
Guanajuato, Gto., 30 de octubre de 2020

ROBUST ESTIMATION OF THE MEAN 
OF A RANDOM MATRIX: A NON-

ASYMPTOTIC STUDY

T    E    S    I     S
Que para obtener el grado de

Maestro en Ciencias
con Orientación en

Probabilidad y Estadística

Presenta
Roberto Cabal López

Director de Tesis:
Dr. Emilien Joly

Autorización de la versión final





 Acta de Examen de Grado 

En la Ciudad de Guanajuato, Gto., siendo las 11:00 horas del día 30 de 
octubre del año 2020, se reunieron los miembros del jurado integrado por 
los señores: 

DR. ROLANDO JOSÉ BISCAY LIRIO  (CIMAT) 
DR. ROGELIO RAMOS QUIROGA     (CIMAT) 
DR. MATTHIEU PIERRE LERASLE      (ENSAE-FRANCIA) 
DR. EMILIEN ANTOINE MARIE JOLY     (CIMAT) 

Bajo la  presidencia del  primero y con carácter de secretario el  segundo, 
para proceder a efectuar el examen que para obtener el grado de 

MAESTRO EN CIENCIAS 
CON ESPECIALIDAD EN PROBABILIDAD Y ESTADÍSTICA 

Sustenta 
ROBERTO CABAL LÓPEZ 

En cumplimiento con lo establecido en los reglamentos y lineamientos de 
estudios de posgrado del Centro de Investigación en Matemáticas, A.C., 
mediante la presentación de la tesis 

“ROBUST ESTIMATION OF THE MEAN OF A RANDOM MATRIX:
A NON-ASYMPTOTIC STUDY”

Los miembros del jurado examinaron alternadamente al (la) sustentante y 
después de deliberar entre sí resolvieron declararlo (a) 

____________________________________________ 

DR. ROLANDO JOSÉ BISCAY LIRIO 
Presidente 

DR. ROGELIO RAMOS QUIROGA 
Secretario 

DR. MATTHIEU PIERRE LERASLE
Vocal 

DR. EMILIEN ANTOINE MARIE JOLY 
Vocal 

Acta No.: 168 

Libro No.: 002 

Foja No.: 168 

Dr. Víctor Manuel Rivero Mercado 
Director General 







Abstract

This thesis is concerned with the estimation of the mean of a random matrix when there
are no assumptions about the tail of the distributions that are related to the matrix. More
specifically, the estimation procedure contemplates that the distribution of the elements
of the random matrix could be heavy-tailed. For this reason, we develop concentration
inequalities for the estimators around the mean matrix in such a way that the theoretical
guarantees give us, for example, valuable information about how to choose the hyperpa-
rameters related to the estimator. Of particular interest is the robust estimation of the
covariance matrix from a random sample, which has numerous applications in statistical
science such as Factor Analysis and Principal Components Analysis [37]. Other famous
applications of matrix concentration inequalities are in the fields of Matrix Completion
and community detection in Random Graphs Theory [47].
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List of symbols

Mn,p Space of n× p real matrices

Mp Space of p× p real matrices

Sp Space of p× p symmetric matrices

A � 0 A is symmetric non-negative definite

A � H A−H is non-negative definite; A and H are symmetric

λj(A) j-th greatest eigenvalue of A ∈Mp, i.e., the eigenval-
ues are ordered as λ1(A) ≥ · · · ≥ λp(A)

sj(B) j-th greatest singular value of B ∈ Mn,p, i.e., the sin-
gular values are ordered as s1(B) ≥ · · · ≥ sm(B) ≥ 0,
m = n ∧ p

s(B) Vector of singular values of B ∈Mn,p

‖x‖k `k norm of x ∈ Rp equal to
(∑p

j=1 |xj|k
)1/k

|||B|||k Shatten k-norm of B ∈Mn,p equal to ‖s(B)‖k
|||B||| Operator norm of B ∈Mn,p equal to |||B|||∞ = s1(B)

|||B|||2 Frobenius norm of B ∈ Mn,p equal to tr (BᵀB) and√
s1(B)2 + · · ·+ sm(B)2, m = n ∧ p

|||B|||1 Nuclear norm of B ∈ Mn,p equal to tr (
√

BᵀB) and
s1(B) + · · ·+ sm(B), m = n ∧ p

|||B|||max Max-norm of B ∈ Mn,p equal to maxi,j |bij| where bij
is the i, j-th element of B

〈B,B′〉 Inner product of B,B′ ∈Mn,p defined as tr (BᵀB′).

X̄ Mean vector equal to 1
n

∑n
j=1Xj with Xj ∈ Rp

‖X‖ψ2 sub-Gaussian norm of the random variable X defined
as inf{t > 0 : E exp(X2/t2) ≤ 2}

‖X‖L2 L2-norm of the random variable X defined as
(E|X|2)1/2
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Chapter 1

Introduction

In this thesis we study the general procedure of Minsker in [32] to obtain good estimators
of the mean of a random matrix. More precisely, suppose that X is a p× p matrix whose
entries are real-valued random variables. We call this object a random matrix 1. Suppose
that we observe the n iid (independent and identically distributed) copies X1, ...,Xn of X
meaning that the entries of each copy are independent from the other copies and they have
the same distribution of the entries of X. We are interested in the estimation of the mean
matrix

EX = (EXij)ij

through the matrices X1, ...,Xn. One educated guess of a good estimator is the empirical
mean M defined as

M =
1

n

n∑
j=1

Xj.

This is good in the sense that it is an unbiased estimator of EX, i.e.,

EM =
1

n

n∑
j=1

EXj = EX.

But how can we quantify the variability of this estimator? In the case of scalar random
variables it is common to quantify it by the variance, but in this case there is not concrete

1A precise definition of random matrix, independence and expectation is given in Chapter 2.
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definition of “variance of a random matrix.” Another approach is by defining a metric
d : Rp×p × Rp×p → R and study the quantity

d (T,EX) ,

where T = T(X1, ...,Xn) is some estimator of EX. More specifically, we try to obtain a
result of the form

P (d (T,EX) ≥ t) ≤ b(n, p, t), (1.1)

where b is non-negative and decreasing on n and t. A natural election of d is a distance
induced by some matrix norm ||| · |||, namely,

d(A,B) = |||A−B|||.

Observe that obtaining an inequality like (1.1) is a more powerful approach than study the
variability of, for example, the entries of T since we are bounding the tail distribution of
d (T,EX) and this can gives us valuable information like consistency2 of T with respect
to the distance d and the values of n and p for which T is close to EX.

We refer to a result of the form (1.1) as non-asymptotic since we are not necessarily studying
what happens to T when n→∞ or p→∞. Instead, we are trying to control its behavior
around EX for fixed values of n and p. Nevertheless, obtaining a result of the form (1.1)
can be difficult without making assumptions on the distribution of the entries of X. This
is the relevance of work presented in [32] since the author hands over a novel approach
to obtain results of the form (1.1) with very few distributional assumptions. The type of
estimators that require minimal assumptions are called robust.

Incidentally, a non-asymptotic viewpoint leads us to results relevant in a high-dimensional
setting, i.e., when the matrix dimension p is very large. For example, if for every t ≥ 0
we have that b(n, p, t) → 0 when n → ∞ even if p = p(n) → ∞, we obtain that T is
consistent. Similarly, even in the case p� n we can determine a sample size n = n(p, t, δ)
such that

P (d (T,EX) < t) ≥ 1− δ, δ ∈ (0, 1).

In what follows we give some examples of random matrices in statistics and we dive more
into the concepts of robustness and non-asymptotic results.

2We say that T is a consistent estimator of EX with respect to the distance d if d(T,EX) → 0 in
probability when n→∞.
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1.1 Random matrices in statistics

In this section we briefly summarize some of the applications of random matrices that are
covered in this thesis.

1. Covariance matrix estimation. Suppose that X ∈ Rp is a random vector with
mean vector EX = µ and covariance matrix CovX = Σ3. If X1, ...,Xn are iid
copies of X then the empirical estimator of the covariance matrix Σ is

Σ̂ =
1

n− 1

n∑
j=1

(Xj − X̄)(Xj − X̄)ᵀ,

where X̄ = n−1
∑n

j=1Xj. Here the random matrix of interest is Σ̂ and it can be

shown that EΣ̂ = Σ. This estimator is studied broadly in Chapters 3 and 5.

2. Stochastic block model. Let G = (V,E) be a undirected graph with vertex set
V and edge set E. Let A be a matrix such that aij = 1 whenever (i, j) ∈ E. If the
set E is random, i.e., two vertices i, j ∈ V are connected with certain probability,
then the matrix A is random. Additionally, we suppose that there is an structure
of groups in G, so vertices that belong to the same group have higher probability of
being connected than vertices in different groups. Here we are interested in estimating
EA through the matrix A with entries contaminated with noise. This application is
studied in Chapter 4 and is related to the problem of community detection.

3. Matrix completion. Let A be a n×m matrix. We make the following experiment:
choose a pair (i, j) ∈ {1, ..., n} × {1, ...,m} uniformly at random and observe the
quantity Y = aij + ξ, where ξ is some real-valued random noise. Suppose that
we observe a sequence of pairs (i1, j1), ..., (in, jn) and iid copies Y1, ..., Yn of Y . Our
interest is to recovering the matrix A from this sample. This problem is called matrix
completion and is fully covered in Chapter 6. The random matrix underlying this
problem is constructed from the sample through a trace regression model.

Motivated by the estimation of large covariance matrices, in [21] it is mentioned that most
of the work done to this objective hinges on distributional assumptions like Gaussianity or

3EX = (EX1, ...,EXp)
ᵀ and CovX = E [(X − EX)(X − EX)ᵀ], where the expectation is taken entry-

wise.
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sub-Gaussianity (a concept that is defined in Chapter 3.) Diverse applications of covari-
ance matrix estimation such as functional magnetic resonance imaging (fMRI) data [13],
genomics [26] and quantitative finances [10] points out that the usual assumptions are not
valid. In particular, in [13] the authors mention that the evidence suggests that the prin-
cipal cause of the invalid inference done with fMRI data is that the spatial autocorrelation
(or covariance) do not follow the Gaussianity assumptions. In this sense, there is a need
for robust methods that require few (or none) distributional assumptions for the data to
perform covariance matrix estimation, and in general, a robust method for mean matrix
estimation.

1.2 Robust estimation

In [19], Huber indicates that an estimator is robust if it is “insensible to small deviations
from the assumptions.” To be more specific, suppose that we observe the independent
random variables X1, ..., Xn and some fraction ε ∈ (0, 1) of them has a different distribution
that is heavy-tailed, i.e., the sample is contaminated by outliers. Let T = T (X1, ..., Xn) be
an estimator of, for example, the mean of the n(1− ε) variables of interest. Huber defined
loosely in [19] that the breakdown point is the smallest ε such that T takes arbitrarily large
aberrant values, and T can be considered robust whenever ε is large. Nevertheless, this is
not the exact definition that Huber made, since in [19] he precisely define the concepts of
qualitative and quantitative robustness.

Despite of getting into conflict with the ideas presented in [19], in this thesis we conceive
the concept of robusteness more related to distribution-freeness, i.e., we consider that
the estimator T is robust whenever we can obtain a result of the form (1.1) making no
assumptions of the tail-behavior of the distribution of the variables X1, ..., Xn. The reason
for this is that, as mentioned in [21], the appearance of outliers in the sample indicates that
the phenomenon of interest can be modeled with a heavy-tailed distribution and in order to
obtain results of the form (1.1) we need a procedure that can handle arbitrary distributions.
Therefore, our concept of robustness can be best understood as tail-robustness.

We want to emphasize that the distributional generality of the procedures presented along
this thesis makes it reasonable to classify them as robust. This procedures are not influ-
enced and do not require a concrete distributional assumption for the sample. So even
if there exist some underlying distributional assumptions that serve a whole pipeline of
statistical procedures, this methods serve its purpose by giving estimations that are not
affected by outliers.
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1.3 A non-asymptotic viewpoint

As mentioned earlier, throughout this thesis our objective will be to attain results of the
form (1.1). This type of inequalities are called Concentration Inequalities (or Concentration
Bounds). In [4] the authors mention that a concentration inequality is “a way to quantify
random fluctuations of functions of independent random variables, typically by bounding
the probability that such a function differs from its expected value (or from its median)
by more than a certain amount.” To fix ideas, suppose that we are given an iid sample
X1, ..., Xn or real-valued random variables and we want to estimate EX1 <∞. We want a
result of the form (1.1) for the sample mean X̄n = n−1

∑n
j=1Xj, namely,

P
(
|X̄n − EX1| ≥ t

)
≤ b(n, t).

This can be done whenever VarX1 <∞. Indeed, by Chebyshev’s inequality we obtain

P
(
|X̄n − EX1| ≥ t

)
≤ VarX1

nt2
.

Despite of being the most basic concentration inequality, this result tell us that the prob-
ability P

(
|X̄n − EX1| ≥ t

)
decreases to zero at least linearly. But, can we do better?

