ0 and H(δ) > cσ2/2.

Incompressible vectors: Invertibility via distance

Lemma 3 (Incompressible vectors are spread). Let x ∈ Incomp. There exists a subset π ⊂
{1, . . . , n} such that |π| ≥ δn/2 and for all i ∈ π

ρ√
n
≤ |xi| ≤

√
2

δn
.

Proof. For π ⊂ {1, . . . , n}, we denote by Pπ the orthogonal projection on span{ei : i ∈ π}. Let
π1 = {k : |xk| ≤

√
2/(δn)} and π2 = {k : |xk| ≥ ρ/

√
n}. Since ||x||22 = 1, we have

|πc1| ≤
δn

2
.

Also,
||x− Pπ2x||2 = ||Pπc

2
x||2 ≤ ρ.

If |π2| < δn, we would have x ∈ Comb, and then |π2| ≥ δn. Write π = π1 ∩ π2. From the previous,

|π| ≥ n− |πc1| − |πc1| ≥ n− δn

2
− (n− δn) =

δn

2
.

□

Lemma 4 (Invertibility via mean distance). Let A be a random matrix over C with columns
C1, . . . , Cn and for some arbitrary 1 ≤ k ≤ n, let Hk be the span of all these columns except Ck.
Then, for any t ≥ 0

P
(

min
x∈Incomp

||Ax||2 ≤
tρ√
n

)
≤ 2

δn

n∑
k=1

P(dist(Ck,Hk) ≤ t).
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Proof. Let x ∈ Sn−1. From Ax =
∑

k Ckxk, we get

||Ax||2 ≥ max
1≤k≤n

dist(Ax,Hk) = max
1≤k≤n

|xk|dist(Ck, Hk).

Now, x ∈ Incomp and π as in Lemma 3, we have

||Ax||2 ≥
ρ√
n
max
k∈π

dist(Ck,H, k).

Finally, note that for any real numbers y1, . . . , yn and 1 ≤ m,

1{(max1≤k≤m yk)≤t} ≤
1

m

m∑
k=1

1{yk≤t} ≤
n∑

k=1

1{yk≤t}.

□

Let C be the kth column of X +M . We want to establish, for all t ≥ 0, that

P(dist(C,H) ≤ ρt; s1(X +M) ≤ s) ≤ c

σ

√
| log ρ|
δ

(
t+

1√
t

)
. (2.5)

In order to obtain this, we consider a random vector η in Sn−1 ∩H⊥ that is independent of C.
Note that η is not unique, we just pick one and we call it the orthogonal vector to the subspace H.
By the Cauchy–Schwarz inequality,

|⟨C, η⟩| ≤ dist(C,H). (2.6)

Lemma 5 (The random orthogonal vector is incompressible). For our choice of ρ and δ, and with
c1 as in (2.5), we have

P(η ∈ Comp; s1(X +M) ≤ s) ≤ exp(−c1σ2n).

Proof. Let A be the (n−1)×n matrix obtained from (X+M)∗ by removing the kth row. Then by
construction Aη = 0, ||Ax||2 ≤ ||(X +M)∗x||, and ||(X +M)∗|| = ||X +M ||. Hence if η ∈ Comp,
we have minx∈Comp ||Ax||2 = 0. Note that (2.5) holds with X +M replaced by A. □

Now, we will use the Berry–Essen theorem. In this step we assume that some coordinates are
fixed, both the components of η and the random variables Xik +Mik are well controlled. Namely,
if η ∈ Incomp, let π ⊂ {1, . . . , n} be as in Lemma 3 associated to vector η. Then conditioned on
{η ∈ Incomp}, from Hoeffding’s deviation inequality, the event that∑

i∈π
1{|Xik|≤a} ≥

|π|b
2

≥ δbn

4
,

has conditional probability at least (since η and hence π are independent of C)

1− exp(−|π|b2/2) ≥ 1− exp(−cδn).

So, using our choice of δ and ρ, and using Lemma 5 and (2.6), it is sufficient, to prove (2.5), to
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show that for all t ≥ 0

P(|⟨η, C⟩| ≤ ρt) ≤ c

σ

√
| log ρ|
δ

(
t+

1√
n

)
,

where Pm(·) = P(·|Em,Fm) is the conditional probability given Fm the σ-algebra generated by all
variables except (X1k, . . . , Xmk), m := ⌊δbn/4⌋, and

Em :=

{
ρ√
n
≤ |ηi| ≤

√
2

δn
: 1 ≤ i ≤ m

}∪
{|Xik| ≤ a : 1 ≤ i ≤ m} .

Write

⟨η, C⟩ =
n∑

i=1

η̄i⟨C, ei⟩ =
m∑
i=1

η̄iXik + u,

where u ∈ Fm is independent of (X1k, . . . , Xmk). It follows that

Pm(|⟨η, C⟩| ≤ ρt) ≤ sup
z∈C

Pm

(∣∣∣∣∣
m∑
i=1

η̄i(Xik − EmXik)− z

∣∣∣∣∣ ≤ ρt

)
. (2.7)

Now, we use the rate of convergence given by the Berry–Essen theorem to obtain an upper
bound for this last expression.

Lemma 6 (The small ball probability via the Berry–Essen theorem). There exists a constant c > 0
such that if Z1, . . . , Zn are independent centered complex random variables, then for all t ≥ 0,

sup
z∈C

P

(∣∣∣∣∣
n∑

i=1

Zi − z

∣∣∣∣∣ ≤ t

)
≤ ct√∑n

i=1 E(|Zi|2)
+

c
∑n

i=1 E(|Zi|3)
(
∑n

i=1 E(|Zi|2))3/2
.

Proof. Let τ2 =
∑n

i=1 E|Zi|2. Then either
∑n

i=1 E(ℜZi)
2 or

∑n
i=1 E(ℑZi)

2 is greater than or equal
to τ2/2, where ℜz and ℑz are, respectively, the real and imaginary parts of z. Also

P

(∣∣∣∣∣
n∑

i=1

Zi − z

∣∣∣∣∣ ≤ t

)
≤ P

(∣∣∣∣∣
n∑

i=1

ℜ(Zi)−ℜ(z)

∣∣∣∣∣ ≤ t

)

and similarly with ℑ. We can assume without loss of generality that the Zi’s are real random
variables. Then, if G is a real centered Gaussian random variable with variance τ2, the Berry–
Essen theorem asserts that

sup
t∈R

∣∣∣∣∣P
(

n∑
i=1

Zi ≤ t

)
− P(G ≤ t)

∣∣∣∣∣ ≤ c0τ
−3/2

n∑
i=1

E(|Zi|3).

For all t ≥ 0 and x ∈ R, we have

P

(∣∣∣∣∣
n∑

i=1

Zi − x

∣∣∣∣∣ ≤ t

)
≤ P(|G− x| ≤ t) + 2c0τ

−3/2
n∑

i=1

E(|Zi|3).

To conclude, we note that P(|G− x| ≤ t) ≤ 2t/
√
2πτ2. □
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Define L = 1
2 log2

2
δρ2

. For our choice of ρ and δ, we can find a constant c = c(a, b) such that

L ≤ c| log ρ|.

For 1 ≤ j ≤ L, we define

πj :=

{
1 ≤ i ≤ m :

2j−1

ρ

√
n ≤ |ηi| ≤

2jρ√
n

}
.

From the pigeonhole principle, there exists j such that |πj | ≥ m/L. So, we have

σj :=
∑
i∈πj

|ηi|2Em(|Xik − Em(Xik)|2) ≥
22j−2ρ2σ2|πj |

n
,

and ∑
i∈πj

|ηi|3Em(|Xik − Em(Xik)|3) ≤
2j+1aρ√

n
σj .

Recall that X and Y are independent random variables, P(|X + Y − z| ≤ r) ≤ P(|X − z| ≤ r).
Now, from (2.7) and Lemma 6 (by changing the value of c), we get, for all t ≥ 0,

Pm(|⟨η, C⟩| ≤ ρt) ≤ cρt

σj
+
c2jaρ

σj
√
n

≤ ct
√
n

σ
√

|πj |
+

c

σ
√

|πj |

≤ c

σ

√
| log ρ|
δ

(
t+

1√
n

)
.

The proof of (2.5) is complete.
Proof of Lemma 1. By Lemma 4 and (2.5), we find, for all t ≥ 0,

P

(
min

x∈Incomp
||(X +M)x||2 ≤

ρ2t√
n
; s1(X +M) ≤ s

)
≤ c

σ

√
| log ρ|
δ3

(
t+

1√
n

)
.

Using our choice of ρ and δ, we obtain for some new constant c = c(a, b, σ) > 0,

P

(
min

x∈Incomp
||(X +M)x||2 ≤

t√
n
; s1(X +M) ≤ s

)
≤ c
√

log cs

(
ts2 +

1√
n

)
.

The desired result follows from (2.1) and (2.5). □



Chapter 3

Concentration Inequalities

3.1 Introduction

In this chapter we present the main probability tools used to prove that Ginibre or Wigner matrices
are invertible with high probability. Section 3.2 introduces the notation of Levy’s concentration
function, which is useful for understanding with what probability the sum of independent random
variables takes a value in some interval. In Section 3.3, we mention some well known results about
the concentration of sum of independent random variables and establish two proper concentration
inequalities for the Ginibre and Wigner cases, respectively.

The main idea is to estimate the probability that a linear combination of independent random
variables can take a particular value, which will be used in the proof of the Ginibre case. It is easy
to see that in the continuous case, the probability that the sum takes a particular value is zero,
hence the difficult stage is when we have discrete random variables. In Theorem 11 we establish,
basically, that the probability that a linear combination of n independent random variables takes
a particular value is at most CLn

−1/2, where the constant CL depends on the maximum jumps of
the distribution of the random variables.

We also analyze the concentration of a random quadratic form, something which will be used in
the proof for the Wigner case. Suppose that A is a Wigner matrix. Then we want to estimate the
probability that the quadratic form xtAx is zero. A random quadratic form is a sum of dependent
random variables, but using a decoupling argument, it is possible to give a good estimate of the
probability that xtAx = c for any c ∈ R.

In our Theorem 12, we obtain that the probability that a linear combination of n independent
random variables takes a particular value is at most CQn

−1/4, where the constant CQ also depends
on the maximum jumps of the distribution of the random variables.

As mentioned in the Introduction of this thesis, the problem of estimating the maximum prob-
ability that a sum of random variables belongs to an interval is known as the topic of small ball
probability. The study of the small ball probability goes back to the discovery made by Littlewood
and Offord [44] and Erdös [22] almost 70 years ago. The set of these problems were studied by
Doeblin, Lévy [15, 16], Erdös [22] (for the Bernoulli case, where it reduces to the Littlewood–Offord
problem), Kolmogorov [38], Rogozin [57], Kesten [35] and Essen [24], and more recently by Tao
and Vu [71], and Rudelson and Vershynin [59], [75].

Sections 3.2 and 3.3 are from the book [54]. The proof of Theorem 11 used the Kolmogorov–
Rogozin inequality [24], [57], and the proof of Theorem 12 follows the ideas in [11], where only the
Bernoulli case was considered.

The main results in this chapter were published by the author in joint work with Pérez–Abreu

27
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and Roy [45].

3.2 Concentration functions

The Levy’s concentration function Q(ξ;λ) of a random variable ξ is defined by

Q(ξ;λ) := sup
x∈R

P(ξ ∈ [x− λ/2, x+ λ/2])

for every λ ≥ 0. The function Q(X;λ) is a non-decreasing function for λ. Also, it is clear 0 ≤
Q(X;λ) ≤ 1 for every λ ≥ 0.

We will show some properties about the concentration function.

Lemma 7. If X and Y are independent random variables, then Q(X+Y ;λ) ≤ min{Q(X;λ), Q(Y ;λ)}
for every λ ≥ 0.

Proof. Writing Iλ(x) = [x− λ/2, x+ λ/2], we note for y ∈ R

P(X + y ∈ Iλ(x)) = P(X ∈ Iλ(x+ y)),

hence
P(X + Y ∈ Iλ(x)) = E (P(X + Y ∈ Iλ(x)|Y )) ≤ Q(X,λ).

Therefore Q(X + Y ;λ) ≤ Q(X;λ). □

Lemma 8. For every α ≥ 0 and λ ≥ 0 we have Q(ξ;αλ) ≤ (⌊α⌋+ 1)Q(ξ;λ)

Proof. Writing Iλ(x) = [x− λ/2, x+ λ/2]. If α ∈ [0, 1], then αλ ≤ λ and

P(ξ ∈ Iαλ(x)) ≤ P(ξ ∈ Iλ(x)).

If α > 1, we have
P(ξ ∈ Iαλ(x)) ≤ P(ξ ∈ Iλ(x)) + (α− 1)Q(ξ;λ).

Thus, Q(ξ;αλ) ≤ (⌊α⌋+ 1)Q(ξ;λ). □

Lemma 9. Let ξ be a random variable with the characteristic function f(t) and the concentration
function Q(ξ;λ). For δ ∈ (0, π)

Q(ξ;λ) ≤
(
a sin(δ/2)

δ/2

)−1 ∫ a

−a
|f(t)|dt (3.1)

for every λ ≥ 0 and a > 0 with aλ ≤ δ.

Proof. Let h(t) be a function defined by

h(t) =

{
1− |t| for |t| ≤ 1

0 for |t| > 1
. (3.2)

Note that h(t) is a probability density function, which represent a symmetric random variable.
Hence,

H(x) :=

(
sin(x/2)

x/2

)2

=

∫ ∞

−∞
eitxh(t)dt.
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We denote by F (x) the distribution function of the random variable ξ. For every real γ and a > 0,
we have ∫ ∞

−∞
H(a(x− γ))dF (x) =

∫ ∞

−∞

[∫ ∞

−∞
eita(x−γ)h(t)dt

]
dF (x)

=
1

a

∫ a

−a
e−iγuh

(u
a

)[∫ ∞

−∞
eiuxdF (x)

]
du

=
1

a

∫ a

−a
e−iγuh

(u
a

)
f(u)du,

whence ∫ ∞

−∞
H(a(x− γ))dF (x) ≤ 1

a

∫ a

−a
|f(t)|dt.

Since limx→0(sin(x)/x) = 1, we have for δ ∈ (0, π) such that(
sin(x/2)

x/2

)2

≥
(
sin(δ/2)

δ/2

)2

=: Cδ for |x| ≤ δ.

Let us denote
Iλ(γ) = [γ − λ/2, γ + λ/2].

If aλ ≤ δ, then ∫ ∞

−∞
H(a(x− γ))dF (x) ≥

(
sin(δ/2)

δ/2

)2

P(ξ ∈ Iλ(γ))

and

P(ξ ∈ Iλ(γ)) ≤
1

aCδ

∫ a

−a
|f(t)|dt.

In view that γ is arbitrary,

Q(ξ;λ) ≤ 1

aCδ

∫ a

−a
|f(t)|dt.

□
We note one consequence of Lemma 9, corresponding to the value λ = 0. If ξ is an arbitrary

random variable with the characteristic function f(t) then for a = δ = π/2

sup
x∈R

P(ξ = x) ≤
√
2

∫ π/2

−π/2
|f(t)|dt. (3.3)

Lemma 10. Let ξ be a random variable with the characteristic function f(t) and concentration
function Q(ξ;λ). Then

Q(ξ;λ) ≥ λ sin(1)

4π(1 + 2aλ)

∫ 2a

−2a
|f(t)|2dt (3.4)

for every non-negative λ and a.

Proof. Let ξs = ξ − η, where η is a random variable independent of ξ and having the same
distribution as ξ, then |f(t)|2 is the characteristic function of ξs. Note h(·), which was defined in
(3.2), is the characteristic function of a distribution with the density (1 − cosx)/πx2. Let U be
a random variable independent of X and having the caracteristic function h(t/4a), where a > 0.
The random variable V := ξs + U has a continuous distribution with chacracteristic function
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|f(t)|2h(t/4a). From lemma 7, we have Q(V ;λ) ≤ Q(ξ, λ). By the Inversion Formula1

P
(
|V | ≤ 1

4a

)
=

1

4aπ

∫ 4a

−4a
|f(t)|2

(
1− |t|

4a

)
sin(t/4a)

t/4a
dt.

Since t ∈ [−4a, 4a], we have

Q

(
V ;

1

2a

)
≥ P

(
|V | ≤ 1

4a

)
≥ sin(1)

4aπ

∫ 4a

−4a
|f(t)|2

(
1− |t|

4a

)
.

By lemma 8, we have for a, λ > 0

Q(ξ;λ) ≥ Q(V ;λ)

≥
(⌊

1

2aλ

⌋
+ 1

)−1

Q

(
V ;

1

2a

)
≥ 2aλ sin(1)

4aπ(1 + 2aλ)

∫ 4a

−4a
|f(t)|2

(
1− |t|

4a

)
dt

≥ λ sin(1)

4π(1 + 2aλ)

∫ 2a

−2a
|f(t)|2dt.

In the case where λ = a = 0, the inequality (3.4) is satisfied. □

3.3 Concentration inequalities for sum of random variables

Let ξ be a random variable with distribution function F (x). For every λ > 0 write

D(ξ;λ) = λ2
∫
|x|<λ

x2dF (x) +

∫
|x|≥λ

dF (x).

We define D(ξ; 0) := P(ξ ̸= 0). We have D(ξ;λ) = 0 for every λ ≥ 0 if and only P(ξ = 0) = 1.
If 0 < λ1 < λ2, then

λ−1
2

∫
|x|<λ2

x2dF (x) ≤ λ−1
1

∫
|x|<λ1

x2dF (x) + λ−1
2

∫
λ≤|x|<λ2

x2dF (x)

≤ λ−1
1

∫
|x|<λ1

x2dF (x) +

∫
λ≤|x|<λ2

dF (x).

Therefore D(ξ;λ2) ≤ D(ξ;λ1), i.e., D(ξ;λ) is a non-increasing function. Additionally, if u ≥ λ,
then

D(ξ;λ) ≥ u−2

∫
|x|<λ

x2dF (x) +

∫
λ≤|x|<u

dF (x)

≥ u−2

∫
|x|≤u

x2dF (x).

