Por favor, use este identificador para citar o enlazar este ítem: http://cimat.repositorioinstitucional.mx/jspui/handle/1008/1082
ROBUST ESTIMATION OF THE MEAN OF A RANDOM MATRIX: A NONASYMPTOTIC STUDY
Roberto Cabal
Acceso Abierto
Atribución-NoComercial
PROBABILIDAD Y ESTADÍSTICA
This thesis is concerned with the estimation of the mean of a random matrix when there are no assumptions about the tail of the distributions that are related to the matrix. More specifically, the estimation procedure contemplates that the distribution of the elements of the random matrix could be heavy-tailed. For this reason, we develop concentration inequalities for the estimators around the mean matrix in such a way that the theoretical guarantees give us, for example, valuable information about how to choose the hyperparameters related to the estimator. Of particular interest is the robust estimation of the covariance matrix from a random sample, which has numerous applications in statistical science such as Factor Analysis and Principal Components Analysis. Other famous applications of matrix concentration inequalities are in the fields of Matrix Completion and community detection in Random Graphs Theory.
30-10-2020
Tesis de maestría
OTRAS
Versión aceptada
acceptedVersion - Versión aceptada
Aparece en las colecciones: Tesis del CIMAT

Cargar archivos:


Fichero Descripción Tamaño Formato  
TE 785.pdf3.17 MBAdobe PDFVisualizar/Abrir