More precisely, can we construct an estimator T = T (X1, ..., Xn) such that the probability
P (|T − EX1| ≥ t) decreases, for example, exponentially to zero? Surprisingly, the answer
to this question is affirmative. In order to obtain such estimator T we need more sophis-
ticated concentration inequalities than Chebyshev. We present one famous result called
Hoeffding’s inequality. The proof of the following Theorem can be found in [4, p. 34].

Theorem 1.3.1 (Hoeffding’s inequality). Let X1, ..., Xn be independent random variables
such that Xi takes values in [ai, bi] almos surely for all i ≤ n. Then, for every t > 0,

P

(
n∑
i=1

(Xi − EXi) ≥ t

)
≤ exp

(
−2t2∑n

i=1(bi − ai)2

)
.

In order to see the power of Theorem 1.3.1 we give the following example that is directed
to the estimation of the mean of a random variable. The method presented is called the
Median of Means estimator. To see more sophisticated applications of this method one
can see the recent work in [30] and [29].

Example 1.3.1 (Median of means estimator). Let X be a random variable with EX = µ
and VarX = σ2 < ∞. Suppose we observe the iid copies X1, X2, ..., Xn of X and that we

6



want to obtain a estimator T of µ such that we guarantee for any ε > 0 and δ ∈ (0, 1) that
with an specific sample size n = n(σ2, ε, δ) we get that

P (|T − µ| < ε) ≥ 1− δ.

To do so, suppose that we can construct a partition of {1, 2, ..., n} in k groups where k is
an even number. Denote as C1, ..., Ck this partition with |Ci| = m > 0 for all i. For any
Ci denote its empirical mean with respect to the sample X1, ..., Xn as

µ̂i =
1

m

∑
j∈Ci

Xj.

By Chebyshev’s inequality,

P (|µ̂i − µ| ≥ ε) ≤ σ2

mε2
.

So by taking m = σ2/(4ε2) we guarantee for any i that

P (|µ̂i − µ| < ε) ≥ 3

4
.

Now, define the estimator T as4

T = med (µ̂1, ..., µ̂k) .

Also, define the random variables Yi = 1(|µ̂i − µ| ≥ ε) which are iid Bernoulli random
variables with success parameter q ≤ 1/4 (assuming that m = σ2/(4ε2).) By definition of
median of a finite set, if |T − µ| ≥ ε then at least k/2 of the variables µ̂1, ..., µ̂k have to
satisfy that |µ̂i − µ| ≥ ε. Therefore,

P (|T − µ| ≥ ε) ≤ P

(
k∑
i=1

Yi ≥
k

2

)
.

On the other hand, as Yi ∈ [0, 1] almost surely, we obtain by Hoeffding’s inequality of
Theorem 1.3.1 that

P

(
k∑
i=1

(Yi − q) ≥ t

)
≤ exp

(
−2t2

k

)
.

4med(x1, ..., xN ) denote the median value of the set {x1, ..., xN} ⊂ R.
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Even more, since q ≤ 1/4,

P

(
k∑
i=1

Yi ≥
k

2

)
= P

(
k∑
i=1

(
Yi −

1

4

)
≥ k

4

)
≤ P

(
k∑
i=1

(Yi − q) ≥
k

4

)
.

Finally we obtain that

P (|T − µ| ≥ ε) ≤ exp

(
−k
8

)
, (1.2)

so by choosing5 n = 2σ2 log(δ−1)/ε2 we guarantee that

P (|T − µ| < ε) ≥ 1− δ.
♣

From (1.2) of Example 1.3.1 we conclude that there exist an estimator T such that6

P (|T − µ| ≥ t) ≤ exp

(
−t2n
2σ2

)
,

which decreases exponentially with n and t. Another remarkable thing of this approach
is that we made no distributional assumption over the iid sample X1, ..., Xn other than
VarX1 <∞.

Example 1.3.1 encapsulates some of the ideas of the procedures followed in this thesis.
However, we’ll go after a different methodology called the Crámer-Chernoff method, which
consists on bounding the moment generating function. This is motivated from the next
observation: for iid random variables X1, ..., Xn and some function h : R→ R, we get from
Markov’s inequality that for any θ > 0,

P

(
n∑
j=1

h(Xi)− EX1 ≥ t

)
= P

(
e
∑n
j=1 θh(Xi) ≥ eθ(EX1+t)

)
≤ e−θ(EX1+t)Ee

∑n
j=1 θh(Xi)

= e−θ(EX1+t)

n∏
j=1

Eeθh(Xj)

= e−θ(EX1+t)
(
Eeθh(X1)

)n
.

Therefore, by bounding Eeθh(X1) we can get a concentration inequality for the estimator∑n
j=1 h(Xj). This approach, applied to random matrices, is explored in Chapter 2.

5n = mk = σ2

4ε2 8 log(δ−1)
6Substitute k = n

m = 4ε2

σ2 n.
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1.4 Matrix assumptions and notations

Motivated by the applications of Section 1.1, throughout this thesis we will work with
matrices with real entries with special emphasis on real symmetric matrices. The setMp,r

denotes the set of p × r matrices and Mp is the of p × p (squared) matrices. Also, Sp is
the set of p× p symmetric matrices.

Since any matrix A ∈ Sp has real eigenvalues we denote them as λj(A), j = 1, ..., p and
suppose that they are arranged in decreasing fashion, i.e., λ1(A) ≥ · · · ≥ λp(A).

Similarly, for any matrix B ∈Mp,r we denote its singular values as s1(B) ≥ · · · ≥ sm(B) ≥
0, m = p ∧ r. See Appendix A for a definition of singular values and Singular Value
Decomposition (SVD.) Also, its vector of singular values is

s(B) = (s1(B), ..., sm(B))ᵀ .

With this notation we define the Schatten k-norm of B as

|||B|||k = ‖s(B)‖k,

where ‖·‖k is the usual `k vector norm. Of particular interest are the operator norm

|||B||| = |||B|||∞ := lim
k→∞
|||B|||k = max

1≤j≤m
sj(B) = s1(B),

the Frobenius norm

|||B|||2 =
√

tr (BᵀB) =
√
s2

1(B) + · · ·+ s2
m(B),

and the Nuclear norm

|||B|||1 = s1(B) + · · ·+ sm(B).

See Appendix A for a more precise development of this matrix norms. Note that for any
A ∈ Sp we have that

|||A||| = max{|λ1(A)|, |λp(A)|} = max{λ1(A),−λp(A)}.

To better work with general matrices, we’ll use the symmetric dilation H : Mp,r → Sp+r
defined as

H(B) =

(
0 B

Bᵀ 0

)
.
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The notation A � 0 indicates that the matrix A ∈ Sp is non-negative definite, i.e., for
every x ∈ Rp we have xᵀAx ≥ 0. We use the non-negative order (or semidefinite order)
A � H as short for A−H � 0, i.e., the symmetric matrix A−H is non-negative definite.
The notation A � H indicates implicitly that A and H are symmetric. The same reasoning
goes for A � 0 and A � H which indicates positive definiteness.

Any vector x ∈ Rp will be understood as a column vector with p entries. For any random
vector we denote EX as its mean vector and CovX as its covariance matrix, i.e.,

EX =

EX1
...

EXp


and

CovX = E [(X − EX)(X − EX)ᵀ]

=

 E[(X1 − EX1)2] · · · E[(X1 − EX1)(Xp − EXp)]
...

. . .
...

E[(X1 − EX1)(Xp − EXp)] · · · E[(Xp − EXp)
2]

 .

If X ∈ Rp is a Gaussian random vector with E = µ and CovX = Σ we write X ∼
Np(µ,Σ). See [16, Chapter 5] for a concise review on Gaussian random vectors.

1.5 Chapters description and contributions

The following is a brief description of Chapters 2 through 6.

Chapter 2. This chapter is devoted to the basic techniques of [45] for obtaining concen-
tration inequalities for random matrices. To do so, we first define the function of a matrix
and the methods of matrix ordering.

Chapter 3. In order to compare the methods presented in Chapter 2, this chapter is di-
rected to obtaining concentration inequalities for the classical covariance matrix estimation
with some of the most known techniques that require distributional assumptions.

Chapter 4. This chapter contains the most important results of the thesis that are taken
from [32]. We obtain concentration bounds for symmetric random matrices and generalize
it to rectangular matrices.
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Chapter 5. Here we also explore the covariance matrix estimator, but unlike Chapter 3,
we use the general technique of Chapter 4 by defining a new robust estimator taken from
[21]. We complement the analysis with a simulation study.

Chapter 6. To give a different application of the technique of Chapter 4, in this chapter
we present the Matrix Completion problem with theoretical guarantees in a robust setting.
Additional to the main result, we give a method for calculating the estimator.

The major contribution of this thesis is to give a complete presentation of the theory
necessary to understand the work of Minsker in [32]. The incorporation of the appendices
A, B, and C makes this thesis a self-contained presentation of the corresponding theory.

Additionally, there are several contributions to some chapters. In Chapter 4 we present
two applications of the methodology, namely, PCA and Community Detection. As far as
the author is concerned these applications are not presented in the literature. In Chapter
5 we give a theorem that ensures the solution of an equation regarding a method called
forth moment estimation for choosing a hyperparameter. Finally, in Chapter 6 we present
a method to calculate the robust estimator in the context of Matrix Completion.
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Chapter 2

Matrix concentration inequalities

This chapter presents the basic techniques of [43] for obtaining concentration bounds of the
form (1.1). For this purpose, in Section 1 we give a brief overview of how to order symmetric
matrices and the definition of a function of a symmetric matrix. Then, in Section 2 we
give a formal definition of random matrix and clarify what we mean by independent and
identically distributed random matrices. Following this discussion, Section 3 presents the
definition of moment generating function of a random matrix and in Section 4 we show
how to use this concept to develop concentration inequalities.

2.1 Symmetric matrix operator and ordering

We now present a definition of a function of a symmetric matrix that will be used ex-
tensively throughout this thesis. This definition indicates essentially that a function of a
symmetric matrix operates over the spectrum the matrix.

Definition 2.1.1 (Symmetric matrix operator). Let A be a p× p symmetric matrix with
spectral decomposition

A = UDUᵀ,

where D = diag(λ1(A), ..., λp(A)) and U is orthogonal. Assume that λj(A) ∈ C ⊂ R,
j = 1, ..., p. If f is a real-valued function defined on C then the matrix f(A) is defined as

f(A) = Uf(D)Uᵀ,
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where

f(D) =


f (λ1(A)) 0 · · · 0

0 f (λ2(A)) · · · 0
...

...
. . .

...
0 0 · · · f (λp(A))

 .

Notice that the orthogonal matrix U of the previous definition is not unique, so one can
think that f(A) is not well defined. In Appendix A we show that this is not the case since
the product Uf(D)Uᵀ is always the same regardless of the choice of U.

According to the previous definition, for any A ∈ Sp such that λj(A) ∈ C ⊂ R and any
function f : C → R, the eigenvalues of f(A) are the set

{f(λ1(A)), ..., f(λ1(A))} .

Note that in general λ1(f(A)) ≥ f(λj(A)) for all j. If f is strictly increasing we have that
λj(f(A)) = f(λj(A)), j = 1, ..., p.

As stated in the definition, the matrix eA exist for any symmetric matrix A. This is an
alternative for the usual definition

eA = I +
∞∑
k=1

Ak

k!
, A ∈Mp, (2.1)

where I is the p× p identity matrix andMp is the space of p× p matrices. When A ∈ Sp,
the matrix exponential definition (2.1) and the one obtained by Definition 2.1.1 are the
same.

Example 2.1.1 (Matrix logarithm). According to Definition 2.1.1 the matrix log A is well
defined only when the eigenvalues of A are positive, i.e., when A is positive definite. But
note that we can always represent A as

A = log eA,

since eA is well defined for any A ∈ Sp and eA is positive definite. This will be a useful
representation when we need to apply Lieb’s Theorem and Jensen’s inequality with the aid
of the concavity of x 7→ log x. ♣

Example 2.1.2 (Rank one matrices). If A ∈ Sp has rank one then it has one non-zero
eigenvalue λ and its spectral decomposition is given by

A = λuuᵀ,
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where u is the unitary eigenvector associated to λ. Then, for every function f for which
f(λ) is well defined, we have that

f(A) = f(λ)uuᵀ.

In particular, for any vector x ∈ Rp, x 6= 0, the symmetric matrix xxᵀ is rank one
and has non-zero eigenvalue ‖x‖2

2 with associated eigenvector x/‖x‖2. Hence, for any
f : (0,∞)→ R,

f(xxᵀ) = f
(
‖x‖2

2

)( x

‖x‖2

)(
x

‖x‖2

)ᵀ

.

This equality will be useful for computation purposes when we are working with matrix
estimators of the form

n∑
i=1

X iX
ᵀ
i ,

where X i ∈ Rp, i = 1, ..., n. ♣

Example 2.1.3 (Identity addition). Define for a matrix A ∈ Sp a real-valued function g
with domain on the spectrum of A. Define the real-valued function f1 as f1(x) = g(x) + 1.
If the spectral decomposition of A is UDUᵀ, then

g(A) + I = Ug(D)Uᵀ + UIUᵀ = U (g(D) + I) Uᵀ,

where g(D) + I = diag (g(λj(A)) + 1)1. Then, f1(A) = g(A) + I. Furthermore, define the
real-valued function h with domain the image of f1, and the function f2(x) = h(g(x) + 1).
Since,

h (g(A) + I) = h (U (g(D) + I) Uᵀ) = Uh(g(D) + I)Uᵀ,

where h(g(D)+I) = diag [h(g(λj(A)) + 1)], we have that f2(A) = h (g(A) + I). Therefore,
whenever a “+1” term appears in the mapping it’s translated as a “+I” when the mapping
is applied to the matrix. ♣

The next proposition stipulates that the semidefinite order is preserved under matrix ad-
dition.