1Inversion Formula: If f is the characteristic function of F . For a < b points at which F is continuous, we have

F (b)− F (a) = lim
c→∞

1

2π

∫ c

−c

e−ita − e−itb

it
f(t)dt.
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If ξ is a random variable, we denote by ξs the corresponding symmetrized random variable, i.e.,
if ξ′ is a random variable independent of ξ with the same distribution of ξ, ξs = ξ − ξ′.

Theorem 7. Let ξ1, . . . , ξn be independent random variables, Sn =
∑n

k=1 ξk. Let λ1, . . . , λn be
positive numbers, λk ≤ λ, k = 1, . . . , n. Then there exists an absolute positive constant A, such
that

Q(Sn;λ) ≤ Aλ

(
n∑

k=1

λ2kD(ξsk;λk)

)−1/2

. (3.5)

Proof. Let Vk(x) and vk(x) denote respectively the distribution function and the characteristic
function of the random variable ξk, respectively. We apply lemma 9 to the sum Sn with a = 1/λ,
we obtain

Q(ξ;λ) ≤ A1λ

∫
|t|≤1/λ

n∏
k=1

|vk(t)|dt.

From the inequality 1 + x ≤ ex for every real x implies that

|vk(t)|2 ≤ exp(−(1− |vk(t)|2)).

If V s
k (x) denote the distribution function of ξsk, we have

1− |vk(t)|2 =
∫ ∞

−∞
(1− cos(tx))dV s(x).

Therefore,

Q(Sn;λ) ≤ A1λ

∫
|t|≤1/λ

exp

(
−1

2

n∑
k=1

∫ ∞

−∞
(1− cos(tx))dV s

k (x)

)
dt. (3.6)

Let Lk(x) be the function defined by Lk(x) = V s
k (x)−1 for x > 0 and Lk(x) = V s

k (x) for x < 0.
Lk(x) is a Lévy spectral function2 (see [54] p. 35 ). In order to estimate the integral in (3.6), we
will use the following lemma.

Lemma 11. Let Lk(x) be a Lévy spectral function for k = 1, . . . , n. Let δ be a positive number,
and let 0 < λk ≤ λk, k = 1, . . . , n. Then∫

|t|≤1/λ
exp

{
−δ

n∑
k=1

∫
|x|>0

(1− cos(tx))dLk(x)

}
dt

≤ Aδ−1/2

(
n∑

k=1

[∫
0<|x|<λk

x2dLk(x) + λ2k

∫
|x|≥λk

dLk(x)

])−1/2

.

(3.7)

2Let M be a function from R to R. M is called Lévy spectral function if it has the following properties:

• M is defined on R \ {0}

• M is nondecreasing on (−∞, 0) and on (0,∞) and is right continuous

• M(−∞) = 0 = M(∞)

•
∫
0<|x|<ε

x2dM(x) is finite for all ε > 0.
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Proof. If |x| ≤ 1, then 1− cosx ≥ 11
24x

2. For |t| ≤ 1/λ, we have∫
|x|>0

(1− cos(tx))dLk(x) =

∫
0<|x|<λk

(1− cos(tx))dLk(x) +

∫
|x|≥λk

(1− cos(tx))dLk(x)

≥ 11

24
t2
∫
0<|x|<λk

x2dLk(x) +

∫
|x|≥λk

(1− cos(tx))dLk(x).

We denote the left-hand side of the inequality (3.7) by I and we write

β0 = δ

n∑
k=1

∫
0<|x|<λk

x2dLk(x).

Then

I ≤
∫
|t|≤1/λ

exp

(
−11

24
β0t

2

) n∏
k=1

exp

(
−δ
∫
|x|≥λk

(1− cos(tx))dLk(x)

)
dt. (3.8)

Let

βk = δλ2k

∫
|x|≥λk

dLk(x) 1 ≤ k ≤ n,

B =
n∑

k=0

βk, αk/B 0 ≤ k ≤ n.

We have

B = δ
n∑

k=1

(∫
0<|x|<λk

x2dLk(x) + λ2k

∫
|x|≥λk

dLk(x)

)
. (3.9)

Without loss of generality we can assume that αk > 0 for all k. Appliying Hölder ’s inequality to
the right-hand side of (3.8), we have

I ≤
n∏

k=0

Iαk
k , (3.10)

where

I0 =

∫
|t|≤1/λ

exp

(
−11

24
Bt2

)
dt,

Ik =

∫
|t|≤1/λ

exp

(
− B

λ2k

∫ ∞

−∞
(1− cos(tx))dMk(x)

)
dt, k = 1, . . . , n,

where Mk(x) is a distribution function such that

dMk(x) =

{ 1
pk
dLk(x) if |x| ≥ λk
0 if |x| < λk

and

pk =

∫
|x|≥λk

dLk(x).

We note

I0 ≤
∫ ∞

−∞
exp

(
−11

24
Bt2

)
dt = A2B

−1/2, (3.11)

where A2 :=
√

24π/11. To estimate the integral Ik, k = 1, . . . , n, we use the Jensens inequality
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with e−x. Then

exp

(
− B

λ2k

∫ ∞

−∞
(1− cos(tx))dMk(x)

)
≤
∫ ∞

−∞
exp

(
− B

λ2k
(1− cos(tx))

)
dMk(x)

and

Ik ≤
∫
|x|≥λk

Jk(t, x)dMk(x),

where

Jk = Jk(t, x) :=

∫
|t|≤1/λk

exp

(
− B

λ2k
(1− cos(tx))

)
dt.

To prove (3.7) it is sufficient to show that for some constant A∗,

Jk ≤ A∗B
−1/2 if |x| ≥ λk and 1 ≤ k ≤ n, (3.12)

since that Ik ≤ A∗B
−1/2. In fact, from (3.10), (3.11), and

∑n
k=0 αk = 1 imply I ≤ A∗B

−1/2. Then
(3.7) follows from the latter inequality and from (3.9).

If λk ≤ |x| ≤ πλ, then |tx| ≤ π for |t| ≤ 1/λ. Using the inequality sinu/u ≥ 2/π for |u| ≤ π/2,
we obtain

1− cos(tx) = 2 sin2
tx

2
≥ 2

π2
t2x2 ≥ 2

π2
t2λ2k

and

Jk ≤
∫
|t|≤1/λk

exp

(
− 2

π2
Bt2

)
dt ≤ A3B

−1/2,

where A3 :=
√
π3/2.

Now we consider |x| > πλ, but it is sufficient to suppose when x > πλ. Then

λJk =
λ

x

∫
|u|≤x/λ

exp

(
−B

λ2
(1− cosu)

)
du

≤ 2λ

x

(⌊ x

2πλ

⌋
+ 1
)∫

|u|≤π
exp

(
−B

λ2
(1− cosu)

)
du

≤ 3

π

∫
|u|≤π

exp

(
−B

λ2
(1− cosu)

)
du,

because the function under the intengral sign has the period 2π. We have 1 − cosu ≥ u2/π2 for
|u| ≤ π. Therefore,∫

|u|≤π
exp

(
−B

λ2
(1− cosu)

)
du ≤

∫
|u|≤π

exp

(
− B

π2λ2
u2
)
du ≤ A4λB

−1/2,

where A4 :=
√
2π3. These estimates imply (3.12). □

To complete the proof of theorem 7 we apply lemma 12 to the integral on the right-hans side
of (3.6). So

Q(Sn;λ) ≤ Aλ

(
n∑

k=1

(∫
|x|<λk

x2dV s
k (x) + λ2k

∫
|x|≥λk

dV s
k (x)

))−1/2

.

□
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Note that for an arbitrary random variable ξ and every λ > 0, we have

λ2D(ξ;λ) =

∫
|x|<λ

x2dF (x) + λ2
∫
|x|≥λ

dF (x)

≥ λ2

4

∫
λ/2≤|x|<λ

+λ2
∫
|x|≥λ

dF (x)

≥ λ2

4
P
(
|ξ| ≥ λ

2

)
. (3.13)

By lemma 7 we have

P
(
|ξ| ≥ λ

2

)
≥ 1−Q(ξs;λ) ≥ 1−Q(ξ;λ), (3.14)

and hence
D(ξs;λ) ≥ 1−Q(ξ;λ). (3.15)

From inequalities (3.13) and (3.15), we have the next useful result.

Theorem 8 (Kolmogorov-Rogozin Inequality). Let ξ1, . . . , ξn be independent random variables,
Sn =

∑n
k=1 ξk. Let λ1, . . . , λn be positive numbers such that λk ≤ λ, k = 1, . . . , n. Then there

exists an absolute positive constant A, such that

Q(Sn;λ) ≤ Aλ

(
n∑

k=1

λ2kP
(
|ξsk| ≥

λk
2

))−1/2

(3.16)

Q(Sn;λ) ≤ Aλ

(
n∑

k=1

λ2k (1−Q(ξk;λk))

)−1/2

(3.17)

□

Kesten [36] obtained the following refinement of the above inequality.

Theorem 9. For the constant A of the Kolmogorov–Rogozin inequality and any independent ran-
dom variables ξ1, . . . , ξn, and real numbers 0 < λ1, . . . , λn ≤ 2λ, one has

Q(Sn;λ) ≤ 4 · 21/2(1 +A)L

∑n
i=1 λ

2
i [1−Q(ξi;λi)]Q(ξi, λ){∑n

i=1 λ
2
i [1−Q(ξi;λi)]

}3/2 .

□

Since ξ ∈ [x− λ/2, x+ λ/2] is equivalently to |ξ − x| ≤ λ/2. If a is a real number with |a| ≥ 1,
we have

Q(aξ;λ) = Q

(
ξ;
λ

|a|

)
≤ Q(ξ;λ). (3.18)

Let a1, . . . , an be real numbers such that |ak| ≥ 1, k = 1, . . . , n and let ξ1, . . . , ξn be independent
random variables. If there exists λ > 0 such that Q(ξk;λ) ≤ ρ ∈ (0, 1) for every k, we obtain from
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(3.21) and theorem 8

P

(
n∑

k=1

akξk = x

)
≤ P

(∣∣∣∣∣
n∑

k=1

akξk − x

∣∣∣∣∣ ≤ λ

)

≤ Q

(
n∑

k=1

akξk;λ

)
≤ A(1− ρ)−1/2n−1/2.

The above statement gives us the intuition that any linear combination of independent random
variables takes one particular value has small probability to happend. The next result establish
more formal this idea. This situation is called Linear Littlewood-Offord problem.

Theorem 10 (Linear Littlewood-Offord problem v.1). Let a1, . . . , an be real numbers diffenterent
from zero. Let ξ1, . . . , ξn be independent non-degenerate3 random variables. If for every k =
1, 2, . . . , n there exists λk > 0 such that Q(ξk;λk) ≤ ρ ∈ [0, 1). Then there exists an absolute
positive constant A such that

sup
x∈R

P

(
n∑

k=1

akξk = x

)
≤ A(1− ρ)−1/2n−1/2.

Proof. Let m = min{1≤k≤n} |ak| and λ = min{1≤k≤n} λk, by theorem 8 we have

P

(
n∑

k=1

akξk = x

)
≤ P

(∣∣∣∣∣
n∑

k=1

ak
m
ξk −

x

m

∣∣∣∣∣ ≤ λ

)

≤ Q

(
n∑

k=1

ak
m
ξk;λ

)
≤ A(1− ρ)−1/2n−1/2.

□

In the case that ξ1, . . . , ξn are i.i.d. random variables, we have in theorem 10 that λk = λ for
every k. Also, when r of the random variables ξ1, . . . , ξn are degenerate, we have

sup
x∈R

P

(
n∑

k=1

akξk = x

)
≤ A(1− ρ)−1/2(n− r)−1/2.

If ς = supx∈R P(ξ = x), then for every ∆ > 0, there exists δ = δ(∆) such that

ς ≤ Q(ξ; δ) ≤ ς + δ.

We denote ς + δ by ς∆. From this observation, we can obtain a little generalizarion of theorem 10
using theorem 9

Theorem 11 (⋆ The Linear Concentration Inequality v.2). Let ξ1, . . . , ξn be independent random
variables with non-degenerate distributions F1, . . . , Fn, respectively, and let α1, . . . , αn be real num-

3A random variable ξ is degenerate if there is x ∈ R with P(ξ = x) = 1.
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bers with αi ̸= 0, i = 1, . . . , n. Then

sup
x∈R

P

{
n∑

i=1

αiξi = x

}
= O

( ∑n
i=1(1− ς(i))ς∆(i)

{
∑n

i=1 [1− ς∆(i)]}3/2

)
, (3.19)

where the implicit constant in O(·) does not depend on Fi, i = 1, . . . , n.

Proof. Let a = min1≤i≤n {|αi|} and δ = min1≤i≤n {δi}, where δi > 0 satisfies ς∆(i) = Q(ξi, δi),
i = 1, . . . , n. We have for x ∈ R

P

{
n∑

i=1

αiξi = x

}
= P

{
n∑

i=1

αi

a
ξi =

x

a

}
= P

{
n∑

i=1

α′
iξi = x′

}
,

where αi/a = α′
i and x/a = x′. Now,

P

{
n∑

i=1

α′
iξi = x′

}
≤ sup

y∈R
P

{
n∑

i=1

α′
iξi ∈ [y, y + δ]

}

≤ 4 · 21/2(1 + 9C)

∑n
i=1(1− ς(i))ς∆(i)

{
∑n

i=1 [1− ς∆(i)]}3/2
,

the last expression following from theorem 9. □

If ς∆(i) < ς < 1 for all i, from theorem 11

sup
x∈R

P

{
n∑

i=1

αiξi = x

}
= O

(
ς√

(1− ς)3n

)
. (3.20)

When r of the random variables ξ1, . . . , ξn are degenerate for some 1 ≤ r < n; n is replaced by
n− r in (3.19).

From theorem 11, it is natural to ask what happens if we consider a polynomial of degree k in
ξ1, . . . , ξn. In the case k = 2, we have the Quadratic Littlewood-Offord problem.

In order to have a similar estimation as it was obtained in theorem 10, we will use a decouplig
argument.

Lemma 12 (Decoupling). Let X ∈ Rm1 and Y ∈ Rm2 be independent random variables, with
m1 +m2 = n, and let φ : Rn → R be a Borel function. Let X∗ be a copy independent of X which
is independent of Y . For any interval I of R, we have

P2 (φ(X,Y ) ∈ I) ≤ P (φ(X,Y ) ∈ I, φ(X∗, Y ) ∈ I) .

Proof. We note

P (φ(X,Y ) ∈ I, φ(X∗, Y ) ∈ I |Y = y ) = P (φ(X, y) ∈ I, φ(X∗, y) ∈ I)

= P2 (φ(X, y) ∈ I) .

The above expression implies

P (φ(X,Y ) ∈ I, φ(X∗, Y ) ∈ I |Y ) = P2 (φ(X,Y ) ∈ I) ,
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and finally
P2 (φ(X,Y ) ∈ I) ≤ P (φ(X,Y ) ∈ I, φ(X∗, Y ) ∈ I) .

□

Theorem 12 (⋆ The Quadratic Littlewood-Offord Inequality). Let ξ1, . . . , ξn be independent ran-
dom variables with non-degenerate distributions F1, . . . , Fn, respectively, and let (cij)1≤i,j≤n be a
symmetric n × n array of constants. Suppose S1 ⊔ S2 is a partition of {1, 2, . . . , n} such that for
each j ∈ S2, the set Nj := {i ∈ S1 : cij ̸= 0} is non-empty. Let

φ = φ {ξ1, . . . , ξn} =
∑

1≤i,j≤n

cijξiξj

be the quadratic form whose coefficients are cij. Then any x ∈ R

P {φ = x} = O


 1

|S2|
∑
j∈S2

 ∑
i∈Nj

(1− ς(i))ς∆(i){∑
i∈Nj

[1− ς∆(i)]
}3/2

+ sup
D⊂S2,|D|≥|S2|/2

∑
j∈D(1− ς(j))ς∆(j){∑
j∈D [1− ς∆(j)]

}3/2


1/2
 ,

where for ξ′i an independent copy of ξi, ς(i) and ς∆(i) are the jumps associated with ξi− ξ′i and ς(j)
and ς∆(j) are the jumps associated with ξj. The implicit constant in O(·) does not depend on Fi,
i = 1, . . . , n.

Proof. Let δ = min1≤i≤n {δi} where δi > 0 satisfies ς∆(i) = Q(ξi, δi), i = 1, . . . , n. If x ∈ R,
we have

P {φ = x} ≤ P {φ ∈ [x, x+ δ/2]} .

Write I = [x, x + δ/2], X = (ξi : i ∈ S1), Y = (ξi : i ∈ S2) and X ′ = (ξ′i : i ∈ S1), with X ′

independent of X and Y , but having the same distribution as X. By lemma 12,

P2 {φ(X,Y ) ∈ I} ≤ P
{
φ(X,Y ) ∈ I, φ(X ′, Y ) ∈ I

}
≤ P

{
φ(X,Y )− φ(X ′, Y ) ∈ [−δ/2, δ/2]

}
.

We can rewrite φ(X,Y )− φ(X ′, Y ) as

φ(X,Y )− φ(X ′, Y ) = g(X,X ′) + 2
∑
j∈S2

ξj

∑
i∈S1

cij
(
ξi − ξ′i

)
= g(X,X ′) + 2

∑
j∈S2

ξjηj ,

where g(X,X ′) =
∑

i,j∈S1
cij(ξiξj − ξ′iξ

′
j) and ηj =

∑
i∈S1

cij (ξi − ξ′i).

Let ζ be the number of ηj which are equal to zero. If J = [−δ/2, δ/2], we have

P
{
φ(X,Y )− φ(X ′, Y ) ∈ J

}
≤ P

{
φ(X,Y )− φ(X ′, Y ) ∈ J, ζ ≤ |S2|

2

}
+ P

{
ζ >

|S2|
2

}
.
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Since ζ =
∑

j∈S2
1{ηj=0}, using theorem 11, we have

E (ζ) =
∑
j∈S2

P {ηj = 0} =
∑
j∈S2

P

∑
i∈Nj

cij
(
ξi − ξ′i

)
= 0


=
∑
j∈S2

O

 ∑
i∈Nj

(1− ς(i))ς∆(i){∑
i∈Nj

[1− ς∆(i)]
}3/2

 ,

where ς(i) and ς∆(i) are the jumps associated with ξi − ξ′i. By Markov’s inequality, we obtain

P
{
ζ >

|S2|
2

}
≤ 2

|S2|
E (ζ) =

1

|S2|
∑
j∈S2

O

 ∑
i∈Nj

(1− ς(i))ς∆(i){∑
i∈Nj

[1− ς∆(i)]
}3/2

 .