1For any collection x1, ..., xn ∈ R, the matrix diag(x1, ..., xn) is the matrix of zeros with x1, ..., xn in
the diagonal in this specific order. For short we just write diag(xj).
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Proposition 2.1.2. Let A1, ...,An and H1, ...,Hn be p× p symmetric matrices such that
Aj � Hj, j = 1, ..., n. Then

∑n
j=1 Aj �

∑n
j=1 Hj.

Proof. For every x ∈ Rp we have that xᵀAjx ≥ xᵀHjx, j = 1, ..., n. Summation over j

yields xᵀ
(∑n

j=1 Aj −
∑n

j=1 Hj

)
x ≥ 0 which proves the affirmation.

Other operation that preserves the semidefinite order is the one presented by Proposition
2.1.3. Its is useful for proving that certain functions are operator monotone: we say that
a function f : C ⊂ R→ R is operator monotone if A � H implies that f(A) � f(H).

Proposition 2.1.3. If A,H ∈ Sp and A � H, then for every B ∈ Mp we have that
BᵀAB � BᵀHB.

Proof. Since A −H � 0, we can define a symmetric matrix M such that A −H = M2.
Indeed, as A−H is symmetric with non-negative eigenvalues we can define it’s square root
M =

√
A−H according to Definition 2.1.1. Then, for every v ∈ Rp we have that

vᵀ (BᵀAB−BᵀHB)v = vᵀBᵀM2Bv

= (MᵀBv)ᵀ (MᵀBv)

≥ 0.

Therefore BᵀAB−BᵀHB � 0.

We know that a matrix A ∈ Sp is non-negative definite if λj(A) ≥ 0 for all j. So the
non-negative order � is saying something about the eigenvalues of A. What does it say
about the eigenvalues of A and H when A � H? Lemma 2.1.4 gives us the expected
answer to this question.

Lemma 2.1.4. Let A and H be two p× p real symmetric matrices such that A � H and
λj(A), λj(H) ∈ C for all j. Then,

(a) λj(A) ≥ λj(B) for all j.

(b) tr f(A) ≥ tr f(H) for any non-decreasing f : C → R.

Proof. (a) By hypothesis we have that for any x ∈ Rp,

xᵀAx ≥ xᵀHx. (2.2)
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Define the subspace W ⊂ Rp as W = span{vj, ...,vp}. Then, by the Rayleigh quotient
(Appendix A) we get that

λj(A) = max
x∈W
‖x‖2=1

xᵀAx.

Then, applying maximum in both sides of (2.2) over the set {x ∈ W : ‖x‖2 = 1} we obtain
that

λj(A) ≥ max
x∈W
‖x‖2=1

xᵀHx. (2.3)

On the other hand, in virtue of the Fischer-Courant min-max principle (Appendix A) we
have that

λj(H) = min
W⊂Rp

dim(W )=p−j+1

max
x∈W
‖x‖2=1

xᵀHx.

Therefore, by taking minimum over W in (2.3) we conclude that λj(A) ≥ λj(H), for all j.

To prove part (b) note that since the set of eigenvalues of f(A) is {f(λ1(A)), ..., f(λp(A))}
we have that

tr f(A) =

p∑
j=1

f(λj(A)) ≥
p∑
j=1

f(λj(H)) = tr f(H),

where the inequality follows from non-decreasing assumption for f .

From Lemma 2.1.4 we get that whenever A � H,

tr (A) ≥ tr (H) and tr eA ≥ tr eH,

since the functions x 7→ x and x 7→ ex are increasing.

One question that arises immediately is that if λj(A) ≥ λj(H) for all j, implies that
A � H. This is not true in general as indicted by the next example.

Example 2.1.4. Let P ∈ Sp be a projection matrix2 and write Q = I−P. Let C(P) be
the column space of P, i.e.

C(P) = {y : Px = y for some x ∈ Rp}.
2P = Pᵀ and P2 = P.
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Assume that rank(P) = r, where p− r ≤ r ≤ p. We know that λj(P) and λj(Q) are zero
or one for each j3, and that

r = tr P =

p∑
j=1

λj(P)

p− r = tr Q =

p∑
j=1

λj(Q),

i.e., there are more ones in {λj(P)} than in {λj(Q)}. Then λj(P) ≥ λj(Q) for all j. But
for x ∈ C⊥(P) we have that

xᵀPx− xᵀQx = 0− ‖x‖2
2 ≤ 0.

Therefore P � Q. ♣

Despite of not being true in general, the statement of the previous question is true for
diagonal matrices. If S and G are p × p diagonal matrices such that λj(S) ≥ λj(G) for
each j then for every x ∈ Rp

xᵀSx =

p∑
j=1

λj(S)x2
j ≥

p∑
j=1

λj(G)x2
j = xᵀGx,

so S � G. We can extend this to any A ∈ Sp that is compared to the identity I. Suppose
that λj(A) ≥ 1 for each j an that the spectral decomposition of A is UDUᵀ. Using that

A− I = Uᵀ (D− I) U, D− I � 0

and Proposition 2.1.3 we conclude that A � I. Also, note that λj(A
−1) ≤ 1 for each j, so

A−1 � I. Furthermore, assume that A and H are any positive definite matrices such that
A � H. Then, applying Proposition 2.1.3 we get that

H−1/2AH−1/2 � I and H1/2A−1H1/2 � I.

And utilizing again Proposition 2.1.3 we conclude that A−1 � H−1. Therefore the mapping
x 7→ x−1 is order reversing.

Thanks to the previous reasoning we can prove that some functions are operator monotone.
This is shown in the next example.

3Indeed, if Pv = λv then λv = P2v = λ2v, so λ is either 1 or 0.
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Example 2.1.5. The function f : (0,∞) → R defined by f(x) = −(x + a)−1, a ≥ 0, is
operator monotone in the cone of positive definite matrices. To see this, let A,H ∈ Sp be
positive definite matrices and suppose that A � H. We want to prove that f(A) � f(H).

First, it is clear that A + aI � H + aI. Then, because the map x 7→ x−1 is order reversing
we get that

(A + aI)−1 � (H + aI)−1 .

Also, the map x 7→ −x is clearly order reversing, so

− (A + aI)−1 � − (H + aI)−1 .

Which proofs that f is operator monotone. ♣

The class of operator monotone functions is not that extensive as we may think. For
example, we know that the function t 7→ t2 is monotone on the positive real line, but
this is not the case on the set of positive definite matrices. Also, the function t 7→ et is
monotone on the real line, but it is not operator monotone on Sp. The counterexamples
of this affirmations and a complete development of operator monotone functions can be
found in [3, Chapter 5]. Nevertheless, matrix logarithm is operator monotone as stated by
the next proposition.

Proposition 2.1.5 (Logarithm is operator monotone). For matrices A,H � 0, we have
that

A � H implies log A � log H.

Proof. First, note that if T(y),U(y) ∈ Sp are matrices that depend on y ∈ R, then if
T(y) � U(y) for every y ∈ C, ∫

C
T(y) dy �

∫
C
U(y) dy,

where the integral is taken entry-wise. Indeed, just use that fact that∫
C
xᵀT(y)x dy = xᵀ

(∫
C
T(y) dy

)
x ∀x ∈ Rp.

Now, from Example 2.1.5, we have that for any y ≥ 0,

(1 + y)−1I− (A + yI)−1 � (1 + y)−1I− (H + yI)−1 .
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Hence, ∫ ∞
0

(1 + y)−1I− (A + yI)−1 dy �
∫ ∞

0

(1 + y)−1I− (H + yI)−1 dy.

On the other hand, the integral representation of the logarithm of Appendix C, indicates
that

log A =

∫ ∞
0

(1 + y)−1I− (A + yI)−1 dy.

This ends the proof.

There are characteristics of a function f : C ⊆ R → R that are not inherited on Sp. An
example of this is the monotonicity, as we have just mentioned. But, what if we have some
other function g : C ⊆ R → R and know about some relationship between f and g? For
example, if f(x) ≥ g(x) for each x, can we say that f(A) � g(A) for each A ∈ Sp? This
is what is stated in the next Lemma.

Lemma 2.1.6. Let A ∈ Sp and f , g be two real valued functions defined in the subset
of R that contains all the eigenvalues of A. If f, g are such that f(λj(A)) ≥ g(λj(A)),
j = 1, ..., p. Then, f(A) � g(A).

Proof. Since f(A) = Udiag [f(λj(A))] Uᵀ and g(A) = Udiag [g(λj(A))] Uᵀ, then

f(A)− g(A) = Udiag [f(λj(A))− g(λj(A))] Uᵀ.

Given than f(λj(A)) ≥ g(λj(A)) we get that f(A)− g(A) � 0.

One final result that is used extensively throughout this thesis is Lemma 2.1.7, which is
related to what we developed in Lemma 2.1.4.

Lemma 2.1.7. For any A ∈ Sp such that λj(A) ∈ C ⊂ R, j = 1, ..., p, and any non-
negative function f : C → [0,∞) we have that, for all j,

f (λj(A)) ≤ tr f (A) ≤ pf (|||A|||) .

Proof. Observe that the set

{λ1(f(A)), ..., λp(f(A))}
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of eigenvalues of f(A) is a subset of [0,∞), i.e., f(A) � 0. Even more, for any j we have
that

f (λj(A)) ∈ {λ1(f(A)), ..., λp(f(A))} .

In consequence,

f (λj(A)) ≤
p∑

k=1

f (λk(A)) =

p∑
k=1

λk(f(A)) = tr f(A).

Finally, since λj(A) ≤ max{|λ1(A)|, |λp(A)|} = |||A||| for any j, we obtain that

tr f(A) =

p∑
k=1

f (λk(A)) ≤ pf(|||A|||),

which ends the proof.

Of particular interest for future development is the implication of Lemma 2.1.7 for the
exponential function on the maximum eigenvalue:

eλ1(A) ≤ tr eA ≤ pe|||A|||.

2.2 Random matrices

An intuitive and convenient way of thinking of a random matrix Z ∈ Mp,q is as a p × q
matrix whose entries are random variables which can be correlated. Just to keep things
formal, we present the following definition.

Definition 2.2.1 (Random matrix). Let (Ω,F ,P) be a probability space. We say that
Z = (Zij) ∈Mp,q is a random matrix in (Ω,F ,P) if (Zij) is collection of random variables
in (Ω,F ,P), i.e., for all i, j, Z−1

ij (B) ∈ F for each4 B ∈ B(R).

When talking about the distribution of a random matrix we’ll refer to the distribution
of the entries. There is no need to be precise about this concept since in each case we’ll
define the distribution of the entries if needed. However, we need the concept of equality
in distribution.

4Z−1ij (B) stand for {ω ∈ Ω : Zij(ω) ∈ B} and B(R) stands for the Borel σ-álgebra in R.
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Definition 2.2.2 (Equality in distribution row-wise). Write Z ∼ S whenever two random
vectors Z,S ∈ Rq have the same distribution. Let Z,S ∈ Mp,q be two random matrices
with rows Z1, ...,Zp and S1, ...,Sp, respectively. We say that the random matrices Z and
S have the same distribution row-wise if Zi ∼ Si for all i, and we write Z ∼ S.

Note that if Z ∼ S, then Zij ∼ Sij for all i, j, where Zij and Sij are the entries of Z and
S, respectively.

Definition 2.2.3 (Expectation of a random matrix). Let Z ∈ Mp,q be a random matrix.
The expectation (or mean) of Z is the matrix EZ ∈Mp,q defined as

(EZ)ij = EZij, ∀i, j.

From this definition it’s easy to see that for fixed (non-random) matrices B′ ∈ Mn,p and
B∗ ∈Mq,m, we have that

E [B′ZB∗] = B′E [Z] B∗.

Also, if X,Y ∈ Sp are symmetric random matrices5 such that with probability one X � Y,
then

EX � EY,

i.e., matrix expectation preserves semidefinite order. Additionally, it’s straightforward to
note that

trEZ = Etr Z.

We define the independence of random matrices in the same entry-wise manner:

Definition 2.2.4 (Independence of random matrices). Let Z ∈ Mp,q and S ∈ Mr,t be
two random matrices. We say that Z and S are independent if the collection of random
variables (Zij) is independent of the collection of random variables (Sij).

From Definition 2.2.4 we can deduce that if Z ∈Mp,q and S ∈Mq,r are independent, then

E [ZS] = E [Z]E [S] .

5X ∈ Sp means that P(Xij = Xji) = 1 for all i, j.
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Indeed, the equality follows since (E [ZS])ij = E(ZS)ij and

E(ZS)ij = E
q∑

k=1

ZikSkj

=

q∑
k=1

E[ZikSkj]

=

q∑
k=1

E[Zik]E[Skj]

= (E[Z]E[S])ij .

Throughout this thesis we will be working in the space Sp of symmetric matrices, and of
main interest will be to study the maximum eigenvalue λ1(·). To be sure that we have no
theoretical burdens, we justify in Appendix C that for any random matrix X ∈ Sp, the
quantity λ1(X) is measurable.

2.3 Matrix moment generating function

We define the moment generating function of the random matrix X ∈ Sp as

ΥX(θ) = EeθX,

provided that the expectations (EeθX)ij are finite for |θ| < θ0, for some θ0 > 06. The next
proposition gives us an idea on how the moment generating function can help us to obtain
concentration bounds.

Proposition 2.3.1. For X ∈ Sp and t ∈ R

P(λ1(X) ≥ t) ≤ e−θtEtr eθX.

Proof. Using Lemma 2.1.7 and Markov inequality we have that for any θ > 0

P(λ1(X) ≥ t) = P(θλ1(X) ≥ tθ)

= P(λ1(θX) ≥ tθ)

6It is clear that it is well defined on θ = 0 for any X, in which case we have ΥX(0) = I.
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= P
(
eλ1(θX) ≥ etθ

)
≤ e−tθEeλ1(θX)

≤ e−tθEtr eθX.

Since the inequality of the previous proposition works for any θ > 0 we can take the
infimum to get

P(λ1(X) ≥ t) ≤ inf
θ>0

{
e−θtEtr eθX

}
.

Due to the exchangeability between expectation and trace, the inequality of Proposition
2.3.1 could be written as

P(λ1(X) ≥ t) ≤ inf
θ>0

{
e−θttr ΥX(θ)

}
.

Proposition 2.3.2. For X ∈ Sp and every t ≥ 0 and θ > 0

P(|||X||| ≥ t) ≤ P(λ1(X) ≥ t) + P(λ1(−X) ≥ t)

≤ e−tθEtr eθX + e−tθEtr e−θX

Proof. Observe that |||X||| = max{λ1(X),−λp(X)}. Hence,

P(|||X||| ≥ t) = P([λ1(X) ≥ t] ∪ [−λp(X) ≥ t])

≤ P(λ1(X) ≥ t) + P(−λp(X) ≥ t).

Also, λ1(−X) = −λp(X), so applying the same procedure of Proposition 2.3.1 the result
follows.

From Proposition 2.3.2, If X ∼ −X, then

P(|||X||| ≥ t) ≤ 2P(λ1(X) ≥ t) ≤ 2e−tθEtr eθX.

Similar to Proposition 2.3.1, the inequality of Proposition 2.3.2 can be written in terms of
ΥX as

P(|||X||| ≥ t) ≤ e−tθtr (ΥX(θ) + ΥX(−θ)) , θ > 0.
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If ΥX(θ) exists for all θ in a non trivial interval around θ = 0 and X ∼ −X we get that
ΥX(θ) = ΥX(−θ) and

P(|||X||| ≥ t) ≤ 2 inf
θ∈R

{
e−tθtr ΥX(θ)

}
.

As we can see, knowledge of ΥX(θ) could give us informative bounds for the concentration
of |||X|||.

Example 2.3.1. Let g ∼ N (0, 1) and A a fix matrix in Sp. Define the random matrix
X ∈ Sp as

X = gA.

The moment generating function of a standard Gaussian is the function Mg(θ) = eθ
2/2,

θ ∈ R, so the trace of ΥX(θ), θ ∈ R, is given by

tr ΥX(θ) = trEegθA

=

p∑
j=1

Eegθλj(A)

=

p∑
j=1

Mg (θλj(A))

=

p∑
j=1

e(θλj(A))2/2

≤ peθ
2|||A|||2/2.

Since Mg(θ) = Mg(−θ), we get that ΥX(θ) = ΥX(−θ). Then, by Proposition 2.3.2, for
t ≥ 0,

P (|||X||| ≥ t) ≤ 2pe−tθ+θ
2|||A|||2/2, θ ∈ R.

Optimizing the last bound over θ, i.e., deriving −tθ+ θ2|||A|||2/2 with respect to θ, finding
the root7 and substitute it in the bound we arrive at

P (|||X||| ≥ t) ≤ 2pe−t
2/(2|||A|||2).

♣
7θ 7→ −tθ + θ2|||A|||2/2 is convex on R, so any root of its derivative is a minimum.
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In the rest of the thesis we will be mainly interested in constructing concentration bounds
for X ∈ Sp written as the sum

X = X1 + · · ·+ Xn,

where of course Xi ∈ Sp, i = 1, ..., n. As the intuition may suggest, in general we do not
have that

ΥX(θ) =
n∏
i=1

ΥXi
(θ).

When we are working with scalar random variables the previous equality is satisfied. But
for random matrices is not true since for A,H ∈ Sp

eA+H 6= eAeH, unless A and H commute.

One can argue that the situation improves if we introduce the trace. This is actually the
case, i.e., it can be proved that

tr eA+H ≤ tr
(
eAeH

)
. (2.4)

This is called the Golden-Thompson inequality. The proof of (2.4) is beyond the scope of
this thesis. One can see [34] for an sketched proof and [35] for an application of this inequal-
ity in the context of random matrices. Unfortunately, the Golden-Thompson inequality
fails for more than two matrices.

In the next section we approach a result called Lieb’s inequality which gives us a method
to obtain concentration inequalities for the sum of independent random matrices, circum-
venting the problem of non-commutativity. The power of Lieb’s inequality in this context
is provided mainly in [45].

2.4 Lieb’s Theorem and sum of random matrices

The next theorem is proved succinctly in [43]. We strongly recommend Chapter 8 of [45] for
a theoretical background on the theory necessary to prove Lieb’s inequality. In particular,
one need to prove with the aid of several other results that the function D(A; H), A,H � 0
defined as

D(A; H) = tr [A(log A− log H)− (A−H)]

is convex, meaning that for Ai,Hi � 0, i = 1, 2,

D(tA1 + (1− t)A2; tH1 + (1− t)H2) ≤ tD(A1; H1) + (1− t)D(A2; H2), t ∈ [0, 1].
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Theorem 2.4.1 (Lieb’s inequality). Let H be a p× p symmetric matrix. The mapping

A 7→ tr exp (H + log(A))

is concave on S+
p = {A ∈ Sp : λp(A) > 0}.

A simple but powerful consequence of Lieb’s Theorem is the next corollary.

Corollary 2.4.2. Let X ∈ Sp be a random matrix and H ∈ Sp a fixed matrix. Then,

Etr exp (X + H) ≤ tr exp
(
logEeX + H

)
.

Proof. Let Y = eX. Then, by Lieb’s Theorem and Jensen’s inequality (Lemma C.3.1 of
Appendix C),

Etr exp (X + H) = Etr exp (log Y + H)

≤ tr exp (logEY + H)

= tr exp
(
logEeX + H

)
.

Corollary 2.4.2 is directly applied to the next lemma in order to obtain a more general
bound on the expectation. Lemma 2.4.3 will be subsequently applied to get a concentration
bound on the greatest eigenvalue.

Lemma 2.4.3 (Tropp’s expectation bound). Let X1, ...,Xn ∈ Sp be independent random
matrices and H ∈ Sp a deterministic matrix. Then,

Etr exp

(
n∑
j=1

Xj + H

)
≤ tr exp

(
n∑
j=1

logEeXj + H

)
.

Proof. Using the notation E1[·] = E[·|X2, ...,Xn], En[·] = E[·|X1, ...,Xn−1] and Ek[·] =
E[·|X1, ...,Xk−1,Xk+1, ...,Xn] for 1 < k < n, we have that

Etr exp

(
n∑
j=1

Xj + H

)
= EEntr exp

(
n−1∑
j=1

Xj + H + Xn

)
. (2.5)
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Applying Corollary 2.4.2 to the inside expectation on (2.5) we obtain that

Etr exp

(
n∑
j=1

Xj + H

)
≤ Etr exp

(
n−1∑
j=1

Xj + H + logEneXn

)

= Etr exp

(
n−1∑
j=1

Xj + H + logEeXn

)
,

where in the last equality the expectation En is replaced by E due to the independence of
X1, ...,Xn. Applying the same argument recursively we get

Etr exp

(
n∑
j=1

Xj + H

)
≤ EEn−1tr exp

(
n−2∑
j=1

Xj + H + logEeXn + Xn−1

)

≤ Etr exp

(
n−2∑
j=1

Xj + H + logEeXn−1 + logEeXn

)
...

≤ Etr exp

(
X1 + H +

n∑
j=2

logEeXj

)

= EE1tr exp

(
H +

n∑
j=2

logEeXj + X1

)

≤ Etr exp

(
H +

n∑
j=1

logEeXj

)
.

Theorem 2.4.4 (Tropp’s probability bound). Let X1, ...,Xn ∈ Sp be independent random
matrices and H ∈ Sp a deterministic matrix. Then, for every θ > 0 and t ≥ 0

P

(
λ1

(
n∑
j=1

Xj + H

)
≥ t

)
≤ e−θttr exp

(
n∑
j=1

logEeθXj + θH

)
.

Proof. Using Proposition 2.3.1 and Lemma 2.4.3 we get

P

(
λ1

(
n∑
j=1

Xj + H

)
≥ t

)
= P

(
θλ1

(
n∑
j=1

Xj + H

)
≥ θt

)
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≤ e−θtEtr exp

(
n∑
j=1

θXj + θH

)

≤ e−θttr exp

(
n∑
j=1

logEeθXj + θH

)
.

As in Proposition 2.3.1 we can take the infimum over θ > 0 to optimize the bound. Theorem
2.4.4 is presented in [45] as one of the master bounds for sum of independent random
matrices. The other master bound is on E|||X|||. In this thesis, we’ll not use bounds on
the expected value. Instead, we’ll be interested in classical concentration inequalities of
the form of Theorem 2.4.4 and Examples 2.3.1 and 2.4.1. Besides, once we have obtained
a bound on P(|||X||| ≥ t), we can get bounds on E|||X||| with the formula

E|||X||| =
∫ ∞

0

P (|||X||| ≥ t) dt.

Example 2.4.1. Like in Example 2.3.1, here we obtain a bound on the matrix X ∈ Sp
defined as

X =
n∑
j=1

gjAj,

where g1, ..., gn are iid N (0, 1) and A1, ...,An are fixed p × p symmetric matrices. Let
g ∼ N (0, 1) and A ∈ Sp fixed. Now, instead of bounding Etr eθgA, θ > 0, we’ll obtain an
explicit expression for EeθgA. It is well known that

Egk =

0, k odd,
k!

2k/2(k/2)!
k even.

Then by definition of matrix exponential (2.1) we get that

EeθgA = I +
∞∑
k=1

(θA)kEgk

k!

= I +
∞∑
k=1

(θA)2k

(2k)!

(2k)!

2kk!
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= I +
∞∑
k=1

(θ2A2/2)k

k!

= eθ
2A2/2.

Then, logEeθgA = θ2A2/2 and
n∑
j=1

logEeθgjAj =
θ2

2

n∑
j=1

A2
j .

Therefore, by Theorem 2.4.4 (with H = 0) we conclude that

P (λ1(X) ≥ t) ≤ e−tθtr exp

(
θ2

2

n∑
j=1

A2
j

)

≤ e−tθp exp

(
θ2

2
λ1

(
n∑
j=1

A2
j

))

≤ pe−tθ exp

(
θ2

2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n∑
j=1

A2
j

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
)

If we define σ2 = |||EX2|||, then, by independence of g1, ..., gn,

σ2 =

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n∑
j=1

Eg2
jA

2
j

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n∑
j=1

A2
j

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣.

Thus,

P (λ1(X) ≥ t) ≤ p exp

(
−tθ +

θ2

2
σ2

)
.

And optimizing on θ > 0 we finally get that

P (λ1(X) ≥ t) ≤ pe−
t2

2σ2 .

To get a bound on |||X|||, note that X ∼ −X, and by Proposition 2.3.2,

P (|||X||| ≥ t) ≤ 2pe−
t2

2σ2 . (2.6)

The bound (2.6) is useful, i.e., is less that or equal to one, when t ≥ σ
√

2 log(2p), so we
can rewrite it in the following way: for any δ ≥ 0 we have that

|||X||| ≥ σ
√

2(1 + δ) log(2p),

with probability at most (2p)−δ. This is obtained taking t = σ
√

2(1 + δ) log(2p). ♣
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2.5 Summary and observations

In this chapter we saw how to define the function f(A) of a symmetric matrix A ∈ Sp
and how to order matrices in Sp through the semidefinite order �. Then, we presented
a more formal definition of a random matrix and the moment generating function of a
random symmetric matrix. Finally, we showed how to apply the Lieb’s inequality in order
to obtain general concentration inequalities for the sum of iid symmetric random matrices
in terms of the spectral norm.

Examples 2.3.1 and 2.4.1 illustrate most of the technique used in this thesis:

1. Define a symmetric random matrix X =
∑n

j=1 Xj. We didn’t make use of it
in example 2.4.1, but usually we also define a deterministic matrix H which
represents the matrix we want to estimate.

2. Find a upper bound for EeθXj in terms of semidefinite order. In Example 2.4.1
we were able to find the expectation explicitly, but this would not be the case
in the future. In fact this will be the goal of the robust methodology.