For M := {j ∈ S2 : ηj ̸= 0}, we note that (i) M is a random set which depends only on X,X ′

and (ii) |M | ≥ |S2|/2 whenever ζ ≤ |S2|/2. Thus for a given realization x, x′ of X,X ′ respectively,
we have

P
{
φ(x, Y )− φ(x′, Y ) ∈ J

∣∣∣ ζ ≤ |S2|
2

}
= P

2
∑
j∈S2

ξjηj ∈ J ′
∣∣∣ ζ ≤ |S2|

2

 ,

where J ′ = [−g(x, x′)− δ/2,−g(x, x′) + δ/2]. Then by theorem 11,

P
{
φ(x, Y )− φ(x′, Y ) ∈ J

∣∣∣ ζ ≤ |S2|
2

}
= O

 ∑
j∈M(x,x′)(1− ς(j))ς∆(j){∑
j∈M(x,x′) [1− ς∆(j)]

}3/2

 ,

where M(x, x′) is the set M obtained for the realization x, x′ of X,X ′. So

P
{
φ(X,Y )− φ(X ′, Y ) ∈ J

∣∣∣ ζ ≤ |S2|
2

}
=

= E
(
P
{
φ(X,Y )− φ(X ′, Y ) ∈ J

∣∣∣ ζ ≤ |S2|
2
, X,X ′

})

= E

O

 sup
D⊂S2,|D|≥|S2|/2

∑
j∈D(1− ς(j))ς∆(j){∑
j∈D [1− ς∆(j)]

}3/2




= O

 sup
D⊂S2,|D|≥|S2|/2

∑
j∈D(1− ς(j))ς∆(j){∑
j∈D [1− ς∆(j)]

}3/2

 .

Hence

P {φ = x} = O


 1

|S2|
∑
j∈S2

 ∑
i∈Nj

(1− ς(i))ς∆(i){∑
i∈Nj

[1− ς∆(i)]
}3/2

+ sup
D⊂S2,|D|≥|S2|/2

∑
j∈D(1− ς(j))ς∆(j){∑
j∈D [1− ς∆(j)]

}3/2


1/2
 .
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□

In theorem 12, if we suppose that ς∆(i) < ς < 1 for every k, |S1| = |S2| = n/2, and |Nj | ≥ n1−ε

for all j and ε > 0, we have

sup
x∈R

P {φ = x} = O

[ ς√
(1− ς)3n1−ε

]1/2 . (3.21)

Even as theorem 11, we have if 1 ≤ r ≤ n of the random variables ξ1, . . . , ξn are degenerate, in
this situation, n is replaced by n− r in (3.21).
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Chapter 4

Ginibre and Wigner Matrices

4.1 Introduction

This chapter contains some of the main contributions of this thesis. We prove the universal asymp-
totically almost sure non-singularity of the Ginibre andWigner matrices. The problem of estimating
the probability that a Ginibre matrix is singular is a basic problem in the theory of random ma-
trices and combinatorics [5]. Theorem 13.a establishes, under the assumptions that the entries of
an n × n Ginibre matrix are independent random variables with possibly different distributions
(possibly without moments and a few are allowed to be degenerate) which depend on the dimen-
sion of the matrix, that it is singular with probability at most CGn

−1/2, where the constant CG

depends basically on the maximum of the jumps of the distributions of the entries. The proof of
Theorem 13.a follows the ideas in [65], which considered the discrete uniform case and used a linear
Littlewood–Offord inequality.

Theorem 13.b, under the same assumptions as for the Ginibre case, gives that an n×n Wigner
matrix is singular with probabilty at most CWn

−(1−ε)/4, for any ε ∈ (0, 1), where the constant CW

depends basically on ε and the maximum of the jumps of the distributions of the entries. The proof
of Theorem 13.b follows the ideas in [11], which considered the Bernoulli case and used a quadratic
Littlewood–Offord inequality.

Our Wigner models include the adjacency matrices of Erdös–Rényi random graphs [8]. The
distribution of the entries of the adjacency matrix of this random graphs depend on the dimension
of the matrix. For this reason we present one example of the application of Theorem 13.b to the
non-singularity of the adjacency matrix of a random graph.

Proposition 2 shows basically how to construct a sequence of Ginibre matrices from an arbi-
trary sequence of distribution functions, such that the probability of the singularity of the Ginibre
matrices goes to one. The proof of this statement follows the pioneering ideas of Komlós in [40],
which have been widely used in this area.

The main results in this chapter were published by the author in joint work with Pérez–Abreu
and Roy [45].

4.2 Main results and applications

First, we introduce some definitions that it will be used in the rest of this chapter.

Definiton 1. An n × n matrix Gn = (ξi,j)1≤i,j≤n is called Ginibre matrix if ξi,j , i, j = 1, . . . , n
are independent random variables.

41
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Definiton 2. An n× n symmetric matrix Wn = (ξi,j)1≤i,j≤n is called Wigner matrix if ξi,j , 1 ≤
i ≤ j ≤ n are independent random variables.

Given a collection of non-degenerate distribution functions {F (n)
ij : i, j ≥ 1, n ≥ 1} and a

subsequence {mn : n ≥ 1}, we study the singularity of the mn × mn matrix with independent

entries ξ
(n)
kl governed by the distribution function F

(n)
kl for every 1 ≤ k, l ≤ mn. Let us denote by ςn

the biggest jump of the distribution functions F
(n)
ij , 1 ≤ i, j ≤ mn, i.e., if ςi,j = supx∈R P{ξni,j = x},

then
ςn = max

1≤i,j≤n
{ςi,j}. (4.1)

We give a sufficient condition for mn = n in terms of the sequence of biggest jumps (ςn)n≥1.

Theorem 13 (⋆ Universality of the non-singularity of Ginibre and Wigner matrices). With the

notation as above, let G
(n)
r and W

(n)
r be the r × r Ginibre and Wigner matrices respectively, each

with entries ξ
(n)
i,j , 1 ≤ i ≤ j ≤ r. Assume that ςn < ς ∈ [0, 1) for all n

a) As n→ ∞
P
{
rank(G(n)

n ) < n
}
= O

(
n−1/2

)
, (4.2)

where the implicit constant in O(·) depends on ς.

b) For any ε ∈ (0, 1),

P
{
rank(W (n)

n ) < n
}
= O

(
n−(1−ε)/4

)
, (4.3)

where the implicit constant in O(·) depends on ε and ς.

As an application of the Wigner case, we obtain an estimation of the probability that the
adjacency matrix of a sparse random graph (not necessarily an Erdös-Rényi graph) is non-singular.
Costello and Vu [12] have analyzed the adjacency matrices of sparse Erdös-Rényi graphs, where
each entry is equal to 1 with the same probability p(n) which tends to 0 as n goes to infinity (see
also Costello and Vu [13] where a generalization of [11] is considered in which each entry takes the
value c ∈ C with probability p and zero with probability 1−p, and the diagonal entries are possibly
non-zero). It is proved in [12] that when c ln(n)/n ≤ p(n) ≤ 1/2, c > 1/2, then with probability
1−O((ln ln(n))−1/4), the rank of the adjacency matrix equals the number of non-isolated vertices.
Now we consider the following model extension of Erdös-Rényi graphs, where vertices i and j are
linked with a probability that depends on i and j and the number of vertices. Furthermore, the
rate of convergence is an improvement of the one given in [12] for c lnn/nβ ≤ p(n) ≤ 1/2 with
c > 0 and β ∈ (0, 1). From the proof of Theorem 13.b in section 4, if κn = 1− p(n), we have

κ
3
8
n− 1

2
n1−ε

n

κn(1− κn)
≤
(

κ2n
n1−ε(1− κn)

)1/4

≤
(
(1− c(lnn/nβ))2

n1−ε−β lnn

)1/4

→ 0

as n→ ∞, if ε+ β < 1.

Also, we notice that Theorem 13 provides us a first clue about what kind of matrices are “bad
matrices” for testing a matrix algorithm. System of linear equations with Ginibre and Wigner
matrices have solution with high probability for large variety of random entries. Hence, Theorem
13 tells us that we must understand the behavior of extreme singular values of a random matrix,
as we will study in the next chapter for a circulant matrix, when we like to know the degree of
singularity of a random matrix.
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Proposition 1 (⋆). Let {pij ∈ (0, 1) : i, j = 1, 2, . . .} be a double sequence of positive numbers
with p∗n = min1≤i≤j≤n{pij} ∈ [c lnn/nβ, 1/2], c > 0, and ε + β < 1, ε, β ∈ (0, 1), then there is a
random graph with n vertices such that the vertex i is linked with the vertex j with probability pij,
1 ≤ i < j ≤ n, and if An is its the adjacency matrix, we have as n→ ∞

P {rank(An) < n} ≤ Cn−(1−ε−β)/4, (4.4)

for some constant C > 0.

In the following sections we develop the proof of Theorem 13. For the rest of this chapter, all
our random variables satisfy

sup
x∈R

P{ξ = x} ≤ ς∆(ξ) < ς < 1.

4.3 Proof in the Ginibre case

We start with an extension of a result by Slinko [65], who treated the case of a discrete uniform
distribution with parameter 1/q with q ∈ Z+.

Lemma 13. Let k ≤ m and let A ∈ Rm×k be a (deterministic) matrix with rank(A) = k. If b ∈ Rm

is a random vector whose entries are independent random variables, then

P {rank(A, b) = k} ≤ ςm−k.

Proof. Since rank(A) = k, we can decompose [A b] in the following way

[A b] =

(
Ak bk
Am−k bm−k

)
,

where Ak ∈ Rk×k, Am−k ∈ R(m−k)×k, bk ∈ Rk and bm−k ∈ Rm−k. We note Ak is an invertible
matrix. We have that there exists a random vectorD ∈ Rk such that AkD = bk and Am−kD = bm−k,
then Am−kA

−1
k bk = bm−k. So

P {r(A, b) = k} ≤ P
{
Am−kA

−1
k bk = bm−k

}
= E

{
P
{
Am−kA

−1
k bk = bm−k

∣∣Am−kA
−1
k bk

}}
≤ ςm−k,

the last inequality being due to the independence of every entry in bm−k. □

Lemma 14. Let k ≤ m and let A ∈ Rm×k be a random matrix (whose entries are independent
random variables). Then

P {rank(A) < k} < ς

1− ς
ςm−k.

Proof. We note that if A = [a1| · · · |ak], ai ∈ Rm i = 1, . . . , k, then

P{rank(A) = k} = P{a1 /∈ {0}, a2 /∈ span{a1}, . . . , ak /∈ span{a1, a2, . . . , ak−1}}

= P{a1 /∈ {0}}
k∏

i=2

P{Ei},
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where we use the notation span{·} for the space generated by some vectors and

Ei = {ai /∈ span{a1, a2, . . . , ai−1} |a1 /∈ {0}, a2 /∈ span{a1}, . . . , ai−1 /∈ span{a1, a2, . . . , ai−2}}.

Hence by lemma 13 and the Weierstrass product inequality1,

P{rank(A) = k} ≥
k−1∏
i=0

(1− κm−i) ≥ 1−
k−1∑
i=0

κm−i = 1− κ

1− κ
κm−k.

□

We consider the following concept used by Komlós [8]. Let S = {v1, . . . , vn} be a set of vectors.
Let us define the strong rank of S, denoted sr(S), to be n if S is a set of linearly independent
vectors, and k if any k of the vi’s are linearly independent but some k+1 of the vectors are linearly
dependent. For a matrix A, we denote the strong rank of the system of columns and the strong
rank of the system of rows by src(A) and srr(A), respectively.

Remark 1. (a) Let A be an m× n random matrix with all entries independent random variables.
It follows immediately from lemma 14 that

P {src(A) < k} ≤
(
n

k

)
κ

1− κ
κm−k.

(b) For every ς and 0 < α ≤ 1 there exists β > 0 which satisfies

h(β)

log2 ς
+ β < α < 1, (4.5)

where h(x) = −x log2(x)− (1− x) log2(1− x) is the entropy function. Indeed, let

g(x) =
h(x)

log ς
+ x.

Now, since the function g is continuous and g(0) = 0, there exists a positive number β > 0, which
depends on ς, such that g(β) < α < 1.

c) We note from (a) and (b) that if m = ⌊αn⌋ and k = ⌈βn⌉, then

P {rank(A) < ⌈βn⌉} <
(

n

⌈βn⌉

)
ς

1− ς
ς⌊αn⌋−⌈βn⌉ <

ς

1− ς
2n(h(β)−(α−β) log2(ς)) <

ς

1− ς
2−nγς ,

where we use
(
n
βn

)
< 2nh(β) and γς is a positive constant which depends on ς.

Lemma 15. Let v1, v2, . . . , vk ∈ Rm be (deterministic) linearly independent vectors. Let B =
[v1| . . . |vk] and scr(B) = s. Then for a random vector a ∈ Rm whose entries are independent
random variables,

P {rank(v1, v2, . . . , vk, a) = k} < C1ς
m−ks−1/2.

1Weierstrass product inequality. For 0 ≤ a1, a2, . . . , an ≤ 1, then

n∏
k=1

(1− ak) +

n∑
k=1

ak ≥ 1.
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Proof. Although simple, for the sake of completeness we include the proof. Let b1, b2, . . . , bm be
the rows of B. Without loss of generality we may assume that b1, b2, . . . , bk are linearly independent
and that all other rows are linear combination of them. We have

k∑
i=1

β
(r)
i bi = b(r)

for r = k + 1, . . . ,m. As scr(B) = s, at least s of the coefficients β
(r)
1 . . . , β

(r)
k are nonzero.

Now, since we consider the event [rank(v1, v2, . . . , vk, a) = k], we have

k∑
j=1

αjvj = a

for some α1 . . . , αk not all zero. In particular
∑k

j=1 αjvk+1,j = ak+1, where ak+1 is the (k + 1)th
entry of a. But

ak+1 =

k∑
j=1

αjvk+1,j =

k∑
j=1

αj

(
k∑

i=1

β
(k+1)
i vi,j

)
=

k∑
i=1

β
(k+1)
i

 k∑
j=1

αjvi,j

 =

k∑
i=1

β
(k+1)
i ai.

From the above and the independence of the entries of a,

P {rank(v1, v2, . . . , vk, a) = k} ≤ P

{
k∑

i=1

β
(r)
i ai = ar, r = k + 1, . . . ,m

}

= E

{
P

{
k∑

i=1

β
(r)
i ai = ar, r = k + 1, . . . ,m | a1, . . . , ak

}}

= E

{
P

{
k∑

i=1

β
(m)
i ai = am | a1, . . . , ak

}
m−1∏
l=k+1

P

{
k∑

i=1

β
(l)
i ai = al | a1, . . . , ak

}}

≤ E

{
ςm−k−1P

{
k∑

i=1

β
(m)
i ai = am | a1, . . . , ak

}}

= ςm−k−1P

{
k∑

i=1

β
(m)
i ai = am

}
≤ C1ς

m−ks−1/2,

the last line being due to Theorem 11 and expression (3.20). □

Proof of Theorem 13.a. Let α ∈ (0, 1) and β > 0 be as in expression (4.5) and let n0 = ⌊αn⌋.
Let B be the n0 × n matrix whose columns are the first n0 columns of Gn.

From lemma 14 we can assume that B has full rank. Since

P{rank(Gn) = n} = P{rank(Gn) = n, srr(B) < βn}+ P{rank(Gn) = n, srr(B) ≥ βn},
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by lemma 15 and remark 1, we have

P{rank(Gn) = n} ≥
n−n0∏
i=1

(
1− C1(βn)

−1/2ς i
)
≥ 1− C1

1− ς
(βn)−1/2,

which proves Theorem 13.a. □

We now turn to Theorem 13. A natural question is to understand what happens when ςn → 1.
The following proposition says something about this situation.

Proposition 2 (⋆). For any sequence {ςn ∈ [0, 1] : n ≥ 1} there is a sequence {Gmn = (ξi,j)1≤i,j≤mn}
such that:

• Gmn is a mn ×mn Ginibre matrix

• ξi,j, 1 ≤ i, j ≤ mn, have the same distribution Fmn

• ςn is the maximum jump of Fmn

• P{Gmn has full rank } → 1 n→ ∞
Proof. Let F1 be a distribution function whose biggest jump is ς1. We take mn = 1 and δ1 = ς1/2,
then P{Gm1 has full rank } > 1− δ1. Now, let Fn be a distribution function whose biggest jump is
ςn. By Lemma 2 in [40], there is mn ≥ mn−1 and δn ≤ 1/n ≤ for n > 1 such that

P{Gmn has full rank } > 1− δn,

where the entries of Gmn have the same distribution and δn → 0 as n→ ∞. □

In the following examples we can see that if ςn → 1 at some appropiate rate, the probability of
a singularity can behave differently.

We write GB(n, p) (WB(n, p)) for a n × n Ginibre (Wigner) matrix whose entries obey a
Bernoulli distribution on {0, 1} with parameter p.

Let ZGBn (ZWBn) be the event that the first row of GB(n, 1/n), (WB(n, 1/n)) contains only
zeros. Then

P {ZGBn} =

(
1− 1

n

)n

, P {ZWBn} =

(
1− 1

n

)n

,

and hence
e−1 ≤ lim

n→∞
P {rank (GB (n, 1/n)) < n} ,

e−1 ≤ lim
n→∞

P {rank (WB (n, 1/n)) < n} .

However, if α ∈ (0, 1), then there is a constant Cα > 0

P {rank (WB (n, nα/n)) < n} ≤ n−Cα . (4.6)

In the Ginibre case it is not clear what happens when ςn = nα/n, but if γ ∈ (0, 1), then

P{rank (GB (n, nα/n)) > γn} → 1 as n→ ∞. (4.7)

4.4 Proofs in the Wigner case

Following the terminology introduced in Costello, Tao and Vu [11], given n vectors {v1, . . . , vn}, a
linear combination of the v′is is a vector v =

∑n
i=1 civi, where the ci are real numbers. We say that
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a linear combination vanishes if v is the zero vector. A vanishing linear combination has degree k
if exactly k among the ci are nonzero.

A singular n× n matrix is called normal if its row vectors do not admit a non-trivial vanishing
linear combination with degree less than n1−ε for a given ε ∈ (0, 1). Otherwise it is said that
the matrix is abnormal. Furthermore, a row of an n × n non-singular matrix is called good if its
exclusion leads to an (n− 1)× n matrix whose column vectors admit a non-trivial vanishing linear
combination with degree at least n1−ε (in fact, there is exactly one such combination, up to scaling,
as the rank of this (n− 1)×n matrix is n− 1). A row is said to be bad otherwise. Finally, an n×n
non-singular matrix A is perfect if every row in A is good. If a non-singular matrix is not perfect,
it is called imperfect.

For the proof of Theorem 13.b, we first present three lemmas which generalize results in [11]
for Wigner matrices Wn = (ξij) with independent entries which need not be identically distributed
and the appropriate estimates in these new cases are found in terms of the size of the biggest jump
of the distribution functions governing the entries under the hypothesis ς∆(i) < ς < 1. We also
obtain a better rate of convergence, which is universal. The proofs we give follow ideas in [11] but
also take into account the size of the biggest jump.

Lemma 16. Let ε ∈ (0, 1), then for all n large

P {Wn is singular and abnormal} ≤ ς(n−n1−ε)/2 (4.8)

and
P {Wn is non-singular and imperfect} ≤ ς(n−n1−ε)/2. (4.9)

Proof. If Wn is singular and abnormal the row vectors of Wn admit a non-trivial vanishing
linear combination with degree at most N := n1−ε. For i = 1, . . . , N , we have that if i = 1, there is
a row of Wn that contains only zeros, and if i > 1, the ith row is a linear combination of the first
i − 1 rows of Wn that are linearly independent. We denote by D(n, i) this last event and by Ti−1

the upper triangular part of Wn until the row i − 1 (included). The linear dependence of the ith
row of Wn with the i− 1 rows of Wn is determined only by its last n− i+ 1 entries. Then by the
stochastic independence of Ti−1 with the last n− i+ 1 entries of the row i

P {Wn is singular and abnormal} ≤
N∑
i=1

(
n

i

)
P {D(n, i)} ≤

N∑
i=1

(
n

i

)
E {P {D(n, i)|Ti−1}}

≤
N∑
i=1

nN ςn−N+1 = NnN ςn−N+1,

and for all n large,

P {Wn is singular and abnormal} ≤ ς
3
4
(n−n1−ε) ≤ ς

1
2
(n−n1−ε).

Now, we consider the case when Wn is non-singular and imperfect. We can suppose that the
last row of Wn is the bad row. The (n − 1) × n-matrix obtained has rank n − 1, hence there is a
unique column that admits a non-trivial vanishing linear combination with degree at most n1−ε.
Then the last n− k − 1 entries of this column are completely determined by its k first entries and
k linearly independent columns, for 1 ≤ k ≤ n1−ε. Since we can choose this bad row, we have as
above for n large

P {Wn is non-singular and imperfect} ≤ nς
3
4
(n−1−(n−1)1−ε) ≤ ς

1
2
(n−n1−ε).
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□

Lemma 17. Let A be a deterministic n× n singular normal matrix. Then

P {rank(Wn+1)− rank(Wn) < 2 |Wn = A} = Oε

(
ς√

n1−ε(1− ς)3

)
.

Proof. Since r := rank(A) < n, without loss of generality it is possible to suppose that the first
r rows of A are linearly independent. If v1, . . . , vr are the first rows of A, then vn =

∑r
i=1 αivi, and

as A is normal, the number of coefficients in this linear combination is at least n1−ε. If it does not
hold that ξn =

∑r
i=1 αiξi, where ξi are entries of the last column of Wn+1, by symmetry of Wn+1

we have rank(Wn+1) = rank(A) + 2. Hence

P {rank(Wn+1)− rank(Wn) < 2 |Wn = A} ≤ P

{
ξn =

r∑
i=1

αiξi

}

= Oε

(
ς√

n1−ε(1− ς)3

)
.

The last expression follows from expression (3.20). □

Lemma 18. Let A be a deterministic n× n non-singular perfect symmetric matrix. Then

P {rank(Wn+1) = n |Wn = A} = Oε

[ ς√
n1−ε(1− ς)3

]1/2 .

Proof. If rank(Wn+1) = n, then det(Wn+1) = 0, and we have

0 = det(Wn+1) = (detA)ξn+1 +

n∑
i=1

n∑
j=1

cijξiξj ,

where ξi are entries of the last column of Wn+1 and its transpose, and the cij are the cofactors
of A. Since A is perfect, when we eliminate the ith row of A, the columns of the matrix thus
obtained admit a vanishing linear combination of degree at least n1−ε. When the column j is
selected, where j is the index of a non-zero coefficient in this linear combination, we obtain an
(n− 1)× (n− 1) non-singular matrix since there are at least n1−ε indices i such that there are at
least n1−ε indices j with ci,j ̸= 0. Taking the partition of {1, 2, . . . , n} as S1 = {1, 2, . . . , ⌊n/2⌋}
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and S2 = {1, 2, . . . , n} − S1, by expression (3.21)

P {rank(Wn+1) = n |Wn = A} ≤ P

(detA)ξn+1 +

n∑
i=1

n∑
j=1

cijξiξj = 0


= E

P

(detA)ξn+1 +
n∑

i=1

n∑
j=1

cijξiξj = 0 | ξn+1




= E

Oε

[ ς√
n1−ε(1− ς)3

]1/2
= Oε

[ ς√
n1−ε(1− ς)3

]1/2 .

□

Now we consider the discrete stochastic process

Xn =

{
0 if rank(Wn) = n(
ς−1/8

)n−rank(Wn)
if rank(Wn) < n,

for which we can prove the following result.

Proposition 3.

E (Xn) = Oε

[ ς√
n1−ε(1− ς)3

]1/2 .

Proof. For j = 0, . . . , n, write Aj = {rank(Wn) = n− j} and let 1 + γ = ς−1/8. We have

E (Xn) =

n∑
j=1

(1 + γ)jP {Aj}

=

n∑
j=1

(1 + γ)jP {Aj , Wn normal}+ S1,

where

S1 =
n∑

j=1

(1 + γ)jP {Aj , Wn abnormal} .
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By lemma 16,

S1 ≤
n∑

j=1

(1 + γ)jς(n−n1−ε)/2

≤ ς(n−n1−ε)/2
n∑

j=1

(1 + γ)j

≤ 1− (ς−1/8)n+1

1− ς−1/8
ς(n−n1−ε)/2

= Cς(3n−4n1−ε)/8

for some constant C > 0.

So

E (Xn) =
n∑

j=1

(1 + γ)jP {Aj , Wn normal}+Oε

(
ς(3n−4n1−ε)/8

)
. (4.10)

On the other hand,
E (Xn+1) = S2 + S3 + S4 + S5,

where

S2 = E (Xn+1 |A0,Wn perfect)P {A0, Wn perfect}
S3 = E (Xn+1 |A0,Wn imperfect)P {A0, Wn imperfect}

S4 =
n∑

j=1

E (Xn+1 |Aj ,Wn normal)P {Aj , Wn normal}

S5 =

n∑
j=1

E (Xn+1 |Aj ,Wn abnormal)P {Aj , Wn abnormal} .

By lemma 18 and the fact that rank(Wn) = n,

S2 ≤ (ς−1/8)n+1−nP{rank(Wn+1) = n |Wn is perfect and non-singular}

= Oε

[ ς√
n1−ε(1− ς)3

]1/2 .

On the other hand, lemma 16 and the definition of Xn+1 give

S3 ≤ (ς−1/8)n+1ς(n−n1−ε)/2 = Oε

(
ς(3n−4n1−ε)/8

)
.

Using again lemma 16 and the definition of Aj ,

S5 ≤
n∑

j=1

(ς−1/8)j+1ς(n−n1−ε)/2 = Oε

(
ς(3n−4n1−ε)/8

)
.

If rank(Wn) = n− j, then rank(Wn+1) is equal to n− j +2 or n− j since Wn+1 is a symmetric
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matrix. By lemma 17 and for n sufficiently large,

E (Xn+1 |Aj ,Wn normal) = (1 + γ)j+1P{rank(Wn+1) = rank(Wn) |Wn normal and singular}
+ (1 + γ)j−1

= (1 + γ)j

(
(1 + γ)−1 +Oε

(
ς√

n1−ε(1− ς)3

))
≤ α(1 + γ)j

for some α < 1.
Then we have

E(Xn+1) = α

n∑
j=1

(1 + γ)jP{Aj ,Wn normal}+Oε (f(ς, n)) ,

where

f(ς, n) :=
ς

3
8
n− 1

2
n1−ε

ς(1− ς)
+

[
ς√

n1−ε(1− ς)3

]1/2
.

Using the expression (4.10)

E(Xn+1) ≤ αE(Xn) + Oε (f(ς, n)) ,

so
E(Xn+1) ≤ αnE(X1) + Oε (f(ς, n)) .

This proves the proposition. □

Proof of Theorem 13.b. By Markov’s inequality,

P {rank(Wn) < n} = P {Xn ≥ 1}
≤ E (Xn)

= Oε

[ ς√
n1−ε(1− ς)3

]1/2 , (4.11)

where we have used proposition 3. □
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Chapter 5

Circulant Random Matrices

5.1 Introduction

This chapter is about our research in the analysis of the minimum singular value sn(Cn) of a
circulant random matrix Cn.

In Section 5.2 we give the main contributions to the question of the singularity of a circulant
random matrix, and a new result of independent interest in the theory of random polynomials.
Theorem 14 shows that when the first row of Cn has independent and identically distributed random
variable entries with moment generating function and zero mean, we have sn(Cn) ≥ εn−1/2 with
high probability, for any ε > 0. A classic result in random polynomial theory says that the roots of a
random polynomial become concentrated near the unit circle as the degree of the polynomial goes to
infinity, with probability one [4]. Theorem 15 determines the speed of the movement of the roots of
a random polynomial towards the unit circle. The proof of Theorem 14 is then a direct application
of Theorem 15, whose proof follows ideas in [42]. Theorem 16 states that when a circulant random
matrix has prime dimension and its entries are allowed to have general distribution (no moment
assumptios), it is invertible with high probability. The proof of this result uses some properties of
the concentration of a linear combination of Rademacher random variables mentioned in [51].

In Sections 5.3, 5.4, and 5.5, we give the proofs of the above three theorems in this chapter.
Section 5.6 presents additional contributions. Theorem 19 gives an upper bound for the expecta-
tion of the maximum singular value of a circulant random matrix whose entries are sub-Gaussian
random variables not necessarily indenpendent. Corollary 1 gives some additional results about the
minimum singular value of g-circulant matrices, which are a generalization of circulant matrices.
Finally, using a result on random polynomials whose coefficients are independent but not identically
distributed random variables, we establish a condition for the singular value of a circulant random
matrix to be large.

In a personal communication from S. V. Koyagin, I was told that he and his student, A. G.
Karapetyan, did not continue to work on the minimum value of a random polynomial near the unit
circle, and he encouraged me to study in detail the case of sub-Gaussian variables.

The main results in this chapter are collected in the coauthored with Gerardo Barrera in
manuscript [3].

53
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5.2 Singularity of a circulant random matrix

An n× n circulant matrix circ(c0, . . . , cn−1) has the form

circ(c0, . . . , cn−1) :=


c0 c1 · · · cn−2 cn−1

cn−1 c0 · · · cn−3 cn−2
...

...
. . .

...
...

c1 c2
. . .

... c0

 ,
where c0, . . . , cn−1 ∈ C. It is well known that any circulant matrix can be diagonalized in C as
follows: Let ωn := exp

(
i2πn
)
, i2 = −1, and

Fn :=
1√
n


1 1 1 · · · 1
1 ωn ω2

n · · · ωn−1
n

1 ω2
n ω4

n · · · ω
2(n−1)
n

...
...

...
...

1 ωn−1
n ω

2(n−1)
n · · · ω

(n−1)(n−1)
n

 .

The matrix Fn is called the Fourier matrix of order n. Note that Fn is a unitary matrix. By a
straightforward computation, one can readily verify that

circ(c0, . . . , cn−1) = F ∗
ndiag

(
Gn(1), Gn(ωn), . . . , Gn(ω

n−1
n )

)
Fn,

where Gn is the polynomial given by

Gn(z) := c0 + c1z + · · ·+ cn−1z
n−1.

We have that the eigenvalues of circ(c0, . . . , cn−1) are Gn(1), Gn(ωn), . . . , Gn(ω
n−1
n ), or equiva-

lently

Gn(ω
k
n) =

n−1∑
j=0

cj exp

(
i
2πkj

n

)
k = 0, . . . , n− 1. (5.1)

Now, we consider an n × n random circulant matrix Cn with independent entries, i.e., Cn :=
circ(ξ0, . . . , ξn−1), where ξ0, . . . , ξn−1 are independent random variables.

The maximum and minimum singular values of a circulant matrix Cn are given by

s1(Cn) = max
0≤k≤n−1

∣∣∣Gn(ω
k
n)
∣∣∣

and
sn(Cn) = min

0≤k≤n−1

∣∣∣Gn(ω
k
n)
∣∣∣ .

If ξ0, . . . , ξn−1 have continuous distribution, then

P (Cn is singular) = 0

since P
(
Gn(ω

k
n) = 0

)
= 0 for all k. If ξ0, . . . , ξn−1 have discrete distribution, estimate the proba-

bility that Cn is singular is not easy.
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Note
min

z∈C:|z|=1
|Gn(z)| ≤ sn(Cn). (5.2)

It is clear that ωk
n satisfies |ωk

n| = 1 for every k = 0, . . . , n− 1. So, if Gn does not have any root in
T := {z ∈ C : |z| = 1}, we have that Cn is a non-singular matrix.

In [27], it was shown that if Gn(z) =
∑n−1

j=0 ξjz
j is a random polynomial with (real or complex)

i.i.d. coefficients, its roots are asymptotically concentrated around T as n → ∞ almost surely.
Moreover, it was also proved that the condition E (log(1 + |ξ0|)) <∞ is necessary and sufficient for
the roots of Gn to be asymptotically near the unit circle. If z∗n,j , j = 0, . . . , n − 1 are the roots of
Gn, we have for all ε > 0

min
0≤j,k≤n−1

∣∣∣z∗n,j − ωk
n

∣∣∣ < ε as n→ ∞ a.s.

The left–hand side of (5.2) was studied in [32], [34], [41] and [42]. In [42], it was shown that if
Gn has i.i.d. Rademacher or standard normal random coefficients, then for all ε > 0 and large n,
we have with high probability

min
z∈C:|z|=1

|Gn(z)| > εn−1/2.

In [32] and [34] the sub-Gaussian case was studied, but there was no proof. Even so, we give a
generalization of the main result in [42], which includes the sub-Gaussian case.

Theorem 15 is itself an interesting result about random polynomials because it provides a fine
estimate of the distance between the roots of Gn and the unit circle. Many results on random
polynomials are about the location of their roots via the convergence of the empirical distribution
of the roots of Gn.

The main results in this chapter are the following:

Theorem 14 (⋆Minimum singular value of a circulant random matrix). Let ξ be a random variable
with moment generating function such that E (ξ) = 0 and E

(
ξ2
)
= σ2 > 0. Let {ξk}k≥0 be a

sequence of independent random variables with ξk
D
= ξ for every k ≥ 0. Let Cn := circ(ξ0, . . . , ξn−1)

be an n× n circulant matrix. Then for all ε > 0 and for all large n,

P(sn(Cn) ≥ εn−1/2) ≥ 1− Cε,

where C is a constant depending on ξ.

Theorem 15 (⋆ Roots of a random polynomial). Let ξ be a random variable with moment gener-
ating function such that E (ξ) = 0 and E

(
ξ2
)
= σ2 > 0. Let {ξk}k≥0 be a sequence of independent

random variables with ξk
D
= ξ for every k ≥ 0. Let ϕ : [0, 1] → R be a non-zero Hölder continuous

function of order ς ∈ (1/2, 1]. Then for any ε > 0,

lim sup
n→∞

P

 min
z∈C:||z|−1|<εn−2

∣∣∣∣∣∣
n−1∑
j=0

ξjϕ(j/n)z
j

∣∣∣∣∣∣ < εn−1/2

 ≤ Cε,

where C is a constant depending on ϕ and ξ.

The following result considers only the non-singularity of Cn, when its size is a prime number.
This result is interesting because it considers a more general kind of random variables.
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Theorem 16 (⋆). Let X = {Xk}k≥0 be a sequence of i.i.d. Rademacher random variables. Let
Y = {Yk}k≥0 be a set of independent random variables which are independent of those in X . We
define ξk := Xk + Yk for k ≥ 0. If n is prime, then

P(circ(ξ0 . . . , ξn−1) is singular) = O(n−1/2),

where the constant implicit in O is independent of the random variables in Y.

Remark. Throughout the proofs, absolute constants will be always denoted by C. So its
particular value can be different in different instances.

5.3 Minimum singular value of a circulant random matrix

Proof of Theorem 14. If we take the Hölder function as ϕ ≡ 1 in Theorem 15, we have

lim inf
n→∞

P
(

min
z∈C:||z|−1|<εn−2

|Gn(z)| ≥ εn−1/2

)
≥ 1− Cε.

Then, there is N := N(Cε) ∈ N such that for all n ≥ N

1− 2Cε ≤ P
(

min
z∈C:||z|−1|<εn−2

|Gn(z)| ≥ εn−1/2

)
≤ P

(
min

0≤k≤n−1
|Gn(ω

k
n)| ≥ εn−1/2

)
.

□

5.4 Roots of a random polynomial

Proof of Theorem 15. The proof is based on [42]. We assume that ς ∈ (1/2, 1/2 + 1/20) and
that

||ϕ||Cς := max
0≤t≤1

|ϕ(t)|+ sup
0≤t<s≤1

|ϕ(t)− ϕ(s)|
|t− s|ς

= 1,

and we write

Tn(x) :=

n−1∑
j=0

ξjϕ (j/n) e
ijx, x ∈ [0, 2π].

Let

{yβ}Bβ=1 =

{
2π
h

k
: 1 ≤ k ≤ A, 0 ≤ h ≤ k − 1, (k, h) = 1

}
,

where A and B are constants depending only on ϕ and where A is as specified in [42]. Fix ε > 0
and split T = [0, 2π] into non-overlapping intervals Iα of lengths between 1

2εn
−2 and εn−2.