3. Use the stated results to find a bound for P(λ1(X) ≥ t).

4. Verify that P(λ1(X) ≥ t) = P(λ1(−X) ≥ t) to obtain a bound for P(|||X||| ≥ t).

Applications of the methodology presented in this chapter can be found in [45], which
ranges from covariance matrix estimation, randomized numerical linear algebra (see also
[31]), data matrix sparsification, random feature maps, and random graphs.

In the next chapter we deviate from the previous development in order to emphasize
the simplicity and generality of the results obtained. Chapter 3 will be devoted to the
applications of the theory of metric entropy and concentration bounds for Gaussian and
sub-Gaussian processes.
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Chapter 3

Covariance matrix estimation

This chapter presents some of the basic known techniques to obtain concentration inequal-
ities in the context of covariance matrix estimation. The objective of this chapter is to
contrast the development of Chapter 2 with the classical results in one of the most known
applications of random matrix theory. The first techniques will deviate broadly from the
ones developed in Chapter 2 since we’ll make strong distributional assumptions. The main
sources of the theory presented are [4], [47] and [48].

First, we’ll present the basic sub-Gaussian assumption for random variables and how can
be used to obtain concentration bounds. Then, the following sections are dedicated to
obtaining theoretical guarantees under Gaussian or sub-Gaussian assumptions. To do
this, we present some known results which are proved in Appendix B. The last section is
dedicated to obtaining a first robust estimation with the techniques of Chapter 2. Before
presenting all the results, let us state the context of the estimation problem.

Suppose that X1, ...,Xn are n iid copies of the random vector X ∈ Rp with EX = µ and
CovX = Σ. We want to estimate Σ through X1, ...,Xn. Usually we will do it with the
empirical covariance matrix Σ̂ defined as

Σ̂ =
1

n

n∑
j=1

(Xj − X̄)(Xj − X̄)ᵀ,

where X̄ = 1
n

∑n
i=1X i. Is not difficult to show that n

n−1
Σ̂ is and unbiased estimator1 of Σ

(see Appendix C.) A major difficulty in obtaining concentration bounds for Σ̂ is that the

1This implies that EΣ̂ = n−1
n Σ→ Σ, n→∞, entry-wise.
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addends are not independent, since each one depends on X̄. To avoid this burden, we’ll
assume throughout this chapter that EX = 0. In Chapter 5 we’ll obtain concentration
inequalities for Σ̂ without this assumption. In the case of this chapter, we can use

Σ̂0 =
1

n

n∑
j=1

XjX
ᵀ
j

as an unbiased estimator of Σ, since the mean of this random matrix is

EΣ̂0 =
1

n

n∑
j=1

EXjX
ᵀ
j = Σ.

Define the n× p random matrix X as the ensemble

X =

X
ᵀ
1

...
Xᵀ

n

 .

Then, Σ̂0 can be expressed as

Σ̂0 =
1

n
XᵀX.

The asymptotic distribution of the matrix Σ̂0 generated by the ensemble X is studied
broadly in random matrix theory (see for example [52]). Instead, as it is done in all of this
thesis, we’ll do a non-asymptotic study of this estimator giving concentration bounds for
the random variable

|||Σ̂0 −Σ|||.

To do so, we need to impose some assumptions on the underlying distribution of X, i..e.,
on the distribution of the rows X1, ...,Xn. We’ll present precise definitions of this in the
following sections.

3.1 Sub-Gaussian variables and Lipschitz functions

One class of random variables which automatically gives us straightforward concentration
bounds are sub-Gaussian random variables, which are defined as follows.

32



Definition 3.1.1 (Sub-Gaussian random variables). Let X be a real-valued random vari-
able with EX = µ. We say that X is sub-Gaussian with parameter σ > 0 if

logEeθ(X−µ) ≤ θ2σ2

2
, ∀θ ∈ R,

and we write X ∼ SG(σ).

Note that the parameter σ is not unique since for every v ≥ σ, X ∼ SG(σ) implies
X ∼ SG(v).

Recall that one way to measure the magnitude of a random variable is through its L2-
norm defined as

‖X‖L2 =
(
E|X|2

)1/2
.

In a similar way, the sub-Gaussian norm of a random variable is defined as

‖X‖ψ2 = inf
{
t > 0 : E exp(X2/t2) ≤ 2

}
.

See Appendix B for more details on the sub-Gaussian norm. This quantity is called a norm
because it is a norm over the set of real-valued random variables. Even more, it can be
proved that whenever ‖X‖ψ2 < ∞, then X ∼ SG(σ) for some σ > 0, and in fact ‖X‖ψ2

is proportional to σ (see Proposition 2.5.2 of [47]). We’ll come back to this quantity when
we work with sub-Gaussian random vectors, a concept defined letter on.

There is an easy method for obtaining concentration inequalities for sub-Gaussian random
variables, in fact, this method motivates its definition. If X ∼ SG(σ), from Markov’s
inequality we deduce that for t ∈ R and any θ > 0,

P (X − µ ≥ t) = P
(
eθ(X−µ) ≥ eθt

)
≤ e−θtEeθ(X−µ)

≤ e−θt+
θ2σ2

2 .

From the last inequality we can see why sub-Gaussian random variables are so useful: if
one can bound the moment generating function of X − µ, then we obtain in immediate
bound for the tail of the distribution of X − µ. As was done in the Examples 2.3.1 and
2.4.1 of the previous chapter, optimizing over θ ∈ R we turn the previous bound into

P (X ≥ µ+ t) ≤ inf
θ>0

e−θt+
θ2σ2

2 = e−
t2

2σ2 .

As a matter of fact, the last inequality characterize sub-Gaussian random variables. This
is stated in the next proposition proved in [47, p. 22].
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Proposition 3.1.2. Let X be a real-valued random variable with EX = µ. The next
statements are equivalent.

(a) X ∼ SG(σ).

(b) For some K > 0,

P (|X − µ| ≥ t) ≤ 2 exp
(
−t2/K2

)
, ∀t ≥ 0.

The constants σ and K are proportional.

Up until this moment we haven’t shown if there exist random variables that belong to this
sub-Gaussian class. Indeed, it’s not difficult to see that at least Gaussian and bounded
random variables (like Rademacher) are sub-Gaussian (see for example Chapter 2 of [48].)
For Gaussian variables this is obvious since its moment generating function is given by

t 7→ exp

(
µt+

σ2t2

2

)
, µ ∈ R, σ > 0.

The next interesting result tells us that we can obtain sub-Gaussian random variables
from Gaussian random vectors. This is done with the aid of Lipschitz functions, which are
defined in the following way.

Definition 3.1.3 (Lipschitz function). Let Y be some normed space. We say that a func-
tion f : Y → R is L-Lipschitz with respect to the norm N if

|f(x)− f(y)| ≤ LN(x− y), ∀x,y ∈ Y .

The next theorem is proved in [4, p. 125]. The authors do this with the aid of a machinery
called logarithmic Sobolev inequalities, which provides a differential equation inequality
that consequently gives a bound on the moment generating function of f(X).

Theorem 3.1.4. Let X ∼ Np(0, I) and f : Rp → R be a L-Lipschitz function with respect
to the `2 norm. Then,

f(X)− Ef(X) ∼ SG(L).
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An immediate consequence of Theorem 3.1.4 is that

P (f(X) ≥ Ef(X) + t) ≤ e−
t2

2L2 .

As well, it is clear that f is L-Lipschitz if and only if −f is L-Lipschitz, so

P (f(X) ≤ Ef(X)− t) = P (−f(X) ≥ −Ef(X) + t) ≤ e−
t2

2L2 ,

or

P (f(X) ≥ Ef(X)− t) ≥ 1− e−
t2

2L2 . (3.1)

In the context of random matrices, we are interested in the function s1 : Mn,p → [0,∞)
which gives us the maximum singular value of a matrix inMn,p (recall that s1(F) = |||F|||).
From a consequence of Weyl’s Theorem (see Appendix A) or by the triangle inequality2

we obtain that

|s1(F)− s1(G)| ≤ |||F−G|||, F,G ∈Mn,p.

The general proof of the previous inequality (i.e. for any singular value si) is presented in
Proposition A.5.1. Observe that by monotonicity of the norm3,

|s1(F)− s1(G)| ≤ |||F−G|||2

From the previous result, we can see s1 as a function from Rnp to [0,∞) and deduce
that it is 1-Lipschitz with respect to the `2 norm. More precisely, define the mapping
γ :Mn,p → Rnp as

γ(F) = (f11, ..., fn1, ..., f1p, ..., fnp)
ᵀ,

i.e., γ(F) is obtained by stacking the columns of F in one big column. Then, γ is an
isometry from (Mn,p, ||| · |||2) to (Rnp, ‖·‖2). If we define the function s̃1 : Rnp → [0,∞) as

s̃1(x) = s1(γ−1(x)),

then, s̃1 is 1-Lipschitz since

|s̃1(x)− s̃1(y)| = |s1(γ−1(x))− s1(γ−1(y))| ≤ |||γ−1(x)− γ−1(y)|||2 = ‖x− y‖2.

2Indeed, one just need to see that |||F||| ≤ |||F−G|||+ |||G||| and |||G||| ≤ |||F−G|||+ |||F|||.
3For 1 ≤ k ≤ q ≤ ∞, |||F|||k ≥ |||F|||q, see Proposition A.4.3.
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For the last equality, note that the Frobenius norm can be calculated by summation of all
the squared terms of a matrix (see Proposition A.4.3). This observations stress that for
a random matrix X, working with |||X||| = s1(X) is equivalent to working with s̃1(γ(X)).
So establishing that a real-valued matrix function is Lipschitz enables us to use Theorem
3.1.4 whenever γ(X) is a standard Gaussian random vector. This is what we’ll do in the
next section.

3.2 Gaussian ensembles

As it is always the case in Statistics, we’ll begin the journey of obtaining good estimators
starting from Gaussian samples. In this case we need to define what is a Gaussian matrix.
Instead of doing it entry-wise, we adopt a more general definition and do it row-wise as an
ensemble. Recall that the matrix X is an ensemble of the vectors X1, ...,Xn if

X =

X
ᵀ
1

...
Xᵀ

n

 .

Observe that, as we mentioned in the beginning of the chapter, all the vectors considered
will be centered, i.e., EX i = 0.

Definition 3.2.1 (Gaussian ensemble). If X1, ...,Xn are iid random vectors in Rp with
distribution Np(0,Σ), then the n× p ensemble X of the vectors X1, ...,Xn is said to be a
Σ-Gaussian ensemble and we write X ∼ Nn×p(Σ).

In rest of this section we’ll use the following observation extensively.

Remark 3.2.1. Define W ∼ Nn×p(I), so the entries of W are iid N (0, 1). If X i and
W i are the Gaussian vectors that conforms the ensembles X and W respectively, then
X i ∼

√
ΣW i, so

X ∼

W
ᵀ
1

√
Σ

...

W ᵀ
n

√
Σ

 = W
√

Σ.

♠
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The next theorem is a consequence of Theorem 3.1.3, and tells us how much the norm of
a Gaussian ensemble deviates from its mean value.

Theorem 3.2.2. Let X ∼ Nn×p(Σ). Then, for any t ≥ 0

P (|||X||| ≥ E|||X|||+ t) ≤ exp

(
−t2

2λ1(Σ)

)
.

Proof. Define W ∼ Nn×p(I) and the mapping z :Mn,p → [0,∞) as

z(F) = s1(F
√

Σ).

Due to the fact that s1 is 1-Lipschitz, we get by submultiplicity of the norm4 that

|z(F)− z(G)| ≤ |||(F−G)
√

Σ||| ≤ |||F−G||||||
√

Σ||| ≤ |||F−G|||2λ1(
√

Σ),

so z is λ1(
√

Σ)-Lipschitz with respect to the Frobenius norm. Then, since γ(W) ∼
Nnp(0, I), Theorem 3.1.4 implies that

P (|||X||| ≥ E|||X|||+ t) = P (z(W) ≥ Ez(W) + t)

≤ exp

(
− t2

2λ1(
√

Σ)2

)
.

Noting that λ1(
√

Σ)2 = λ1(Σ) ends the proof.

Theorem 3.2.2 is interesting in its own sake. But in the case of covariance estimation we’ll
like to obtain concentration results for matrices of the form XᵀX, which are not Gaussian
if X is a Gaussian ensemble. To see this one can note that the elements of its diagonal are
always positive, so we can not impose a Gaussian distribution in all the entries of XᵀX.

Instead of using directly Theorem 3.2.2 to obtain concentrations guarantees for the co-
variance estimation, we’ll apply some heavy machinery from the theory of concentration
for Gaussian processes (see for example [24, Chapter 3] and [47, Chapter 7]). The next
important result will rely strongly on the following lemma, which proof can be found in
Appendix B.

Lemma 3.2.3. Let X ∼ Nn×p(Σ) with Σ � 0. Then,

4For p ≥ 1, |||FG|||p ≤ |||F|||p|||G|||p, see Proposition A.4.3.
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(a)

Es1(X) ≤
√
nλ1(
√

Σ) +
√

tr Σ.