The intervals Jβ =
[
yβ − 2πn−1+ς/20, yβ + 2πn−1+ς/20

]
, β = 1, 2, . . . , B, will be called bad. We

define Iα to be good provided Iα ̸⊂ ∪B
β=1Jβ. For any such Iα, fix xα ∈ Iα \ ∪B

β=1Jβ. Write

N :=
{
z ∈ C : ||z| − 1| < εn−2

}
,

G :=

{
||T ′

n||∞ ≤ C0n
3/2 log1/2(n), sup

z∈N
|G′′

n(z)| ≤ n13/4
}
,
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where C0 is a sufficiently large constant. For any interval I ⊂ T, we write E(I) := {eix : x ∈ I}.
Let D(z0, ρ) := {z ∈ C : |z − z0| < ρ}. Now, we have

P
(
min
z∈N

|Gn(z)| < εn−1/2

)
≤

∑
α

P
(

min
z∈D(eixα ,2εn−2)

|Gn(z)| < εn−1/2,G
)

+P0,n + P (Gc) ,

where

P0,n :=

B∑
β=1

P
(

min
z∈N ,z/|z|∈E(Jβ)

|Gn(z)| < εn−1/2,G
)
.

To avoid the loss of a logarithmic factor, we shall use the Taylor polynomials of Tn of order two
around eixα to estimate the sum over α. If the event G occurs, then

Gn(z) = T (xα)− (z − eixα)ie−ixαT ′
n(xα) + O(ε2n−3/2) for all z ∈ D(eixα,2εn−2

).

Hence, if |Gn(z)| < εn−1/2 for some z ∈ D(eixα,2εn−2
), then∣∣Tn(xα)− (z − eixα)ie−ixαT ′

n(xα)
∣∣ < 2εn−1/2

for large n. Consequently, if also |Tn(xα)| ≥ 4εn−2|T ′
n(xα)|, then |Tn(xα)| < 4εn−1/2. We conclude

that for each Iα,

P
(

min
z∈D(eixα ,2εn−2)

|Gn(z)| < εn−1/2,G
)

≤ P1,n + P2,n, (5.3)

where

P1,n := P
(
|Tn(xα)| < 4εn−1/2

)
,

P2,n := P
(
|T (xα)| ≤ 4εn−2|T ′

n(xα)|, ||T ′
n||∞ ≤ C0n

3/2 log1/2(n)
)
.

We show that P1,n + P2,n = O(ε2n−2) as n → ∞. Since the number of good intervals does not
exceed 4πε−1n2, this will imply that the sum over α in (5.3) is O(ε) as n → ∞. Also, we shall
establish that the sum over the bad intervals in (5.3) is o(1) as n→ ∞. The proof will be complete
provided limn→∞ P(Gc) = 0. Note that

P(Gc) ≤ P3,n + P4,n,

where

P3,n := P
(
||T ′

n||∞ > C0n
3/2 log1/2(n)

)
,

P4,n := P
(
sup
z∈N

|G′′
n(z)| > n13/4

)
.
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P4,n = o(1) as n → ∞

By the Markov inequality,

P
(
sup
z∈N

|G′′
n(z)| > n13/4

)
≤ P

n−1∑
j=0

j(j − 1)|ξj ||ϕ(j/n)|
(
1 +

1

n2

)j−2

> n13/4


≤ n−13/4

n−1∑
j=0

E (|ξ|) ej2

≤ Cn−1/4.

□

P0,n = o(1) as n → ∞

The proof of this statement is the same as that provided by Lemma 3.3 in [42]. The auxiliary
Lemma 3.2 in [42] should be taken with the mean covariance matrix of Tn(x) multiplied by E

(
ξ2
)
.

Then

sup
1≤β≤B

P
(

min
z∈N ,z/|z|∈E(Jβ)

|Gn(z)| < εn−1/2,G
)

= o(1).

□

P3,n = o(1) as n → ∞

In order to adapt the classical Salem–Zygmund Theorem to estimate P3,n, we show that if ξ is a
random variable with moment generating function (mgf) and E (ξ) = 0, then the mgf of ξ has a
similar behavior around the origin to that of a sub-Gaussian random variable. Recall, a real-valued
random variable ξ is said to be sub-Gaussian if there is some b > 0 such that for every t ∈ R

E
(
etξ
)
≤ eb

2t2/2.

When this condition is satisfied for a particular value of b > 0, we say that ξ is b-sub-Gaussian, or
sub-Gaussian with parameter b1.

Lemma 19 (⋆ Locally sub-Gaussian). If ξ is a random variable with moment generating function
Mξ such that E (ξ) = 0, E

(
ξ2
)
= σ2 > 0, then there is a δ

Mξ(t) ≤ eγt
2/2 for |t| < δ,

where γ > σ2.

Proof. Define g(t) := eγt
2/2 for t ∈ R. Then g(0) = 1, g′(0) = 0, g′′(0) = γ. Let h(t) := g(t)−Mξ(t)

for all t ∈ Iξ, where Iξ is the neighborhood of definition of Mξ. Since h′′(0) = γ − σ2 > 0, there
exists δ > 0 such that h′′(t) > 0 for every |t| < δ. As h′(0) = 0, and therefore it is non-negative for
|t| < δ, it follows that h(t) ≥ 0 for every |t| < δ. □

Lemma 20 (⋆ Salem–Zygmund). Let {ξk}k≥0 be a sequence of independent and identically dis-
tributed random variables with moment generating function Mξ0 such that E (ξ0) = 0 and E

(
ξ20
)
=

1For more details, see Appendix A.
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σ2 > 0. Let Wn(x) :=
∑n−1

j=0 ξjfj(x) be a random trigonometric polynomial where fj(x) =

ϕ(j/n)eijx, and ϕ is as in Theorem 15. Then for all large n,

P
(
||Wn||∞ ≥ C0 (rn log(n))

1/2
)
≤ 8π

n2

for rn :=
∑n−1

j=0 ||fj ||2∞ and some absolute constant C0 > 0.

Proof. By Lemma 19, there exists a δ > 0 such that

Mξ0(t) ≤ eγt
2/2 for |t| < δ,

where γ > σ2.

At first, we suppose that the fj are real (we consider only the real part or the imaginary part)
and we write Mn := ||Wn||∞. Since ∥fj∥∞ ≤ 1 for every j = 0, . . . , n− 1 then

eγt
2rn/2 ≥

n−1∏
j=0

eγt
2|fj(x)|2/2 ≥

n−1∏
j=0

E
(
etξjfj(x)

)
= E

n−1∏
j=0

etξjfj(x)

 = E
(
etWn(x)

)
for every |t| < δ. There exists an interval I (in T) of length 1/ρn with ρn = 2πn2, where |Wn(x)| >
1
2 ||Wn||∞ (see Proposition 5 of chapter 5 in [30]). So, Wn(x) ≥ Mn/2 or −Wn(x) ≥ Mn/2 on I.
Then for every |t| < δ,

E
(
etMn/2

)
≤ ρnE

(∫
I

(
etWn(x) + e−tWn(x)

)
µ(dx)

)
≤ ρnE

(∫
T

(
etWn(x) + e−tWn(x)

)
µ(dx)

)
≤ 2ρne

γt2rn/2,

where µ is the normalized Lebesgue measure in T.

From the above inequality, we obtain

E
(
exp

{
t

2

(
Mn − γtrn − 2

t
log (2ρnk)

)})
≤ 1

k

for any k > 0 and |t| < δ. Hence

P
(
Mn ≥ γtrn +

2

t
log (2ρnk)

)
≤ 1

k

for any k > 0 and |t| < δ. For all large n,
∣∣∣ log(2ρnk)γrn

∣∣∣ < δ2. By choosing tn =
(
log(2ρnk)

γrn

)1/2
we

obtain

P
(
Mn ≥ 3 (γrn log (2ρnk))

1/2
)
≤ 1

k
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for any k > 0. Since fj = Re(fj) + iIm(fj), for all large n we have

P

||ReWn||∞ ≥ 3

γ n−1∑
j=0

||Refj ||2∞ log (2ρnk)

1/2
 ≤ 1

k
,

P

||ImWn||∞ ≥ 3

γ n−1∑
j=0

||Imfj ||2∞ log (2ρnk)

1/2
 ≤ 1

k
.

for any k > 0. Lastly, as ρn = 2πn2 and taking k = n2

4π , we have

P
(
||Wn||∞ ≥ C0 (rn log(n))

1/2
)
≤ 8π

n2

for large n, where C0 > 0 is a suitable constant. □

As fj(x) = ϕ(j/n)eijx, j = 0, . . . , n, we have

rn =
n−1∑
j=0

||fj ||2∞ =
n−1∑
j=0

|ϕ(j/n)|2 ≈ n

∫ 1

0
ϕ2(x)dx

for all large n. Using Lemma 20 and the Bernstein inequality (page 153 in [55]), we have

P
(
||T ′

n||∞ ≥ C0n
3/2 log1/2(n)

)
≤ P

(
||Tn||∞ ≥ C0n

1/2 log1/2(n)
)
≤ 8π

n2
,

where C0 > 0 is an absolute constant.

P1,n = O(εn−2) as n → ∞

For a random variable ξ to have a moment generating function it is necessary and sufficient that it
have exponential decay.

Lemma 21. The following statements are equivalent.

1. There exist positive constants b and c such that

P (|ξ| ≥ x) ≤ be−cx for all x > 0.

2. There exists a constant H > 0 such that

E
(
etξ
)
<∞ for |t| < H.

Proof. See Section 7 in [43]. □

The proof of P1,n = O(εn−2) as n→ ∞ is the same as that provided by Lemma 4.1 in [42]. The
auxiliary Lemma 4.2 should be considered that the characteristic function fα(s) of

1√
n
T (xα) is

fα(s) =

n−1∏
j=0

E (cos (πξjψj)) ,
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where s = (s1, s2) ∈ R2 and

ψj =
1

π

1√
n
ϕ(j/n) (s1 cos(jxα) + s2 sin(jxα)) ,

this is possible because we want to estimate the value of |fα|, hence we can suppose that ξj is a
symmetric random variable.

From Lemma 4.3 in [42], we have that there is J ⊂ {0, 1, . . . , n−1} such that supj∈J |ϕj | ≤ 3n−τ

(τ := (ς − 1/2)/10 where ς is the constant in Theorem 15). Thus, for large n and by Lemma 21,
we have

|fα(z)| ≤
∏
j∈J

E (|cos (ξjπψj)|)

≤
∏
j∈J

E
(
|cos (ξjπψj)|1|ξj |≤nτ/3 + |cos (ξjπψj)|1|ξj |≥nτ/3

)
≤

∏
j∈J

E
((

1− ξ2jψ
2
j

)
1|ξj |≤nτ/3 + 1|ξj |≥nτ/3

)
=

∏
j∈J

((
1− ψ2

jE
(
ξ21|ξ|≤nτ/3

))
+ P (|ξ| ≥ nτ/3)

)
≤

∏
j∈J

((
1− ψ2

j

E
(
ξ2
)

2

)
+ be−cnτ

)

≤
∏
j∈J

(
1 +

1

n

)(
1− ψ2

j

E
(
ξ2
)

2

)

≤ e
∏
j∈J

(
1− ψ2

j

E
(
ξ2
)

2

)
.

So, we obtain
sup

n1/6<|s|<n1+τ

|fα(s)| < exp {−nτ} ,

which is an important part of the proof of Lemma 4.1 in [42].
Lastly, we have

sup
α

P
(
|T (xα)| < εn−1/2

)
≤ Cε2n−2.

□

P2,n = O(εn−2) as n → ∞

The proof of this statement is similar to that given in Lemma 5.2 in [42]. In the auxiliary Lemma
5.1, the covariance matrix of

1√
n
(T (xα), T

′
n(xα)/in)

should be multiplied by E
(
ξ2
)
. Using the ideas given in subsection 5.4 of the present thesis, we

have
sup
α

P
(
|T (xα)| ≤ 4εn−2|T ′

n(xα)|, ||T ′
n||∞ ≤ C0n

3/2 log1/2(n)
)
≤ Cε2n−2.
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□

5.5 Singularity of a circulant random matrix with prime dimen-
sion

Proof of Theorem 16. First, we determine the cardinality of
{
cos
(
2πk j

n

)
: j = 0, . . . , n− 1

}
.

Lemma 22 (⋆). If n is prime, then∣∣∣∣{cos(2πk jn
)

: j = 0, . . . , n− 1

}∣∣∣∣ ≥ ⌊n2 ⌋− 1,

for every k = 1, . . . , n− 1.

Proof. Fix k ∈ {1, . . . , n− 1}. We consider the function cos(2πkx) defined on [0, 1]. Let y ∈ [0, 1].
Then

A := {y, 1− y} ∪
{m
k

± y
}k−1

m=1

is the set all possible values in [0, 1] that are equal to cos(2πky).
For j ∈ {0, 1, . . . , n−1}, we take y = j/n. We need to check that there is a j′ ∈ {0, 1, . . . , n−1}

such that
j

n
∓ j′

n
=
m

k

for m ∈ {1, . . . , k − 1}. If we suppose that this happens, we have

k

m
(j ∓ j′) = n.

If m divides k, we have a contradiction. Hence, j ∓ j′ = αm for some integer α, so kα = n. But,
since k ≥ 1 implies that α < n, we have again a contradiction.

Note cos(2πkx) = 0 only at x = m/k for 1 ≤ m ≤ k − 1. So j/n = m/k, or

n =
k

m
j

and using an argument similar to those before, we have cos (2πkj/n) ̸= 0. Therefore, we obtain
the result. □

The next lemma shows how a sum of Rademacher random variables can take particular values
[51].

Lemma 23. Let {aj}nj=1 be a set of distinct real numbers different from zero. If {ξk}nk=1 are
independent and identically distributed Rademacher random variables, then

sup
x∈R

P

(
n∑

k=1

akξk = x

)
= O(n−3/2).

□

Now, we can give an upper bound for the probability that a circulant matrix is singular under
the hypothesis its dimension is a prime number.
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From (5.1), we have that the event {circ(ξ0 . . . , ξn−1) is singular} is equivalent to{
n−1∏
k=0

|Gn(ω
k
n)| = 0

}
.

Note |Gn(ω
k
n)| = 0 implies that

∑n−1
k=0 ξk cos(2πkj/n) = 0. Hence

P(circ(ξ0 . . . , ξn−1) is singular) ≤ P

n−1∑
j=0

ξj = 0

+
n−1∑
k=1

P

(
n−1∑
k=0

ξk cos(2πkj/n) = 0

)
.

From Lemma 22 and Lemma 23, we have for k ̸= 1

P

(
n−1∑
k=0

ξk cos

(
2πk

j

n

)
= 0

)
= P

(
n−1∑
k=0

Xk cos

(
2πk

j

n

)
= S

)

= E

[
P

(
n−1∑
k=0

Xk cos

(
2πk

j

n

)
= S

∣∣∣∣∣Y0, . . . , Yn−1

)]
≤ E

[
O(n−3/2)

]
= O(n−3/2),

where S := −
∑n−1

k=0 τk cos(2πkj/n). By the properties of the Lévy concentration function (pages
22 and 68 in [54]), we have

P

n−1∑
j=0

ξj = 0

 = O(n−1/2).

Therefore,
P(circ(ξ0 . . . , ξn−1) is singular) = O(n−1/2).

□

5.6 Some additional results on circulant random matrices

A g-circulant matrix Cg
n is an n× n matrix with the following form

Cg
n :=


c0 c1 · · · cn−1

cn−g cn−g+1 · · · cn−g−1

cn−2g cn−2g+1 · · · cn−2g−1
...

...
. . .

...
cg cg+1 · · · cg−1

 ,

where g is a positive integer and each of the subscripts is understood to be reduced modulo n. The
first row of Cg

n is (c0, c1, . . . , cn−1) and its (j + 1)th row is obtained by giving the jth row a right
circular shift by g positions. Note that g = 1 or g = n+ 1 yields the classical circulant matrix.

A g-circulant matrix Cg
n with first row (c0, c1, . . . , cn−1) can be factored as Cg

n = Qg
nCn, where

Qg
n is a g-circulant matrix with the first row e∗ = (1, 0, . . . , 0) and Cn is a circulant matrix whose
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first row is (c0, c1, . . . , cn−1). The matrix Qg
n is an unitary matrix if and only if n and g are co-prime

integers [76]. From Theorem 14, we get the following corollary.

Corollary 1 (⋆). Let {ξk}k≥0 be a sequence of random variables as in Theorem 14. Let Cg
n be a

g–circulant random matrix, whose first row is (ξ0, . . . , ξn−1). Then for all ε > 0 and for all large n
such that n and g are co-prime, we have

P(sn(Cg
n) ≥ εn−1/2) ≥ 1− Cε,

where C is a constant depending on the distribution of ξ0.

□

Now, we present some results about the maximum singular value of a circulant random matrix
when its entries are complex random variables. We can establish exact distributions for s1(Cn) and
sn(Cn). Write Xt

n = (ξ0, . . . , ξn−1). Then
√
nFnXn is the vector of eigenvalues of Cn, where Fn is

the Fourier matrix of order n. Since Fn is a unitary matrix, if we suppose that Xn is a complex
random vector such that (Re(X), Im(X)) ∈ R2n has a spherical distribution (chapter 2 in [19]),
and we establish the distribution of s1(Cn) and sn(Cn).

Theorem 17 (⋆). Let Xt
n = (ξ0, . . . , ξn−1) ∈ Cn be a complex random vector such that (X ′

n)
t :=

(Re(Xn), Im(Xn)) ∈ R2n has a spherical distribution. Then

FnXn
D
= Xn,

where Fn is the Fourier matrix of order n. Moreover, if all entries of X ′
n are independent random

variables, we have for all x ∈ R

P (s1(Cn) ≤ x) =
n−1∏
j=0

P
(
|ξj | ≤ x/

√
n
)
,

P (sn(Cn) ≥ x) =

n−1∏
j=0

P
(
|ξj | ≥ x/

√
n
)
.

Proof. Note Fn is unitary if and only if

F ′
n :=

[
Re(Fn) −Im(Fn)
Im(Fn) Re(Fn)

]
is orthogonal. Hence, Wn := FnXn if and only if W ′

n = F ′
nX

′
n, where

X ′
n :=

[
Re(Xn)
Im(Xn)

]
.