(b) If n ≥ p,

E
[

min
v∈V (R)

‖Xv‖2√
n

]
≥ 1−R

√
tr Σ

n
,

where R = 1/λp(
√

Σ) and V (R) = {v ∈ Rp : ‖
√

Σv‖2 = 1, ‖v‖2 ≤ R}.

The proof of Lemma 3.2.3 relies strongly in the fact that

s1(X) = max
‖u‖2=1
‖v‖2=1

uᵀXv and sp(X) = min
‖u‖2=1
‖v‖2=1

uᵀXv,

(see Theorems A.5.4 and A.5.5), and that uᵀWv, where W ∼ Nn×p(0, I), is a Gaussian
process in Rn × Rp. To obtain the inequalities one uses to powerful bounds on Gaussian
processes called Sudakov-Fernique and Gordon. See Appendix B for more details.

The next theorem is our first concentration result on covariance matrix estimation.

Theorem 3.2.4. Let X ∼ Nn×p(Σ) with n ≥ p and Σ � 0. Then, for any δ > 0,

P

(
|||Σ̂0 −Σ|||
|||Σ|||

≥ 2ε+ ε2

)
≤ 2e−nδ

2/2,

where Σ̂0 = n−1XᵀX and ε = δ +
√
p/n.

Proof. First, we’ll obtain concentration bounds for s1(X) and sp(X) and then we proceed

to bound |||Σ̂0 −Σ|||. Throughout the proof we denote W ∼ Nn×p(I). Also, notice that
λi(Σ) = si(Σ) for all i since Σ is positive definite.

Bounds on singular values. Define z1 = λ1(
√

Σ). From Theorem 3.2.2 we get that, for
δ ≥ 0,

P
(
s1(X) ≥ Es1(X) +

√
nz1δ

)
≤ e−nδ

2/2.

From Lemma 3.2.3 (a) we know that

Es1(X) ≤
√
nz1 +

√
tr Σ,
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so

P

(
s1(X)√

n
≥ z1(1 + δ) +

√
tr Σ

n

)
≤ e−nδ

2/2. (3.2)

Now to obtain a similar bound for sp(X), define zp = λp(
√

Σ), R = 1/zp and V (R) = {v ∈
Rp : ‖

√
Σv‖2 = 1, ‖v‖2 ≤ R}. Note that by definition5

zp = min
‖w‖2=1

‖
√

Σw‖2.

Suppose that the following inequality holds:

min
v∈V (R)

‖Xv‖2√
n
≥ 1− δ −R

√
tr Σ

n
. (3.3)

Then, for any w such that ‖w‖2 = 1 define v = w/‖
√

Σw‖2. By construction we have

‖
√

Σv‖2 = 1 and ‖v‖2 =
1

‖
√

Σw‖2

≤ 1

zp
= R,

so v ∈ V (R). Observe that

‖Xw‖2√
n

= ‖
√

Σw‖2
‖Xv‖2√

n
≥ zp min

v∈V (R)

‖Xv‖2√
n

.

Therefore, by assumption (3.3),

sp(X)√
n

= min
‖w‖2=1

‖Xw‖2√
n
≥ (1− δ)zp −

√
tr Σ

n
. (3.4)

Now, we want to obtain a probability bound for (3.3). As was done in Theorem 3.2.2, we
can easily see that the mapping

F 7→ min
v∈V (R)

‖F
√

Σv‖2√
n

,

is (1/
√
n)-Lipschitz6. Then, because X ∼W

√
Σ, we obtain from Theorem 3.1.4 and (3.1)

that

P
(

min
v∈V (R)

‖Xv‖2√
n
≥ E

[
min
v∈V (R)

‖Xv‖2√
n

]
− δ
)
≥ 1− e−nδ2/2.

5See the representation of sp of Theorem A.5.5.
6One just need to see that ‖F

√
Σv‖2 ≤ ‖G

√
Σv‖2+‖(F−G)

√
Σv‖2 ≤ ‖G

√
Σv‖2+|||F−G|||, because

v ∈ V (R).
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Hence, by Lemma 3.2.3 and because (3.3) implies (3.4), we have that

P

(
sp(X)√

n
≥ (1− δ)zp −

√
tr Σ

n

)
≥ 1− e−nδ2/2. (3.5)

Bound on the spectral norm. Suppose for the moment that Σ = I, so X ∼W and Σ̂0 =
n−1WᵀW. Then,

|||Σ̂0 −Σ||| =
∣∣∣∣∣∣∣∣∣∣∣∣ 1nWᵀW − I

∣∣∣∣∣∣∣∣∣∣∣∣
≤ max

{
[s1(W)]2

n
− 1,

∣∣∣∣ [sp(W)]2

n
− 1

∣∣∣∣} , (3.6)

where we used the fact that sj(W
ᵀW) = λj(W

ᵀW) = [sj(W)]2 and that for any p × p
symmetric matrices A,H,

|||A + H||| = max {λ1(A + H), |λp(A + H)|} ≤ max {λ1(A) + λ1(H), |λp(A) + λp(H)|} .

Note that λ1(I1/2) = λp(I
1/2) = 1 and tr I = p. Define ε = δ +

√
p/n, δ > 0, then from

(3.2) and (3.5) of the first part, the event[
s1(W)√

n
≤ 1 + ε

]
∩
[
sp(W)√

n
≥ 1− ε

]
(3.7)

occurs with probability at least 1− 2e−nδ
2/2. Furthermore, the event (3.7) implies that

(1− ε)2 − 1 ≤ [sp(W)]2

n
− 1 ≤ [s1(W)]2

n
− 1 ≤ (1 + ε)2 − 1,

and by (3.6),

|||Σ̂0 −Σ||| ≤ max
{

(1 + ε)2 − 1, |(1− ε)2 − 1|
}

= max
{

2ε+ ε2, | − 2ε+ ε2|
}

= 2ε+ ε2

with probability at least 1− 2e−nδ
2/2.

Now suppose that Σ 6= I. Using that X ∼ W
√

Σand the submultiplicity of the spectral
norm we obtain that

|||Σ̂0 −Σ||| =
∣∣∣∣∣∣∣∣∣∣∣∣ 1nXᵀX−Σ

∣∣∣∣∣∣∣∣∣∣∣∣
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∼
∣∣∣∣∣∣∣∣∣∣∣∣Σ1/2

(
1

n
WᵀW − I

)
Σ1/2

∣∣∣∣∣∣∣∣∣∣∣∣
≤ |||Σ|||

∣∣∣∣∣∣∣∣∣∣∣∣ 1nWᵀW − I
∣∣∣∣∣∣∣∣∣∣∣∣.

By the previous formulation done with W we can deduce that

|||Σ̂0 −Σ|||
|||Σ|||

≤ 2ε+ ε2,

with probability at least 1−2e−nδ
2/2, where ε = δ+

√
p/n, δ > 0. This ends the proof.

From Theorem 3.2.4, we can deduce that with a sample size of

n ≥ 2

δ2
log

(
2

α

)
, δ > 0, α ∈ (0, 1),

we guarantee that

|||Σ̂0 −Σ||| ≤

[
2

(
δ +

√
p

n

)
+

(
δ +

√
p

n

)2
]
|||Σ|||

with probability at least 1 − α. Even more7, by Proposition C.5.1, as long as p/n → 0
when n→∞,

|||Σ̂0 −Σ||| P−→ 0, n→∞,

i.e., Σ̂0 is consistent estimator of Σ. In the next section we’ll obtain a concentration
bound relaxing the Gaussian assumption over X and instead we’ll work with sub-Gaussian
random variables directly.

3.3 Sub-Gaussian ensembles

At the beginning of the chapter we presented sub-Gaussian random variables. Now, we
define sub-Gaussian random vectors in the following way.

7We write Xn
P−→ 0 if for any t ≥ 0, P (|Xn| ≥ t)→ 0, n→∞.
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Definition 3.3.1 (Sub-Gaussian random vectors). A random vector X ∈ Rp is called
sub-Gaussian if the one dimensional marginals 〈X,x〉 are sub-Gaussian random variables
for all x ∈ Rp.

Just as we did with in the unidemensional case, we define the sub-Gaussian norm of a
vector as

‖X‖ψ2 = sup
‖x‖2=1

‖〈X,x〉‖ψ2 .

Again, it is clear that if ‖X‖ψ2 < ∞, then X is sub-Gaussian. Unlike random variables
we are not really interest in parametrize the distribution of a sub-Guassian random vector
(e.g. X ∼ SG(σ)) because we’ll obtain concentration bounds that depends on the norm
directly.

As the previous section, starting from an ensemble X, we want to obtain concentration
guarantees for the matrix XᵀX, but instead of assuming X i to be Gaussian we’ll assume
that it is sub-Gaussian. The next theorem is proved in Appendix B and gives us our first
concentration bound for sub-Gaussian ensembles. We’ll assume first that the vectors X i

of the ensemble are isotropic, meaning that

EX iX
ᵀ
i = I.

Since we are working with centered vectors, this means that CovX i = I.

Theorem 3.3.2. Let Z be an n×p ensemble of the independent random vectors Z1, ...,Zn ∈
Rp, such that Zi is sub-Gaussian, isotropic and centered. Then, for any t ≥ 0,

P
(∣∣∣∣∣∣∣∣∣∣∣∣ 1nZᵀZ− I

∣∣∣∣∣∣∣∣∣∣∣∣ ≥ LK2(δ ∨ δ2)

)
≤ 2e−t

2

,

where

K = max
i
‖Zi‖ψ2 , δ = C

(√
p

n
+

t√
n

)
,

and L,C > 0 are absolute constants.

The proof of Theorem 3.3.2 relies on the fact that for any symmetric matrix A ∈ Sp, we
can bound |||A||| by the maximum of |〈Ax,x〉| over all x ∈ N , where N is a finite subset
of the sphere in Rp. Such subset N is called an ε-net. One can see this fact and definition
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in Appendix B. The key observation is that bounding the norm with the maximum over a
finite set enables us to use the union bound to obtain concentration results.

A consequence of Theorem 3.3.2 is the next concentration bound for the covariance esti-
mator under sub-gaussianity.

Theorem 3.3.3. Let X be a mean-zero sub-Gaussian random vector in Rp with covariance
matrix Σ � 0. More precisely, assume that there exist K ≥ 1 such that

‖〈X,x〉‖ψ2 ≤ K‖〈X,x〉‖L2 , ∀x ∈ Rp.

Let X be the n × p ensemble of X1, ...,Xn, a set of iid copies of X, and define Σ̂0 =
n−1XᵀX. Then, for every u ≥ 0,

|||Σ̂0 −Σ|||
|||Σ|||

≤ JK2

(√
p

n
+ u+

p

n
+ u

)
,

with probability at least 1− 2e−un, for some constant J > 0.

Proof. Define the random vector Z = Σ−1/2X. Then

EZZᵀ = Σ−1/2 (EXXᵀ) Σ−1/2 = Σ−1/2ΣΣ−1/2 = I,

so Z is isotropic. Even more, because

‖〈X,x〉‖2
L2 = E(xᵀX)2 = E [xᵀXXᵀx] = ‖

√
Σx‖2

2,

we have, by hypothesis, that

K ≥ ‖〈X,x〉‖ψ2

‖〈X,x〉‖L2

=
‖〈Z,y〉‖ψ2

‖y‖2

,

where y =
√

Σx. This implies that

‖Z‖ψ2 = sup
‖y‖2=1

‖〈Z,y〉‖ψ2 ≤ K.

Let Z1, ...,Zn be iid copies of Z and define the random matrix Y ∈ Sp as

Y =
1

n

n∑
j=1

(ZjZ
ᵀ
j − I).
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From Theorem 3.3.2 we know that for t ≥ 0

P
(
Y ≤ LK2(δ ∨ δ2)

)
≥ 1− 2e−t

2

, δ = C

(√
p

n
+

√
t2

n

)
.

On the other hand, by submultiplicity of the norm,

|||Σ̂0 −Σ||| = |||Σ−1/2YΣ−1/2||| ≤ |||Y||||||Σ|||.

Then, take u = t2 and observe that

δ ∨ δ2 ≤ δ + δ2 = C

√
p+ u

n
+ C2p+ u

n
,

Define a large enough constant C ′ > 0 such that8

C

√
p+ u

n
+ C2p+ u

n
≤ C ′

(√
p+ u

n
+
p+ u

n

)
, ∀u ≥ 0.

Therefore, we get that

|||Σ̂0 −Σ||| ≤ JK2

(√
p+ u

n
+
p+ u

n

)
|||Σ|||,

with probability at least 1− e−u, where J = LC ′. Taking the mapping u 7→ u/n ends the
proof.

As in the previous section, we can conclude from Theorem 3.3.3 that with a sample size of

n ≥ 1

u
log

(
2

α

)
, u > 0, α ∈ (0, 1),

we guarantee that

|||Σ̂0 −Σ||| ≤ JK2

(√
pu

log(2/α)
+ u+

pu

log(2/α)
+ u

)
|||Σ|||

with probability at least 1− α, and Σ̂0 is a consistent estimator of Σ.

To relax the Gaussian and sub-Gaussian assumptions, in the next section we’ll work with
almost arbitrarily distributions.