Since the distribution of X ′
n is spherical and F ′

n is orthogonal, we have W ′
n

D
= X ′

n, which implies

Wn
D
= Xn. Since

√
nFnXn

D
=

√
nXn, then for the second part of the statement, we only need to

take the modulus of every entry of
√
nXn. □

Theorem 17 is similar to Theorem 7.1 in [53] and Proposition 3 in [49]. However, Theorem

7.1 in [53] assumed Fn to be an orthogonal matrix in order to deduce that FnXn
D
= Xn when Xn
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is a normally distributed random vector in Rn, which is not possible since FnXn is, in general, a
complex vector and Xn is a real vector2.

In the following theorems, we study the behavior of s1(Cn) in the case that the entries of Cn are
identically distributed sub-Gaussian random variables.

Theorem 18 (⋆). Let {ξj}j≥0 be identically distributed sub-Gaussian random variables with pa-
rameter b. Then for every ε > 0, ϱ > 0, and all n large,

P
(
s1(Cn) > εn1+ϱ

)
≤ exp

(
−ε

2nϱ

4b2

)
.

Proof. Note

P

 max
0≤k≤n−1

∣∣∣∣∣∣
n−1∑
j=0

ξj exp

(
ij
2πk

n

)∣∣∣∣∣∣ > εn1+ϱ

 ≤
n−1∑
k=0

P

∣∣∣∣∣∣
n−1∑
j=0

ξj exp

(
ij
2πk

n

)∣∣∣∣∣∣ > εn1+ϱ


and

P

∣∣∣∣∣∣
n−1∑
j=0

ξj exp

(
ij
2πk

n

)∣∣∣∣∣∣ > εn1+ϱ

 ≤ P

∣∣∣∣∣∣
n−1∑
j=0

ξj cos

(
j
2πk

n

)∣∣∣∣∣∣ > ε

2
n1+ϱ


+P

∣∣∣∣∣∣
n−1∑
j=0

ξj sin

(
j
2πk

n

)∣∣∣∣∣∣ > ε

2
n1+ϱ

 .

Also, we have that
∑n−1

j=0 ξj cos
(
j 2πkn

)
and

∑n−1
j=0 ξj sin

(
j 2πkn

)
are sub-Gaussian random variables

with parameter

bk,c := b

n−1∑
j=0

∣∣∣∣cos(j 2πkn
)∣∣∣∣ and bk,s := b

n−1∑
j=0

∣∣∣∣sin(j 2πkn
)∣∣∣∣ ,

respectively. By sub-Gaussian tail estimation, we have that

P

∣∣∣∣∣∣
n−1∑
j=0

ξj cos

(
j
2πk

n

)∣∣∣∣∣∣ > ε

2
n1+ϱ

 ≤ 2 exp

(
−ε

2n2(1+ϱ)

8b2k,c

)
,

P

∣∣∣∣∣∣
n−1∑
j=0

ξj sin

(
j
2πk

n

)∣∣∣∣∣∣ > ε

2
n1+ϱ

 ≤ 2 exp

(
−ε

2n2(1+ϱ)

8b2k,s

)
.

If k = 0, then b20,c = b2n2 and b20,s = 0. If k ̸= 0, we have that

b2k,c ≤
b2n2

2
and b2k,s ≤

b2n2

2
.

Therefore, for all large n,

P
(
s1(Cn) > εn1+ϱ

)
≤ 4n exp

(
−ε

2n2ϱ

4b2

)
≤ exp

(
−ε

2nϱ

4b2

)
.

2The author of this thesis asked to the authors of [53] about this mistake, but as of now, I have not received a
response.



66 CHAPTER 5. CIRCULANT RANDOM MATRICES

□

In the next lemma, we determine the behavior of the moment generating functions of |ξ| and ξ2
when ξ is a sub-Gaussian random variable. This lemma will be useful for estimating the expectation
of s1(Cn).

Lemma 24. Let ξ be a sub-Gaussian random variable with parameter b > 0. Then there is a B > 0
such that for t ∈ R,

E
(
exp

(
tξ2
))

≤ exp

{
B

2

2

t2 + tE
(
ξ2
)}

,

E (exp (t|ξ|)) ≤ exp

{
b

2

2

t2 + tE (|ξ|)
}
.

For t ≥ 0,

E
(
exp

(
tξ2
))

≤ exp

{
B

2

2

t2 + 2C2b2t

}
,

E (exp (t|ξ|)) ≤ exp

{
b

2

2

t2 + Cbt

}
,

where C is an absolute constant that does not depend on ξ.

Proof. This follows from the definition of sub-Gaussian random variable. □

Theorem 19 (⋆). Let {ξj}j≥0 be identically distributed sub-Gaussian random variables with pa-
rameter b. Then

E (s1(Cn)) ≤ nb
(√

n logn+ 2
√

log n+ 2C
)
,

where C is an absolute constant that does not depend on X.

Proof. Let ℜk := Re(Gn(ω
k
n)) and ℑk := Im(Gn(ω

k
n)). From the proof of Theorem 18, we have

that ℜk and ℑk are sub-Gaussian random variables such that their parameters satisfy

bk,c ≤ bn and bk,s ≤ bn for all k.

If Zk := |ℜk|+ |ℑk|, then by Lemma 24 and the Cauchy–Schwartz inequality, for every λ > 0

E (exp{λZk}) ≤
√

E (exp (2λ|ℜk|))E (exp (2λ|ℑk|))
≤ exp

{
2n2b2λ2 + 2Cnbλ

}
.

Then, by the Jensen inequality, for every λ > 0,

exp

(
λE
(

max
k=1,...,n

Zk

))
≤ E

(
exp

(
λ max

k=1,...,n
Zk

))
= E

(
max

k=1,...,n
eλZk

)
≤

n∑
k=1

E
(
eλZk

)
≤ n exp

{
2n2b2λ2 + 2Cnbλ

}
.

Taking logarithms of both sides and dividing by λ in the previous expression, we have

E
(

max
k=1,...,n

Zk

)
≤ log n

λ
+ 2n2b2λ+ 2Cnb.
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The upper bound is minimized for λ =
√
logn√
2nb

, which yields

E
(

max
k=1,...,n

Zk

)
≤ nb

(√
n log n+ 2

√
logn+ 2C

)
.

Lastly,

E (s1(Cn)) = E
(

max
0≤k≤n−1

|Gn(ω
k
n)|
)

≤ E
(

max
0≤k≤n−1

(∣∣∣Re(Gn(ω
k
n))
∣∣∣+ ∣∣∣Im(Gn(ω

k
n))
∣∣∣))

≤ nb
(√

n log n+ 2
√

log n+ 2C
)
.

□

One question arises from the previous discussion. When are the roots of a random polynomial
Gn not near the unit circle? This problem was studied in [63], which provides a useful statement
for understanding the minimum singular value of a random circular matrix.

We consider a sequence of random polynomials
{
Hn(z) :=

∑n
k=0 ξkz

k
}
n≥1

whose coefficients
form a sequence of independent real- or complex-valued random variables. The complex-valued
coefficients are of the form ξk = Xk + iYk where Xk and Yk are real-valued random variables. The
means µk and variances σ2k of ξ are given by

µk = µXk
+ iµYk

and
σ2k = σ2Xk

+ σ2Yk
.

Let δ, η, θ be arbitrary numbers such that 0 ≤ η < θ ≤ 2π and 0 ≤ δ ≤ 1. Let D and R be the
following subsets of the complex plane:

D := {z ∈ C : η < arg(z) < θ} ,

R := {z ∈ C : 1− δ ≤ |z| ≤ 1 + δ} .

Define Nn(D) and Nn(R) to be the number of zeros of Hn contained in D and R, respectively.

In [63], we find the next result.

Lemma 25. Let {ξn}n≥0 be a sequence of independent random variables with finite means and
standard deviations such that

lim sup
k→∞

k
√

|µk| > lim sup
k→∞

k
√
σk.

Then the following equalities hold almost surely:

lim
nj→∞

Nnj (R∗)

nj
= 1,

lim
nj→∞

Nnj (D)

nj
=
θ − η

2π
,
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where

R∗ =

{
z :

(
lim sup
k→∞

k
√

|µk|
)−1

− δ < |z| <
(
lim sup
k→∞

k
√

|µk|
)−1

+ δ

}
and Hnj is a subsequence of Hn which consists of polynomials whose coefficients satisfy

lim
nj→∞

nj

√
|µnj | = lim sup

k→∞

k
√

|µk|.

□

From Lemma 25 and using the Fundamental Theorem of Algebra, we can construct random
circulant matrices such that their minimum singular value is large, as the following theorem estab-
lishes.

Theorem 20 (⋆). Let {ξn}n≥0 be a sequence of independent (real- or complex-) random variables
with finite means and standard deviations such that

R := lim
k→∞

k
√

|µk| > lim sup
k→∞

k
√
σk.

Then for all 0 < δ < 1, we have with high probability

1. If 0 < R < 1,
sn(Cn) ≥ (R−1 − δ − 1)n.

2. If R > 1,
sn(Cn) ≥ (1− δ −R−1)n.

□



Chapter 6

Oriented Percolation with Backbend

6.1 Introduction

Oriented percolation with backbend is a generalization of oriented percolation, defined by Durrent
in [18]. In this chapter, we analyze the properties of the backbend model and its similarities and
diferences with unoriented percolation in two dimensions.

Section 6.2 describes the model of backbend percolation; which roughly speaking is similar to
oriented percolation with the diference that the backbend path is allowed to go down until a depth b.
Section 6.3 gives a characterization of the critical probabability pbc of backbend percolation in terms
of the right edge process. Section 6.4 gives the proof that there exists an initial distribution on the
infinite subsets of {. . . ,−4,−2, 0} which contain 0, such that the right edge process has stationary
increments. Section 6.5 shows the strict monotonicity of the “slope” of right edge process respect to
depth of backbend percolation. Section 6.6 exhibits that in the sub–critical probability of backbend
model, the probability that a backbend path reaches the level n descreases exponentially fast to
zero. Section 6.7 shows some similarities of backbend model with the unoriented percolation in Z2,
when the depth of backbend is going to infinity. In our first approach of this situation, we show
that it is possible to construct a backben path such that it can go far away to the right side of zero.
Section 6.8 studies the super–critical probability of backbend percolation with a renormalization
argument. Also, we obtain that the “slope” of right edge process is zero, when the model takes the
critical probability.

The main results in this chapter were obtained in joint work with Roy.

6.2 The model

We consider an undirected graph where L = {(m,n) ∈ Z2 : m + n is even, n ≥ 0} is the set of
vertices and

E = {⟨(m,n), (m+ 1, n+ 1)⟩, ⟨(m,n), (m− 1, n+ 1)⟩; (m,n) ∈ L}

is the set of undirected edges. A path π in L is a sequence of finite or infinite distinct vertices
x0, x1, ..., (xk) ∈ L such that ⟨xi, xi+1⟩ ∈ E for all i = 0, 1, . . . , (k).

The edges are open or closed, independently, with probability p or 1− p. So, we have the space
({0, 1}E ,B,Pp) where B is the σ–algebra generated by cylinder sets and Pp is the product measure
with marginals Pp(ω(e) = 1) = p = 1− Pp(ω(e) = 0) for all e ∈ E .

For 0 ≤ b < ∞, a b–backbend path πb in L is a finite or infinite path x0, x1, ... such that
(xj)2 ≥ (xi)2 − b for all 0 ≤ i ≤ j, where (z)2 denotes the second coordinate of the point z ∈ L.

69
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RkLk 0

Figure 6.1: Lk and Rk

We call a path π = x0, x1, ... open if all the edges ⟨xi, xi+1⟩ comprising the path are open. For
x, y ∈ L we use the notation x→y to mean that the point x is connected to y through some open
b–backbend path πb.

We denote by Cb the random set of vertices x ∈ L that are connected to the origin through
some open b–backbend path, i.e., Cb = {x ∈ L : (0, 0)→x}. For 0 ≤ b <∞, the critical probability
pbc is defined as pbc = sup{p : Pp(|Cb| = ∞) = 0}.

We define the following random variables:

• ub := sup{x : (y, 0) → (x, b) for some y ≤ 0},

• r̄b0,0 := 0 and r̄b0,n := sup{x− ub : (y, b) → (x, n+ b) for some y ≤ ub} for n > 0 ,

• r̄bm,n := sup{x− r̄b0,m : (y,m+ b) → (x, n+ b) for some y ≤ r̄b0,m} for 1 ≤ m ≤ n.

The above definitions are meaningful only if ub <∞ a.s.; the following proposition shows this.

Proposition 4 (*). For all b ≥ 0, ub <∞ a.s.

Proof. For a non-negative, even integer k let us define the path Lk by

Lk = (−k, 0), (−k − 1, 1), (−k, 2), (−k − 1, 3), . . . , (−k, 2b)

and the path Rk by
Rk = (k, 0), (k + 1, 1), (k, 2), (k + 1, 3), . . . , (k, 2b),

see Figure 6.1. We further define the random variables KL,KR by

KL = max{k : Lk is an open path}

and
KR = min{k : Rk is a closed path}.

The probability that the path Lk is an open path is γl = p2b, and that the path Rk is a closed
path is γr = (1− p)2b. By definition of KL and KR we have

|ub| ≤ KR −KL.
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Since KR and KL are geometric random variables with E(KR) = 2(1− γr)/γr and E(KL) =
−2(1− γl)/γl, we have ub <∞ a.s. □

6.3 A characterization of the critical probability pbc

We prove the following properties of the process {r̄bm,n : 0 ≤ m ≤ n}n≥0.

Claim 1 (*). For the process {r̄bm,n : 0 ≤ m ≤ n}n≥0

1. r̄b0,n ≤ r̄b0,m + r̄bm,n for all 0 ≤ m ≤ n.

2. {r̄b(n−1)k,nk : n ≥ 1} is stationary for all k.

3. The distribution of {r̄bm,m+k : k ≥ 0} does not depend on m.

4. E(|r̄b0,1|) <∞.

5. The process is ergodic.

Proof.

1. By definition of ub we have r̄b0,0 = 0. Since any b-path that starts from the line y = b and

reaches the line y = n+ b must cross the line y = m+ b, we have r̄b0,n − r̄b0,m ≤ r̄bm,n, or

r̄b0,n ≤ r̄b0,m + r̄bm,n.

2. Let Ec,d be the set of edges that lie between the levels c and d, i.e., Ec,d := {⟨x, y⟩ ∈ E : c ≤
(x)2, (y)2 ≤ d}. Further, let k ∈ N be fixed and x1, x2, . . . , xt ∈ R. Note that the probability
of the event {r̄b0,k < x1, r̄

b
k,2k < x2 . . . , r̄

b
(t−1)k,tk < xt} depends only on what happens in

E0,tk+b. Since

E0,tk+b
D
= El,tk+b+l

for all l ∈ N, we have

Pp{r̄b0,k < x1, . . . , r̄
b
(t−1)k,tk < xt} = Pp{r̄blk,(l+1)k < x1, . . . , r̄

b
(l+t−1)k,(l+t)k < xt}.

3. Let 0 ≤ l1 < l2 < . . . < lt be t integers and x1, . . . , xt ∈ R. As before, the probability of the
event

{r̄bm,m+l1 < x1, . . . , r̄
b
m,m+lt < xt}

depends only on the configuration of edges in Em−b,m+lt+b. Since

Em−b,m+lt+b
D
= Em+1−b,m+1+lt+b,

we have

Pp{r̄bm,m+l1 < x1, . . . , r̄
b
m,m+lt < xt} = Pp{r̄bm+1,m+1+l1 < x1, . . . , r̄

b
m+1,m+1+lt < xt}.

4. Let KL and KR be as in the proof of Proposition 4. For any non-negative, even integer k, let
us define the path Lk by

Lk = (−k, 0), (−k − 1, 1), (−k, 2), (−k − 1, 3), . . . , (−k − 1, 2b+ 1)
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and the path Rk as

Rk = (k, 0), (k + 1, 1), (k, 2), (k + 1, 3), . . . , (k + 1, 2b+ 1).

We further define the random variables KL,KR by

KL = max{k : Lk is an open path}

and
KR = min{k : Lk is a closed path}.

The probability that the path Lk is an open path is γl = p2b+1 and that the path Rk is a
closed path is γr = (1− p)2b+1. By definition of KL and KR we have

|r̄b0,1| ≤ KR −KL.

Since KR and KL are geometric random variable with E(KR) = 2(1− γr)/γr and E(KL) =
−2(1− γl)/γl, we have

E(|r̄b0,1|) ≤ E(KR)− E(KL) =
2(1− γr)

γr
+

2(1− γl)

γl
<∞

for p ∈ (0, 1).

5. Let us consider the process {r̄bkn,k(n+1) : n ≥ 1} for fixed k. Let A be an invariant set, i.e.,
there is a B ∈ B such that for every m ≥ 1

A = {(r̄bkm,k(m+1), r̄
b
k(m+1),k(m+2), . . .) ∈ B}.

Clearly A ∈ σ(Ekm−b,∞) for all m ≥ 1, where σ(Ekm−b,∞) is the σ-algebra generated by
the edges in the set Ekm−b,∞. Since A ∈ ∩∞

m=1σ(Ekm−b,∞), by Kolmogorov’s 0–1 law, the
probability Pp(A) is zero or one, implying that the process {r̄bkn,k(n+1) : n ≥ 1} is ergodic.

□
Theorem 21 (*). Consider the process {r̄bm,n : 0 ≤ m ≤ n}n≥0. Then

lim
n→∞

E(r̄b0,n)
n

= inf
n≥1

E(r̄b0,n)
n

= αb(p)

for some constant αb(p) ∈ [−∞,∞), and

lim
n→∞

r̄b0,n
n

= αb(p) a.s.

Proof. From Claim 1, we have by the subadditive limit theorem that

lim
n→∞

E(r̄b0,n)
n

= inf
n≥1

E(r̄b0,n)
n

= αb(p)

for some constant αb(p) ∈ [−∞,∞), and by the subadditive ergodic theorem

lim
n→∞

r̄b0,n
n

= r̄ a.s.
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for some random variable −∞ ≤ r̄ <∞ such that E(r̄) = αb(p). Moreover, if αb(p) > −∞, then

lim
n→∞

E

(∣∣∣∣∣ r̄b0,nn − r̄

∣∣∣∣∣
)

= 0.

From claim 5, we have r̄ = αb(p) a.s. □

We argue in the following that if Pp(|Cb| = ∞) > 0, then αb(p) > 0. To show this, we define the
following random variables:

• wb = inf{x : (y, 0) → (x, b) for some y ≥ 0},

• l̄b0,0 = 0 and l̄b0,n := inf{x− wb : (y, b) → (x, n+ b) for some y ≥ wb} for n ≥ 1,

• l̄bm,n = inf{x− l̄b0,m : (y,m+ b) → (x, n+ b) for some y ≥ l̄b0,m} for 1 ≤ m ≤ n.

As in the proof of Proposition 4, we may show that wb > −∞ a.s. and by symmetry with r̄b0,n
we have l̄b0,n/n → −αb(p) as n → ∞ a.s. Since l̄b0,n ≤ r̄b0,n, we have −αb(p) ≤ αb(p), implying

αb(p) ≥ 0.
From our last statement, it follows that if αb(p) < 0, then Pp(|Cb| = ∞) = 0. We show that if

αb(p) > 0, then Pp(|Cb| = ∞) > 0.

Claim 2 (*). If αb(p) > 0, then Pp(|Cb| = ∞) > 0.

Proof. The idea of this proof is in principle the same as in the case of no backbend in Durrett
[18]. However, we modify the proof to take care of the case with backbend.
Consider the random variable

M1 = max{|M − wb|, |M − ub|}.

As αb(p) > 0, we have r̄b0,n → ∞ a.s. This fact and the fact that the random variables ub and wb

have geometric tails imply that there is an even integer M <∞ so that

P(r̄b0,n > −M1 for all n) ≥ 0.51.

For A ⊂ (−∞,∞) let

ξb,An = {x : (y, b) → (x, n+ b) for some y ∈ A},
rb,An = sup ξb,An , lb,An = inf ξb,An , τ b,A = inf{n : ξb,An = Ø}.

Clearly, for all M ≥ 0

ξb,[−M1,M1]
n ⊆ ξb,(−∞,M1]

n ∩ [lb,[−M1,M1]
n ,∞),

ξb,[−M1,M1]
n ⊆ ξb,[−M1,∞)

n ∩ (−∞, rb,[−M1,M1]
n ],

ξb,[−M1,M1]
n ⊆ ξb,(−∞,∞)

n ∩ [lb,[−M1,M1]
n , rb,[−M1,M1]

n ].

Moreover, on {ξb,[−M1,M1]
n+b ̸= Ø} we have

ξb,[−M1,M1]
n = ξb,(−∞,M1]

n ∩ [lb,[−M1,M1]
n ,∞),

ξb,[−M1,M1]
n = ξb,[−M1,∞)

n ∩ (−∞, rb,[−M1,M1]
n ],

ξb,[−M1,M1]
n = ξb,(−∞,∞)

n ∩ [lb,[−M1,M1]
n , rb,[−M1,M1]

n ],
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and
rb,[−M1,M1]
n = rb,(−∞,M1]

n , lb,[−M1,M1]
n = lb,[−M1,∞)

n .

Hence it follows that

τ b,[−M1,M1] = inf{n : rb,[−M1,M1]
n < lb,[−M1,M1]

n }
= inf{n : rb,(−∞,M1]

n < lb,[−M1,∞)
n }.

This means
{τ b,[−M1,M1] = ∞} ⊇ {lb,[−M1,∞)

n ≤ 0 ≤ rb,(−∞,M−ub]
n for all n}.

Hence, we have

Pp(ξ
b,[−M1,M1]
n ̸= Ø for all n) = Pp(τ

b,[−M1,M1] = ∞)

≥ Pp(r
b,(−∞,M1]
n ≥ 0 ≥ lb,[−M1,∞)

n for all n)

≥ 2Pp(r
b,(−∞,M1]
n > 0 for all n)− 1

≥ 2Pp(r
b,(−∞,0]
n > −M1 for all n)− 1

≥ 2Pp(r
b,(−∞,ub]
n > −M1 + ub for all n)− 1

≥ 2Pp(r
b,(−∞,ub]
n − ub > −M1 for all n)− 1

≥ 2Pp(r̄
b
0,n > −M1 for all n)− 1

≥ 2(0.51)− 1 = 0.02.

Here, the last inequality follows from the fact that r̄b0,n = r
b,(−∞,ub]
n −ub. Moreover, it is easily seen

that Pp(ξ
0,{0}
b ⊇ (2Z ∩ [−M1,M1])) > 0. Hence

Pp(|Cb| = ∞) > P1 × P2 > 0,

where P1 = Pp(ξ
b,[−M1,M1]
n ̸= Ø for all n) and P2 = Pp(ξ

0,{0}
M1+b ⊇ (2Z ∩ [−M1,M1])). □

By a simple coupling argument, we have that αb(p) is a non-decreasing function of p. Then it
follows from the above discussion that

sup{p : αb(p) < 0} ≤ pbc ≤ inf{p : αb(p) > 0}.

In the following theorem, we show that pbc = inf{p : αb(p) > 0}.

Theorem 22 (*). We have
pbc = inf{p : αb(p) > 0}.

Proof. To prove Theorem 22 it is sufficient to show that if αb(p2) > −∞ and p1 > p2, then

αb(p1)− αb(p2) ≥ 2(p1 − p2). (6.1)

We show this in three steps.

Step 1. In this step we show that if A ⊇ B are infinite subsets of {−2,−4, . . .}, then

E
(
rb,B∪{0}
n − rb,Bn

)
≥ E

(
rb,A∪{0}
n − rAn

)
≥ 2. (6.2)
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From the definition of ξb,Sn it is immediate that

ξb,C∪D
n = ξb,Cn ∪ ξb,Dn ,

which means
rb,C∪D
n = max{rb,Cn , rb,Dn }

and
rb,C∪D
n − rb,Cn = max{0, rn,Dn − rn,Cn } = (rb,Dn − rb,Cn )+.

From the above we see

rb,B∪{0}
n − rb,Bn = (rb,{0}n − rb,Bn )+ ≥ (rb,{0}n − rn,An )+ [rb,An ≥ rb,Bn ]

= rb,A∪{0}
n − rb,An .

Now (6.2) follows from the observation that by translation invariance,

E
(
rb,{0,−2,...}
n − rb,{−2,−4,...}

n

)
= 2. (6.3)

Step 2. In this step we show that if p1 > p2 and αb
n(p) = E(r̄bn), then

αb
n(p1)− αb

n(p2) ≥ 2(1− (1− (p1 − p2))
n). (6.4)

We construct the systems with parameters p1 and p2 on the same space in the same way as
Durrett [18] has done for the no backbend case. For completeness, we present this here once again.

To each edge e, assign an independent random variable Ue that is uniformly distributed on
(0, 1). Call an edge open if Ue is less than the parameter value, and closed otherwise. Let r̄b1,n

and r̄b2,n be the location of ξ
b,(−∞,−ub]
n in the systems with parameters p1 and p2, respectively. Let

τ b = inf{n : r̄b1,n > r̄b2,n}. We note that for the random time τ b, the random variables r̄b
1,τb

and

r̄b
2,τb

for the respective parameters p1 and p2 are independent of the edges in E0,τb−b.

So applying (6.2) and the strong Markov property we have

E
(
r̄b1,n − r̄b2,n

)
=

∞∑
t=0

E
(
r̄b1,n − r̄b2,n

∣∣∣τ b = t
)
P(τ b = t)

=

n∑
t=0

E
(
r̄b1,n − r̄b2,n

∣∣∣τ b = t
)
P(τ b = t)

≥ 2P(τ b ≤ n).

At each stage n, there is at least probability p1 − p2 that r̄b1,n+1 − r̄b2,n+1 ≥ r̄b1,n − r̄b2,n + 1. Hence

P(τ b ≤ n) ≥ (1− (1− (p1 − p2))
n).

This completes Step 2.

Step 3. We now complete the proof of Theorem 22 in this step. Let δ = (p1 − p2)/M where M is
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a large integer. Then using (6.4)

αb
n(p1)− αb

n(p2) =
Mn∑
m=1

[
αn

(
p1 +

mδ

n

)
− αn

(
p1 +

(m− 1)δ

n

)]
≥ 2Mn

(
1−

(
1− δ

n

)n)
.

Dividing both sides of the inequality by n and letting n→ ∞ we see that

αb(p1)− αb(p2) ≥ 2M

(
1− exp

(
−p1 − p2

M

))
.

Letting M → ∞ yields
αb(p1)− αb(p2) ≥ 2(p1 − p2),

which proves Theorem 22. □

6.4 Stationary distribution for the edge process

In this section we discuss the stationary distribution for the edge process.

Theorem 23 (*). If p ≥ pc, then there is an initial distribution µ concentrated on the infinite
subsets of {. . . ,−4,−2, 0} which contain 0, in such a way that rµn has stationary increments.

Proof. We start by introducing a family of “reset approximations” ξ̂bn,m, which start from

ξ̂bn,0 = (−∞, ub] and evolve according to the following rules:
For k = 1, 2, . . .

1. If (m+ 1) ̸∈ nZ, then ξ̂bn,m+1 = {x : (y,m+ b) → (x,m+ b+ 1) for some y ∈ ξ̂bn,m}.

2. If (m + 1) ∈ nZ, then ξ̂bn,m+1 = (−∞, r̂bn,m+1], where r̂
b
n,m+1 = sup{x : (y,m + b) → (x,m +

b+ 1) for some y ∈ ξ̂bn,m} − ub.

Let r̂bn,m = sup ξ̂bn,m−ub for all n,m ∈ N. Then for fixed n, the increments Xb
n,k := r̂bn,k− r̂bn,k−1

of these processes are not stationary, but they are periodic with periodicity n. To construct a
stationary process out of Xb

n,k, we introduce an independent r.v. Un with P(Un = k) = 1/n for

0 ≤ k < n and consider the process Y b
n,k := Xb

n,k+Un
. Let, for a1, . . . , as ∈ R,

P(Y b
n,1 < a1, . . . , Y

b
n,s < as) = P(Xb

n,1+Ub
< a1, . . . , X

b
n,s+Ub

< as)

=
n−1∑
i=0

P(Xb
n,1+Ub

< a1, . . . , X
b
n,s+Ub

< as | Un = i)P(Un = i)

=
1

n

n−1∑
i=0

P(Xb
n,1+i < a1, . . . , X

b
n,s+i < as)

= P(Xb
n,1 < a1, . . . , X

b
n,s < as).

Similarly, for l ∈ N,

P(Y b
n,1+l < a1, . . . , Y

b
n,s+l < as) = P(Xb

n,1+l+Ub
< a1, . . . , X

b
n,s+l+Ub

< as)

= P(Xb
n,1 < a1, . . . , X

b
n,s < as).
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This shows that the process {Y b
n,k : k ≥ 1} is stationary with

E(Y b
n,1) =

n∑
i=0

E(Xb
n,i+Un

| Un = i)P(Un = i)

=
1

n

n∑
i=0

E(Xb
n,i)

=
1

n
E(r̂bn,n − r̂bn,0)

≥ αb(p).

Moreover, we have

E|Y b
n,1| ≤ 1

n

n∑
k=1

(E|r̂bn,k|+ E|r̂bn,k−1|)

≤ 1

n
2n(2

1− γ1
γ1

+ 2
1− γ2
γ2

)

= 4(
1− γ1
γ1

+
1− γ2
γ2

)

< ∞

for p ∈ (0, 1).
It follows from the above calculations that if we consider the processes {Y b

n,m : m ≥ 1} as a sequence
of random elements of R×R× · · · , then the sequence is tight. So we can find a sequence nj → ∞
such that {Y b

nj ,m : m ≥ 1} converges in distribution (in R× R× · · · ) to a limit {Y b
m : m ≥ 1} with

E(Y b
1 ) ≤ 4(1−γ1

γ1
+ 1−γ2

γ2
).

To construct the measure µ, we have to take another sequence. Let us define the following
random variables:

r̂bn,Un
= sup ξ̂bn,Un

− ub, ξ̃bn,m = ξ̂bn,m+Un
− r̂bn,Un

,

r̃bn,m = sup ξ̃bn,m, Ỹ b
n,m = r̃bn,m − r̃bn,m−1.

Since
Ỹ b
n,m = r̃bn,m − r̃bn,m−1 = r̂bn,m − r̂bn,m−1 = Ŷ b

n,m,

we have
{Ỹ b

n,m} D
= {Ỹ b

n,m}.

Note that ξ̃bn,0 is a subset of (−∞, ub] and ub ∈ ξ̃bn,0. For B ∈ B and k ∈ N fixed, we have

P(ξ̃bn,m ∈ B) = P(ξ̃bn,m ∈ B,Un ≤ n− k) + P(ξ̃bn,m ∈ B,Un > n− k)

= P(ξ̂bn,m+Un
− r̂bn,Un

∈ B,Un ≤ n− k) + P(ξ̃bn,m ∈ B,Un > n− k).

Note that for fixed k, P(Un > n − k) → 0 as n → ∞. This means that as n gets larger, the

finite dimensional distribution of ξ̃bn,m become arbitrarily close to those of ξ̂b,µn
m where µn is the

distribution of ξ̃bn,0.
Our idea of constructing µ from µn is the same as in Durrett [18]. However, some care needs

to be taken for the backbend model. We describe this here for the sake of completeness. Since
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µn are probability measures on the compact space {0, 1}{...,−4,−2,0}, the sequence µnj has a further
subsequence µn′

k
which converges weakly to a limit µ. Hence for each M the distribution of

{ξ̃bn′
k,m

: 0 ≤ m ≤M} converges weakly to {ξb,µm : 0 ≤ m ≤M}. Let

rb,µm = sup ξb,µm − ub and Xb,µ
m = rb,µm − rb,µm−1.

Then
{Xb,µ

m } D
= {Y b

m}

and hence Xb,µ
m , i.e., the increments of rb,µm form a stationary sequence. We show

rb,µn

n
→ αb(p) a.s.

Since E(Y b
n,1) ≥ αb(p) and the process Y b

n,1 converges in distribution to Y b
1 , we have

E(Y b
1 ) = lim

n→∞
E(Y b

n,1) ≥ αb(p). (6.5)

Noting the fact that rb,µn ≤ r̄b0,n, we have

lim sup
n→∞

rb,µn

n
≤ αb(p) a.s.

By means of the Ergodic Theorem, we deduce that as n→ ∞

1

n
rb,µn =

1

n

n∑
k=1

Y b
k → E[Y b

1 |J ] a.s.

where J is the shift invariant σ-algebra. Lastly, as

E(Y b
1 ) = E(E[Y b

1 |J ]) ≤ αb(p)

we have by (6.5)
E(Y b

1 ) = αb(p) and E[Y b
1 |J ]) = αb(p)

and hence
1

n
rb,µn → αb(p) a.s.

□

6.5 Strict monotonicity of the limiting direction αb over b

It is clear from the characterization of pbc in Section 6.3 that αb(p) < 0 < αb+1(p) for pb+1
c < p < pbc.

In this section we show αb(p) < αb+1(p) for p > pbc.

Theorem 24 (*). For p ≥ pbc
αb(p) < αb+1(p).

Proof. We say that a b-path is a strict b-path if it is a b-path but not a (b− 1)-path.
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We take fixed N = b + 2 and p > pbc. Let Ab
mN , m = 1, . . ., the event that there exists a strict

(b+1)-path below level mN from r̄bmN +2(m− 1)(b+1) to r̄bmN +2m(b+1) (see Figure 6.2). Note

πb := Pp(A
b
mN ) = p2b(1− p)2b−1 > 0 for all m ≥ 1.

r̄b0,mN r̄b+1
0,mNmN

Figure 6.2: Event Ab
mN (b = 3)

Note that E
(
r̄b+1
0,N − r̄b0,N

)
≥ 2(b+ 1)πb and by translation invariance

E
(
r̄b+1
0,N+k − r̄b0,N+k

)
≥ E

((
r̄b+1
0,N+k − r̄b0,N+k

)
1Ab

N

)
≥ 2(b+ 1)πb

for all k ≥ 0. Now, when k = N , we have E
(
r̄b+1
0,2N − r̄b0,2N

)
≥ 4(b+1)πb and, again, by translation

invariance,

E
(
r̄b+1
0,N+l − r̄b0,N+l

)
≥ E

((
r̄b+1
0,2N+l − r̄b0,2N+l

)
1Ab

2N

)
≥ 4(b+ 1)πb

for all l ≥ 0.

So, by induction (see Figure 6.3), we have

E
(
r̄b+1
0,mN − r̄b0,mN

)
≥ 2(b+ 1)πbm.

Dividing the above expression by mN and taking the limit as m→ ∞, we obtain

αb+1(p)− αb(p) ≥ 2(b+ 1)πb
N

.

□

6.6 Exponential estimates for p < pbc

In this section we provide some exponential estimates for p when p < pbc. Let ξb,0n = {x : (0, b) →
(x, n+ b)}.
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b-path
(b+ 1)-path

bb

bbb

bbbb

bbbbb

Figure 6.3: Average b-path and (b+ 1)-path

Claim 3 (*). If p < pbc, then there is a positive constant γb := γb(p) such that

P(ξb,0n ̸= Ø) ≤ e−γbn (6.6)

and
1

n
logP(ξb,0n ̸= Ø) → −γb

as n→ ∞.

Proof. Consider the event {ξb,0m+n+2b ̸= Ø}. Then

P(ξb,0m+n+2b ̸= Ø) ≤ P(ξb,0m ̸= Ø, ξb,0m+2b,m+n+2b ̸= Ø)

= P(ξb,0m ̸= Ø)P(ξb,0m+2b,m+n+2b ̸= Ø)

= P(ξb,0m ̸= Ø)P(ξb,0n ̸= Ø).

Taking the log of both sides and denoting logP(ξb,0n ̸= Ø) by an, we have from the last inequality

am+n+2b ≥ am + an.

For fixed m > 2b, we have for every k ∈ N

akm = akm−2b+2b

≥ am−2b + a(k−1)m

≥ am−2b + am−2b + a(k−2)m

. . .

≥ kam−2b.
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For fixed m consider n = km + r where r < m and k ∈ N. Then using the above inequality it
follows that

an+2b

n+ 2b
=

akm+r+2b

km+ r + 2b

≥ akm + ar
km+ r + 2b

≥ kam−2b

km+ r + 2b
+

ar
km+ r + 2b

=
am−2b

m+ r+2b
k

+
ar

km+ r + 2b
.