8For example, one can take C ′ = supu≥0 g(u), where g(u) =
C
√

(p+u)/n+C2(p+u)/n√
(p+u)/n+(p+u)/n

. Observe that g is a

bounded and monotone function.
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3.4 Matrix Bernstein inequality: first robust estima-

tion

In this section we’ll show the power of the methods developed in Chapter 2 when additional
assumptions are added to the ensemble X. More specifically, we’ll assume that the vectors
X i have bounded norm. Despite that this assumption can be viewed as very restrictive
since heavy-tailed distributions are not bounded, we can think of it as first approximation
to arbitrary distributions. Indeed, if the density function of X i has heavy tails or is not a
bell curve like in the Gaussian case, one can assume that ‖X i‖ ≤ B, for some B <∞, in
order to obtain a concentration inequality, leaving the form of the density to be arbitrary
inside the ball {x ∈ Rp : ‖x‖2 ≤ B}.
Before stating the first important result of this section, the Matrix Bernstein bound, we
need to establish the next technical lemma.

Lemma 3.4.1. Let X ∈ Sp be a random matrix such that EX = 0 and |||X||| ≤ K. Define
h : R→ R as

h(θ) =
θ2/2

1− |θ|K/3
.

Then,

(a) for any |θ| < 3/K,

EeθX � exp
(
h(θ)EX2

)
.

(b) Fix t ≥ 0, σ2 > 0. The value θ0 = t/(σ2 +Kt/3) is in the range (−3/K, 3/K) and the
function θ 7→ −tθ + h(θ)σ2 evaluated at θ0 is −t2/(2(σ2 +Kt/3)).

Proof. (a) Take x, θ > 0 such that xθ < 3. Then, by Taylor expansion,

exθ = 1 + xθ +
∞∑
j=2

(xθ)j

j!

= 1 + xθ +
(xθ)2

2

∞∑
j=2

(xθ)j−22

j!

≤ 1 + xθ +
(xθ)2

2

∞∑
j=2

(xθ)j−2

3j−2
, (j! ≥ 2(3j−2), j ≥ 2)
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= 1 + xθ +
θ2/2

1− xθ/3
x2, (xθ < 3).

Therefore, by taking any x ∈ [−K,K] and any θ ∈ [−3/K, 3/K], we have that 1 −
xθ/3 ≥ 1− |θ|K/3 and

exθ ≤ 1 + xθ +
θ2/2

1− |θ|K/3
x2 = 1 + xθ + h(θ)x2︸ ︷︷ ︸

=ϕ(x)

.

Since |||X||| ≤ K and |||X||| = max{|λ1(X)|, ..., |λp(X)|}, all the eigenvalues of X are
inside the interval [−K,K] and we arrive at the bound

eXθ � ϕ(X) = I + Xθ + h(θ)X2. (3.8)

Taking expectation on both sides of (3.8) and using that EX = 0 we get

EeθX � I + h(θ)EX2,

and because 1 + x ≤ ex for all x ∈ R,

EeθX � exp
(
h(θ)EX2

)
.

(b) Note that 3σ2/K > 0, so t > 3σ2/K + 3(Kt/3)/K and θ0 = t/(σ2 + Kt/3) is in
(−3/K, 3/K). Now, we just need to perform a simple evaluation:

−tθ0 + h(θ0)σ2 = − t2

σ2 +Kt/3
+ σ2

t2

2(σ2 +Kt/3)2

1− Kt/3

σ2 +Kt/3

= − t2

σ2 +Kt/3
+ σ2 t2(σ2 +Kt/3)/2

(σ2 +Kt/3−Kt/3)(σ2 +Kt/3)2

= − t2

σ2 +Kt/3
+

t2/2

σ2 +Kt/3

= − t2/2

σ2 +Kt/3
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The next theorem relies on Theorem 2.4.4 since it establishes a bound on the sum of
independent and symmetric random matrices, with the additional assumption that they
have zero mean and have bounded spectral norm. It is called Matrix Bernstein because
the hypothesis and the conclusion resembles the ones of the classic Bernstein inequality for
random variables (see for example [4, p. 36]). This result was obtained from [45, Chapter
6].

Theorem 3.4.2 (Matrix Bernstein). Let X1, ...,Xn ∈ Sp be independent random matrices
such that EXj = 0 and |||Xj||| ≤ K, j = 1, ..., n. Then, for any t ≥ 0,

P

(∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n∑
j=1

Xj

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ≥ t

)
≤ 2p exp

(
−t2/2

σ2 +Kt/3

)
,

where σ2 = |||
∑n

j=1 EX2
j |||.

Proof. Let X =
∑n

j=1 Xj. Because EXj = 0 and |||Xj||| ≤ K, j = 1, ..., n, we get from
Lemma 3.4.1 (a) that

EeθXj � exp
(
h(θ)EX2

j

)
, |θ| < 3/K, j = 1, ..., n. (3.9)

Furthermore, because logarithm is operator monotone (Proposition 2.1.5) we get that

logEeθXj � h(θ)EX2
j , |θ| < 3/K, j = 1, ..., n.

Then, Theorem 2.4.4 implies that

P (λ1 (X) ≥ t) ≤ e−θttr exp

(
h(θ)

n∑
j=1

EX2
j

)

≤ pe−θt exp

(
h(θ)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n∑
j=1

EX2
j

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
)

= p exp
(
−θt+ h(θ)σ2

)
.

Finally, by Lemma 3.4.1 (b), we choose the value θ = t/(σ2 +Kt/3) to get

P (λ1 (X) ≥ t) ≤ p exp

(
− t2/2

σ2 +Kt/3

)
.

On the other hand, because the bound (3.9) is valid for θ ∈ (−3/K, 3/K) we get that

Ee−θXj � exp
(
h(−θ)EX2

j

)
, |θ| < 3/K, j = 1, ..., n.
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Observing that h(θ) = h(−θ) and applying the same reasoning we obtain that

P (−λp (X) ≥ t) = P (λ1 (−X) ≥ t)

≤ p exp

(
− t2/2

σ2 +Kt/3

)
.

Therefore, the result follows by Proposition 2.3.2.

In the upcoming theorem we derive a concentration bound on the matrix estimator under
the bounded norm assumption using Theorem 3.4.2. This result was obtained from [45,
Chapter 1].

Theorem 3.4.3. Let X ∈ Rp be a random vector such that EX = 0, CovX = Σ and
‖X‖2

2 ≤ B. Let X1, ...,Xn iid copies of X from which we construct Σ̂0. Then, for every
t ≥ 0,

P
(
|||Σ̂0 −Σ||| ≥ t

)
≤ 2p exp

(
−nt2/2

B|||Σ|||+ 2Bt/3

)
.

Proof. Define the matrices Y1, ...,Yn ∈ Sp as

Yj =
1

n

(
XjX

ᵀ
j −Σ

)
, j = 1, ..., n.

Also, define Y =
∑n

j=1 Yj, so

Y = Σ̂0 −Σ.

Note that EYj = 0 since EXXᵀ = Σ, and

|||Yj||| =
1

n
|||XjX

ᵀ
j −Σ|||

≤ 1

n

(
|||XjX

ᵀ
j |||+ |||Σ|||

)
, (by triangle inequality)

≤ 1

n
(B + |||EXXᵀ|||) , (by Example 2.1.2)

≤ 1

n
(B + E|||XXᵀ|||) , (by Jensen’s inequality)

≤ 2B

n
.
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Also, by definition of Yj,

EY2
j =

1

n2
E
[
‖Xj‖2

2XjX
ᵀ
j −XjX

ᵀ
jΣ−ΣXjX

ᵀ
j + Σ2

]
� 1

n2

(
BEXjX

ᵀ
j −Σ2 −Σ2 + Σ2

)
� BΣ

n2
.

Then,

n∑
j=1

EY2
j �

BΣ

n
and

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n∑
j=1

EY2
j

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ≤ B

n
|||Σ|||.

Therefore, by direct application of Theorem 3.4.2, we get that

P
(
|||Σ̂0 −Σ||| ≥ t

)
= P (|||Y||| ≥ t)

= 2p exp

(
− t2/2

1
n
B|||Σ|||+ 1

n
2Bt/3

)
.

This ends the proof.

As in the two previous sections, we conclude from Theorem 3.4.3 that

P
(
|||Σ̂0 −Σ||| ≤

√
2t(B|||Σ|||+ 2Bt/3)

)
≥ 1− 2pe−nt,

so with a sample size of

n ≥ 1

t
log

(
2p

α

)
, t > 0, α ∈ (0, 1),

we guarantee that

|||Σ̂0 −Σ||| ≤
√

2t(B|||Σ|||+ 2Bt/3),

with probability at least 1− α. And of course Σ̂0 is a consistent estimator of Σ.
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Summary and observations

In this chapter we presented concentration inequalities for the random matrix Σ̂0 around
its mean Σ, were closeness is measured in terms of the spectral norm. To do so we had
to make the general assumption that EX = 0. Additionally, we assumed that X had a
Gaussian or sub-Gaussian distribution, and in the final section we supposed that ‖X‖2 is
bounded.

We can observe that the concentration bounds under Gaussian or sub-Gaussian assump-
tions are similar. In particular the Gaussian bound is sharper since it doesn’t depend on
any unknown constant. On the other hand, the bond obtained by the Matrix Bernstein
inequality differ from the previous two in the incorporation of the norm bound and that in
the probability bound there is an explicit dependence on the dimension. This last difference
is due to the fact that the technique used are distinct. One important observation is that
the assumption |||X||| ≤ K of the Matrix Bernstein inequality do not imply immediately a
Hoeffding-type result like in Theorem 1.3.1 of Chapter 1. For that type of results one uses
the stronger assumption X2 � K2 [44]. As far as the author is concerned, there is no result
that requires only the hypothesis |||X||| ≤ K in order to obtain Hoeffding-type bounds.

We want to stress that Theorem 3.4.3 depends on the more succinct results of Chapter 2,
but to make those results useful we needed to add the bounded condition. In the following
chapter we continue exploiting the results of Chapter 2, but we’ll do it in a way that is
more general in the sense that very few distributional assumptions will be made.
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Chapter 4

Robust estimation of a matrix

In this chapter we present the main results studied in this thesis. We describe the procedure
of Minsker in [32] for the estimation of the mean of a random matrix with heavy tail entries.
The originality of this approach is the application of Catoni’s influence function, presented
in [9], to the matrix concentration techniques provided by Tropp in [45].

As it is indicated in the title of this thesis, we focus on the estimation of the mean of a
random matrix, since it is common to rely on matrix estimators that are unbiased. This was
the case for the covariance estimator presented in the previous chapter. More specifically,
suppose that Y1, ...,Yn ∈ Sp are independent random matrices. We want to obtain a good
estimator of E[

∑n
j=1 Yj], i.e., an estimator X = X(Y1, ...,Yn) that guarantees that, for

t ≥ 0, ∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣X−

n∑
j=1

EYj

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ≤ t

with high probability. In Chapter 3, for the case of the covariance estimator, we empha-
sized that we needed distributional assumptions to do so. In this chapter we apply the
aforementioned techniques to obtain theoretical guarantees without strong distributional
assumptions.

In Section 1 we give a theorem that motivates the application of Catoni’s influence func-
tion. In Section 2 we present the Catoni’s influence function and how it’s used to obtain
concentration inequalities. Section 3 shows the main result of [32] regarding symmetric
random matrices, and an additional generalization for rectangular matrices is given in Sec-
tion 4. Section 5 gives a data-dependent method to choose the hyperparameters of the
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estimator with theoretical guarantees. And finally, Section 6 shows two application of the
main result: PCA and community detection.

4.1 Motivation for the influence function

As mentioned in Chapter 2, in order to make useful the Tropp’s probability bound on
symmetric matrices of Theorem 2.4.4, we need to be able to found upper bounds for

EeθXj , j = 1, ..., n. (4.1)

One such bound was found in Section 3.4 to obtain the Matrix Bernstein concentration
inequality (Theorem 3.4.2.) But this was done at the cost of assuming that the random
matrices were bounded. In this section we’ll suppose that we have been able to find bounds
for (4.1) to obtain generic concentration inequalities. This results will motivate the use of
Catoni’s influence function.

Our first lemma is a consequence of Lemma 2.4.3 and gives us a generic bound on the
expectation of the trace of the exponential function.

Lemma 4.1.1. Let X1, ...,Xn ∈ Sp be independent random matrices and H ∈ Sp a deter-
ministic matrix. If W1, ...,Wn ∈ Sp are independent random matrices such that Xj �Wj

for any j, then

Etr exp

(
n∑
j=1

Xj + H

)
≤ tr exp

(
n∑
j=1

logEeWj + H

)
. (4.2)

Proof. Since Xj �Wj, j = 1, ..., n, we have that

n∑
j=1

Xj + H �
n∑
j=1

Wj + H,

and because A1 � A2 imply tr eA1 ≤ tr eA2 (Lemma 2.1.4) we get

tr exp

(
n∑
j=1

Xj + H

)
≤ tr exp

(
n∑
j=1

Wj + H

)
.
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Taking expectations and applying Tropp’s expectation bound of Lemma 2.4.3 to the right
expression we arrive at

Etr exp

(
n∑
j=1

Xj + H

)
≤ Etr exp

(
n∑
j=1

Wj + H

)

≤ tr exp

(
n∑
j=1

logEeWj + H

)
.