Taking the limit infimum over n on both sides and noting that k → ∞ as n→ ∞, we have

lim inf
n

an+2b

n+ 2b
≥ am−2b

m
.

Taking the limit supremum over m on both sides we have

lim inf
n

an+2b

n+ 2b
≥ lim sup

m

am−2b

m
.

This means that the limit of the sequence {an
n } exists and

lim
n→∞

an
n

= sup
m≥2b

am
m

=: −γb.

Note that up to this point everything holds for any p ≤ 1. We only need to prove that γb > 0.
Here, we use the fact that p < pbc. If p < pbc, there exists a (large) N such that Er̄b2b,N < 0, and

from the subadditivity property and r̄b0,n ≤ r̄bm,n for all m,n, it follows that

r̄b0,mN ≤ r̄b0,N + r̄bN,mN

≤ r̄b0,N + r̄bN,2N + · · ·+ r̄b(m−1)N,mN

≤ r̄b2b,N + r̄bN+2b,2N + · · ·+ r̄b(m−1)N+2b,mN =: Sm,

where Sm is a random walk with E(S1) < 0. Note {r̄b(k−1)N+2b,N : k = 0, . . . ,m} is a set of
independent and identically distributed random variables. We recall the random variable KR

defined in the proof of Proposition 4. We define KR in a similar way but with the parameter
γR = (1− p)N+2b (p > 0). Hence S1 ≤ KR and for every θ ∈ [0,−1/2 log(1− γR)), we have

φ(θ) := E(exp(θS1)) ≤ E(exp(θKR)) =
γR

1− (1− γR)eθ
<∞.

For M large and positive,

E (exp(θS1))− 1

θ
≤ E (exp(θ(S1 ∨ −M)))− 1

θ
.
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Taking the limit supremum of both sides as θ → 0 we obtain

lim sup
θ→0

E (exp(θS1))− 1

θ
≤ E (S1 ∨ −M) .

Lastly, letting M → ∞,

lim sup
θ→0

E (exp(θS1))− 1

θ
≤ E (S1) < 0.

Write φ(θ) = E (exp(θS1)). Then there is a θ0 > 0 with φ(θ0) < 1. So

P(Sm ≥ 0) ≤ E exp(θ0Sm) ≤ (φ(θ0))
m.

Hence

P(r̄b0,mN ≥ 0) ≤ P(θ0Sm ≥ 0) ≤ P(exp(θ0Sm) ≥ 1) ≤ E exp(θ0Sm) ≤ (φ(θ0))
m,

i.e., P(r̄b0,mN ≥ 0) → 0 exponentially fast when m→ ∞.

To conclude that the same thing is true for P(ξb,0n ̸= Ø), observe that

P(ξb,0n = Ø) ≥ P(r̄b0,n < 0 < l̄b0,mN ),

so
P(ξb,0n ̸= Ø) ≤ P(r̄b0,n ≥ 0) + P(l̄b0,n ≤ 0) = 2P(r̄b0,n ≥ 0)

and since for every large n we have that n ≥ mN for large m

P(ξb,0n = Ø) ≤ P(ξb,0mN = Ø) ≤ 2P(r̄b0,mN ≥ 0),

so the proof of (6.6) is complete. □

Claim 4 (*). If s > αb, then there are constants Cb and γb such that

P
(
r̄bn > sn

)
≤ Cbe

−γbn. (6.7)

Proof. If s > αb, we have the following:

• E
(
r̄b2b,Nb

− sNb

)
< 0 for some Nb > 0,

• P
(
r̄bn > sn

)
≤ P

(
ξb,0n ̸= Ø

)
,

• r̄bmNb
− smNb satisfies

r̄b0,mNb
− smNb ≤ (r̄b2b,N − sNb) + (r̄bN+2b,2N − sNb) + · · ·+ (r̄b(m−1)N+2b,mN − sNb),

and now the conclusion follows from the proof of Claim 3. □
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6.7 The nature of the limiting direction αb as the number of back-
bends b goes to infinity

In this section we make some connections between the unoriented percolation model and the back-
bend percolation model. Intuitively it seems that when b gets larger and larger in a b-backbend
percolation model then the model becomes closer and closer to the unoriented percolation model
in Z2. In this spirit we show that for p > 1/2, the limiting direction αb(p) diverges to infinity as b
increases to infinity.

Theorem 25 (*). For p > 1
2 , α

b(p) → ∞ as b→ ∞.

Proof (first approach). We start by defining a top–bottom crossing of a box [a, b]× [c, d] ⊂ L:
it is a path in the box from [a, b]× {c} to [a, b]× {d}; a left–right crossing is defined similarly.

Fix q < 1
2 . We define

τ1(n, q) = Pq{∃ an open left–right crossing of [0, n]× [0, 3n]},

τ2(n, q) = Pq{∃ an open top–bottom crossing of [0, 3n]× [0, n]}.

Since q < 1
2 , there is an N such that

τi(N, q) ≤ κ

for i = 1, 2 and κ := 1
4(50e)

−121, and so the hypotheses of Theorem 5.1 in [33] are satisfied.
Therefore there is 0 < C1, C2 <∞ such that

P{#W ≥ n} ≤ C1e
−C2n for n ≥ 0,

where W is the set of all vertices which belong to the open cluster of 0 in L and #W denotes its
cardinality.

We consider the next set of boxes. Let L > 0. Now define the boxes

Ak := [0, kL]× [0, 2kL], Bk := [0, Lk]× [0, kL], k ≥ 2.

For every Ak, we consider the parallelogram A′
k whose vertices are the points (0, 0), (kL,−kL),

(0, 3kL), (kL, 2kL), and for Bk we consider the parallelogram with vertices (0, 0), (Lk + kL, 0),
(Lk, kL), (−kL, kL) (see Figure 6.4). We define a top–bottom crossing in B′

k as a path which
starts at the line that joins (−kL, kL) with (Lk, kL) and finishes at the line that joins (0, 0) with
(Lk + kL, 0), and a left–right crossing in A′

k as a path which starts at the line that joins (0, 0) with
(0, 3kL) and finishes at the line that joins (kL,−kL) with (kL, 2kL).

Let Ek be the event that there exists a top–bottom crossing in B′
k and let Fk be the event that

there exists a left–right crossing in A′
k. So, by the previous discussion, we have

Pq(Ek) ≤ (Lk + kL)LPq(#W ≥
√
2kL) ≤ c1L

ke−c2kL,

Pq(Fk) ≤ 3kLPq(#W ≥
√
2kL) ≤ c1ke

−c2kL

for k ≥ 0 and suitable positive constants c1 and c2.

Now, change the model “open with probability q” to “open with probability p = 1− q.” Note
that if there being a top–bottom crossing in A′

k implies that there is a top–bottom crossing in Ak,
and there being a left–right crossing in B′

k implies that there is a left–right crossing in Bk. From
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(0, 0)

(kL,−kL)

(0, 3kL)

(kL, 2kL)

(0, 0)

(−kL, kL) (Lk, kL)

(Lk + kL, 0)

Figure 6.4: Parallelogram A′
k, B

′
k

the above inequalities we obtain

Pp(∃ open top–bottom crossing in Ak) ≥ 1− c1L
ke−c2kL,

Pp(∃ open left–right crossing in Bk) ≥ 1− c1L
ke−c2kL.

We consider the configuration of the boxes Ak and Bk as is shown in Figure 6.5, such that

• up to k, the length of the configuration is

l :=

k∑
j=2

Lj −
k∑

j=3

jL =
Lk+1 − 1

L− 1
− L

2
k(k + 1) + 2L− 1.

• Up to k, the height of the configuration is

h :=

k∑
j=2

2jL−
k∑

j=3

(j − 1)L =
Lk

2
(k + 3)− L.

Suppose that the sequence (with respect to b) αb(p) (p > 1/2) is bounded. Then α∞ :=
limb→∞ αb(p) is finite. Hence, when L is large, 0 < l − α∞h is also large.

If we concatenate a top–bottom crossing in Aj with a left–right crossing in Bj , for j = 1, . . . , k,
we obtain a 2kL–path. So, by the FKG inequality, the probability that this 2kL-path exists is at
least

π0 :=

k∏
j=2

(1− c1L
ke−c2kL).

Since c1L
ke−c2kL = c1

(
L/ec2L

)k
, we can choose L and k sufficiently large so that π0 > 1 − ε

for some prescribed ε > 0. We choose a K such that π0 > 1− ε for some fixed ε > 0 and L, and in
the following we consider this 2KL-path.

We can extend the 2KL-path such that it still below of line with the slope α∞ by adding a
“copy of itself” in the following way (see Figure 6.6). We select one point in the original 2KL-path.
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A2

B2

A3

B3

A4

B4

α∞

Figure 6.5: Configuration of the boxes Ak, Bk.

The probability that there is a 2KL-path from the previous selected point is at least 1− (1− π0).
After that, we add j 2KL-paths, we choose j + 1 points on these paths, and now we have that the
probability that there is a 2KL-path starting from some of these points is at least 1− (1− π0)

j+1.
By the FKG inequality, the probability that we can obtain an infinite 2KL-path is at least

π1 := π0

∞∏
j=1

(
1− (1− π0)

j
)
.

We can take L such that π1 > 0, but this is a contradiction to the boundedness of αb(p).
Therefore αb(p) → ∞ as b→ ∞. □

α∞

Figure 6.6: 2KL-paths
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6.8 A construction for studying p > pbc

Let L = {(m,n) ∈ Z2 : m + n is even, n ≥ 0}. For δ small and L large, we define, for each
(m,n) ∈ L,

Cm,n = ((1− δ)αbLm,Ln),

Rm,n = Cm,n + [−(1 + δ)αbL, (1 + δ)αbL]× [0, (1 + δ)L],

where αb is the constant defined in Theorem 21.
Let A0,0 be the parallelogram with vertices

u0 = (−1.5δαbL, 0), v0 = (−.5δαbL),

u1 = u0 + (1 + δ)(αbL,L), v1 = v0 + (1 + δ)(αbL,L),

and let B0,0 = −A0,0. We say that the event G0,0 occurs if there is a b-path from [u0, v0] to [u1, v1]
which stays in A0,0 and there is a b-path from [−v0,−u0] to [−v1,−u1] which stays in B0,0 (see
Figure 6.7).

The events Gm,n are defined by translating the last definition by Cm,n. So, to every z ∈ L there
is associated a random variable η(z) as

η(m,n) = 1Gm,n .

The next proposition mentions some properties of this η-system.

Proposition 5 (*). The η-system satisfies the following:

1. If δ ≤ .1, the random variable η(z) will be 1−dependent, that is, if we let ||(m,n)|| = (|m|+
|n|)/2 and if z1, . . . , zm are points with ||zi − zj || > 1 for i ̸= j, then η(z1), . . . , η(zm) are
independent.

2. If percolation occurs in the η-system, then there is an infinite path in the original system
which starts in [−1.5δαbL, 1.5δαbL].

3. If δ, ε > 0 and p with α(p) > 0, then we can pick L large enough so that P (η(z) = 1) > 1− ε.

Proof. (i). Note that η(m,n) depends only on the configuration in Rm,n. We take z1 =
(m1, n1), z2 = (m2, n2) ∈ L with ||z1 − z2|| > 1. Suppose that m1 ≤ m2 and n1 = n2. If

(1− δ)αbLm1 + (1 + δ)αbL ≥ (1− δ)αbLm2 − (1 + δ)αbL,

then Rm1,n1 ∩Rm2,n2 ̸= Ø, but this is not possible, since m2 −m1 ≥ 3 and

5

2
≥ 2

1 + δ

1− δ
≥ m2 −m1.

Then, if ||z1−z2|| > 1 (other possible cases are similar to that above), we have that η(z1) and η(z2)
are independent.

(ii). If z0 = (0, 0) and z1 = (1, 1) are open, then there is a b-path from [−1.5δαbL, 1.5δαbL]×{0}
through C1,1+([−0.5δαbL, 0.5δαbL]×{0}) and on up to C1,1+([−1.5δαbL, 1.5δαbL]×{0}) and to
C2,2 + ([−0.5δαbL, 0.5δαbL]× {0}) (see Figure 6.7). From this observation and induction we have
that if there is an infinite 0-path in the η-system and then there is a corresponding infinite b-path
in the original system (but not conversely).
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C(0,0) C(0,2)

Figure 6.7: η-system

(iii). Let r̂bn = sup ξ
b,(−∞,−.8δαbL]
n and let r̄bn = sup ξb,(−∞,0]. {r̂bn+.8δαbL : n ≥ 0} d

= {r̄bn : n ≥ 0}
and as n → ∞, r̄bn/n → αb a.s., so it follows that if we pick L large enough, then with probability
≥ 1− ε/4 we have

r̂b(1+δ)L > −.8δαbL+ (1 + .9δ)αbL

and for n ≤ (1 + δ)L

r̂bn ≤ −.7δαbL+ n

(
1 + 1.1δ

1 + δ

)
αb.

The last two events guarantee that there is a b-path from (−∞,−.8δαbL] × {0} up to [(1 +
.1δ)αbL, (1 + .4δ)αbL]× {(1 + δ)L} which does not cross the line between v0 and v1.

To prove that this b-path does not fall too far to the left, we observe that to travel from
the line between u0 and u1 to [αbL,∞) × {(1 + δ)L} a b-path must have an avarage slope s :=
αb(1 + 1.5δ)/(1 + δ) > αb and it follows from (6.7) that

P
(
r̄bn > sn

)
≤ Ceγn,
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so picking M large enough so that
∞∑

n=M

Ceγn ≥ ε

8

and then considering separately the points on line between u0 and u1 with y ≤ (1 + δ)L−M and
y > (1 + δ)L−M (see Figure 6.8). We see that if L is large, the probability that there is a b-path
connecting the line between u0 and u1 and [αbL,∞)× {(1 + δ)L} is at most ε/4.

bb

b

u0

u1 αbL
(1 + δ)L

(1 + δ)L−M

Figure 6.8: A b-path connecting the line between u0 and u1 and [αbL,∞)× {(1 + δ)L}

By the previous discussion, if L is sufficiently large, then the first half of the event G0,0 occurs
with probability ≥ 1− ε/2. Now the second half of the event G0,0 has the same probability as the
first. So, it follows that with probability ≥ 1− ε the good event occurs. □

Theorem 26 (*). αb(pbc) = 0

Proof. In section 10 of Durrett [18], it was shown that P (η(z) = 1) > 1− 3−36 and then there
is a positive probability of percolation in the η-system. If αb(pbc) > 0, let δ = .1 and pick L so large
that P (η(z) = 1) > 1− 3−37. Since there are only a finite number of bonds in R0,0, we can choose
p such that p < pbc and P (η(z) = 1) > 1− 3−36, but this is a contradiction because αb(p) = 0. □



Appendix A

Sub-Gaussian Random Variables

This appendix presents several facts about sub-Gaussian random variables and some of the prop-
erties which are used in Chapter 5. For details in this subject we recommend [56], [60].

A real-valued random variable ξ is said to be sub-Gaussian if there is some b > 0 such that for
every t ∈ R

E
(
etξ
)
≤ eb

2t2/2.

When this condition is satisfied with a particular value of b > 0, we say that ξ is b-sub-Gaussian,
or sub-Gaussian with parameter b.

From this definition, we have that sub-Gaussian random variables are centered and their variance
has a natural upper bound in terms of the sub-Gaussian parameter.

Proposition 6. If ξ is b-sub-Gaussian, then E (ξ) = 0 and Var (ξ) ≤ b2.

Example 2. If ξ has distribution N (0, σ2), then an easy computation shows that any t ∈ R

E
(
etξ
)
= eσ

2t2/2,

i.e., ξ is sub-Gaussian with parameter σ.

Example 3. Let ξ be a Rademacher random variable, i.e., the law of ξ is Pξ = 1
2δ−1 +

1
2δ1 (here

δx is the point mass at x). Then for any t ∈ R

E
(
etξ
)
=

1

2
e−t +

1

2
et = cosh(t) ≤ et

2/2,

so ξ is 1-sub-Gaussian.

Example 4. Let ξ be a random variable with uniform distribution over the interval [−a, a] for
some fixed a > 0. The for any real t ̸= 0

E
(
etξ
)
=

1

2a

∫ a

−a
etxdx =

1

2at

(
eat − e−at

)
=

∞∑
n=0

(at)2n

(2n+ 1)!
,

since (2n+ 1)! ≥ n!2n, we see that ξ is a-sub-Gaussian.

More generally, any centered and bounded random variable is sub-Gaussian.
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Theorem 27. If ξ is a random variable with E (ξ) = 0 and |ξ| ≤ 1 a.s., then

E
(
etξ
)
≤ cosh(t) ∀t ∈ R (A.1)

and so ξ is 1-sub-Gaussian. Moreover, if equality holds in (A.1) for some t ̸= 0, then ξ is a
Radamecher variable and hence equality holds for all t ∈ R.

Corollary 2. If ξ is a random variable with E (ξ) = 0 and |ξ| ≤ b a.s. for some b > 0, then ξ is
b-sub-Gaussian.

The set of all sub-Gaussian random variables has a linear structure.

Theorem 28. If ξ is b-sub-Gaussian, then for any α ∈ R, the random variable αξ is |α|b-sub-
Gaussian. If ξ1 and ξ2 are random variables such that ξi is bi-sub-Gaussian, then ξ1 + ξ2 is
(b1 + b2)-sub-Gaussian.

Note that in the previous theorem, ξ1 and ξ2 are not necessarily independent.
The following theorem gives equivalent conditions for a random variable to be sub-Gaussian.

Theorem 29. For a centered random variable ξ, the following statements are equivalent:

1. Laplace transform condition: ∃ b > 0, ∀ t ∈ R, E
(
etξ
)
≤ eb

2t2/2.

2. Sub-Gaussian tail estimate: ∀ λ > 0, P (|ξ| ≥ λ) ≤ 2 exp
{

−λ2

2b2

}
.

3. Orlicz condition: E
(
exp

{
3
b2
ξ2
)}

≤ 2.

4. Moments condition: ∃ C > 0, (E (|ξ|p))1/p ≤ Cb
√
p for all p ≥ 1.
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