Note that the matrices W1, ...,Wn of the previous lemma are independent but not neces-
sarily independent from X1, ...,Xn. This observation allows us to define the matrices Wi

that depend directly on Xi, for example. This will also be the case in Theorem 4.1.2.

From the previous lemma and Tropp’s probability bound on symmetric matrices, we deduce
the next generic concentration inequality for the eigenvalues of the sum of independent
symmetric matrices.

Theorem 4.1.2. Let X1, ...,Xn ∈ Sp be independent random matrices and H =
∑n

j=1 Hj

with Hj ∈ Sp deterministic matrices. If W1(θ), ...,Wn(θ) ∈ Sp are independent random
matrices such that θXj � Wj(θ), for any j and θ > 0, and M1(θ), ...,Mn(θ) ∈ Sp are
deterministic matrices such that

logEeWj(θ) + θHj �Mj(θ), ∀j, θ > 0.

then

P

(
λ1

(
n∑
j=1

Xj + H

)
≥ t

)
≤ p exp

(
−tθ +

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n∑
j=1

Mj(θ)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
)

Proof. By hypothesis and Lemma 2.1.2 we have that

n∑
j=1

logEeWj(θ) + θH �
n∑
j=1

Mj(θ),

and by Lemma 2.1.4

tr exp

(
n∑
j=1

logEeWj(θ) + θH

)
≤ tr exp

(
n∑
j=1

Mj(θ)

)
. (4.3)
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On the other hand, applying the same procedure of Tropp’s probability bound of Theorem
2.4.4 we have that

P

(
λ1

(
n∑
j=1

Xj + H

)
≥ t

)
≤ e−θtEtr exp

(
n∑
j=1

θXj + θH

)
.

Now, from the previous Lemma 4.1.1 and inequality (4.3),

Etr exp

(
n∑
j=1

θXj + θH

)
≤ tr exp

(
n∑
j=1

logEeWj(θ) + θH

)

≤ tr exp

(
n∑
j=1

Mj(θ)

)
.

Note that for any A ∈ Sp it is true that tr eA ≤ peλ1(A) ≤ pe|||A||| (Lemma 2.1.7), so

e−θttr exp

(
n∑
j=1

Mj(θ)

)
≤ p exp

(
−θt+

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n∑
j=1

Mj(θ)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
)
.

This ends the proof.

Observe that the matrices Wj(θ) and Mj(θ) of Theorem 4.1.2 depend on θ > 0, so at the
end one can optimize over θ to get a better bound.

Now that we have obtained the generic bound of Theorem 4.1.2, we need to address the
question of why is it useful. To see this, consider a sample of iid symmetric random matrices
Y1, ...,Yn from which we want to estimate EY1. Certainly, it can be difficult to come up
with matrices Wj(θ) and Mj(θ) to get the desired bounds of Theorem 4.1.2. But we can
think of functions f, g : R→ R such that

f(x) ≤ g(x), ∀x ∈ R,

and define Xj = f(Yj) and Wj = g(Yj), so by Lemma 2.1.6, Xj �Wj. This reasoning
motivates the idea that with a clever definition of f and g and by defining Hj = EY1 in
Theorem 4.1.2, one can obtain good concentration inequalities for the estimator

∑
j f(Yj)

of the matrix EY1. This formulation is explored in the next section.
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4.2 Catoni’s robust method

Let Y be a real-valued random variable with EY = µ and EY 2 < ∞. One of the main
objectives of Catoni in [9] is to estimate the mean µ trough the iid copies Y1, ..., Yn of Y .
Since the distribution of Y can be heavy-tailed, the usual empirical estimator n−1

∑n
i=1 Yi

can deviate broadly from µ for finite samples. The novel approach1 presented in [9] to
overcome this issue relies on the definition of the influence function ψ : R → R as a
non-decreasing function such that

− log(1− x+ x2/2) ≤ ψ(x) ≤ log(1 + x+ x2/2). (4.4)

See Appendix C to verify that the bounds of ψ are well defined. As pointed out by Catoni,
there exists at least two monotone functions that satisfies (4.4): the widest possible choice
ψW and the narrowest choice ψN defined as

ψW (x) =

{
log(1 + x+ x2/2), x ≥ 0,

− log(1− x+ x2/2), x < 0,

and

ψN(x) =


log(2), x ≥ 1,

− log(1− x+ x2/2), 0 ≤ x < 1,

log(1 + x+ x2/2), −1 ≤ x < 0,

− log(2), x < −1.

Figure 4.1 shows the functions ψW and ψN . We can observe that around zero they are
almost identical to the identity function, but outside this range they tent to depart from it.
The two functions give less weight to great values that the identity, this is why it is called
the influence function, since values very far away from zero in the sample, i.e. influential
values, are downsized to get a more stable estimation.

We can increase or decrease the range of values in which the function ψ is similar to the
identity by considering the function x 7→ ψ(θx)/θ, for some fixed θ > 0. This is shown in
Figure 4.2. Here we graph the function x 7→ ψN(θx)/θ and observe that whenever θ is big,
the range of values in which the function is close to the identity is smaller and vice versa.

1It is important to mention that the general idea of influence function or truncation function in the
context of robust estimation is related originally to the work of Huber [19]
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Figure 4.1: Functions ψW and ψN compared to the identity.

Figure 4.2: Functions x 7→ ψN(θx)/θ for different values of θ.
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Similar to the influence function ψ, in [21] the authors define the truncation operator ψτ
as

ψτ (x) = (|x| ∧ τ) sign(x), τ > 0.

Note that ψτ (x) = τψ1(x/τ). The function ψτ doesn’t satisfies (4.4), but ψ1 satisfies the
weaker inequality (see Appendix C)

− log(1− x+ x2) ≤ ψ1(x) ≤ log(1 + x+ x2),

therefore,

−τ log(1− xτ−1 + x2τ−2) ≤ ψτ (x) ≤ τ log(1 + xτ−1 + x2τ−2).

This will be the function used in Chapter 5 to obtain concentration inequalities for covari-
ance estimation. As pointed out by Minsker in [32] the truncation operator ψτ makes the
concentration results for the estimations valid but with worst constant factors.

The work of Catoni in [9] has a M -estimation perspective. More precisely, he propose the
estimator µ̂α of the mean µ that satisfies

n∑
j=1

ψ (α(Yj − µ̂α)) = 0, for some α > 0.

Nevertheless, the introduction of this kind of influence functions rises a variety of interesting
results per se. To see this, suppose that we want to estimate µ from Y1, ..., Yn. For some
θ > 0, define the estimator

T = T (θ) =
1

n

n∑
j=1

1

θ
ψ(θYj).

We’ll focus on the properties of the estimator T instead of µ̂α. By definition of ψ we obtain
the next bound:

EenθT =
n∏
j=1

Eeψ(θYj)

≤
n∏
j=1

(
1 + θµ+

θ2

2
EY 2

)
=

(
1 + θµ+

θ2

2
EY 2

)n
.
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Then, since log(1 + x) ≤ x for x > −1,

EenθT−nθµ = exp
(
logEenθT − nθµ

)
≤ exp

(
n log

(
1 + θµ+

θ2

2
EY 2

)
− nθµ

)
≤ exp

(
n

(
θµ+

θ2

2
EY 2

)
− nθµ

)
= exp

(
n
θ2

2
EY 2

)
.

Similarly, using the lower bound for ψ, we obtain that

Ee−(nθT−nθµ) ≤ exp

(
n
θ2

2
EY 2

)
.

Therefore, by Markov’s inequality, for t ≥ 0,

P (|T − µ| ≥ t) = P (nθ(T − µ) ≥ nθt) + P (−nθ(T − µ) ≥ nθt)

≤ 2 exp

(
−nθt+ n

θ2

2
EY 2

)
.

Optimizing over θ > 0 we get that the last probability bound is minimized at θ̃ = t/EY 2

and consequently

P
(
|T (θ̃)− µ| ≥ t

)
≤ 2 exp

(
−nt2

2EY 2

)
.

This indicates that T (θ̃) − µ ∼ SG(σ) where σ2 is proportional to 2n−1EY 2. This fact
follows from Proposition 3.1.2. In [9] it is shown that a similar result for µ̂α holds, but
the probability bound depends on VarY instead of EY 2 and the value of t depends on the
sample size n. This is a trade-off since in general VarY ≤ EY 2, but a result in which t
doesn’t depend on n could lead to better bounds for the absolute value of the deference.

From the previous development we conclude that, just requiring that EY 2 < ∞, we’ve
been able to find an estimator T of µ such that |T (θ̃) − µ| ≤ t with high probability for
any t ≥ 0. This is a remarkable observation since we don’t need any strong distributional
assumption for Y . The only drawback is that EY 2 is unknown and the optimal choice θ̃
depends on it. Of course we can estimate it by

∑n
j=1 Y

2
j , but if the data is heavy-tailed

this will be a poor estimation. We’ll overcome this burden in Section 4.5 with the Lepski’s
method.
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Almost immediately we can take a further step and apply this methodology to the matrix
case, i.e., to the problem of estimating EZ from an iid sample Z1, ...,Zn of the random
matrix Z ∈ Mp,r. To do so, in the next section we develop the same methodology for
symmetric random matrices, since from Chapter 2 we know how to apply a function to
this kind of matrices and how to obtain concentration bounds using Lieb’s inequality.

4.3 Concentration of the symmetric robust estimator

The first step in applying the buildout of the previous section is to see how the non-
decreasing function ψ defined by inequalities (4.4) behaves in the matrix case. This is
done by the next straightforward lemma.

Lemma 4.3.1. For A ∈ Sp we have that,

(a) if I + A � 0 then log(I + A) � A;

(b) I + A +
1

2
A2 � 0;

(c) for every ψ : R→ R such that − log(1− x+ x2/2) ≤ ψ(x) ≤ log(1 + x+ x2/2),

− log

(
I−A +

1

2
A2

)
� ψ(A) � log

(
I + A +

1

2
A2

)
.

Proof. (a) This is an immediate consequence of the inequality log(1 + x) ≤ x for x > −1
and Lemma 2.1.6. The condition I + A � 0 ensures that log(I + A) is well defined.

(b) The function f(x) = 1+x+x2/2 is positive in R so the eigenvalues of f(A) are positive
for any A ∈ Sp.

(c) This is clear from (b), the definition of ψ and Lemma 2.1.6. The matrix− log

(
I−A +

1

2
A2

)
is well defined for an argument similar to the one made in (b).

Property (c) of Lemma 4.3.1 ensures that we can bound the random matrices of the iid
sample Y1, ...,Yn of Y ∈ Sp. Even more, later we will be able to bound

Etr eψ(θYj), j = 1, ..., n, θ > 0.
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Remark 4.3.1. As mentioned earlier, the function ψτ satisfies

−τ log(1− τ−1x+ τ−2x2) ≤ τψ1(x/τ) ≤ τ log(1 + τ−1x+ τ−2x2).

Then, for any matrix A ∈ Sp,

− log
(
I− τ−1A + τ−2A2

)
� ψ1(τ−1A) � log

(
I + τ−1A + τ−2A2

)
.

♠

Recall that Y1, ...,Yn ∈ Sp are independent random matrices. For some θ > 0 define the
random matrix T ∈ Sp as

T = T(θ) =
1

nθ

n∑
j=1

ψ (θYj) . (4.5)

The next theorem will be a consequence of Theorem 4.1.2 and is the main result studied
in this thesis. It was first formulated in [32].

Theorem 4.3.2 (Minsker’s concentration inequality). Let Y1, ...,Yn be p× p independent
and symmetric random matrices and σ2

n ≥ |||
∑n

j=1 EY2
j |||. Then, for T defined in (4.5)

with θ > 0 and t ≥ 0, ∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣T− 1

n

n∑
j=1

EYj

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ≥ t√

n

with probability at most

2p exp

(
−θt
√
n+

θ2σ2
n

2

)
. (4.6)

Before we prove Theorem 4.3.2, let us illustrate the forms that the later bound can take.
It’s straightforward to see that the value of θ that optimizes (4.6) is

θ̃ =
t
√
n

σ2
n

,

so we get for any t > 0 that the probability bound (4.6) is

2p exp

(
−θ̃t
√
n+

θ̃2σ2
n

2

)
= 2p exp

(
−nt2

2σ2
n

)
, (4.7)
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which, except for the dimension factor p, is a sub-Gaussian bound in the sense that it
resembles the one obtained for sub-Gaussian random variables (see Section 3.1). In this
case, when choosing θ̃, Theorem 4.3.2 will be informative (i.e. the bound (4.7) will be ≤ 1)
only for values of t such that t ≥ n−1/2σn

√
2 log(2p).

Remark 4.3.2. One form that will be useful for the Lepski’s method, is the next one.

Take z > 0, transform t 7→ z
√

2t, and choose θ =
√

2t
n

1
z
. Define the random matrix Y as

Y =
1

n

n∑
j=1

Yj.

Then,

P

(
|||T− EY||| ≥ z

√
2t

n

)
≤ 2p exp

(
−2t+

tσ2
n

nz2

)
.

If z is such that z > σn/
√
n, then

P

(
|||T− EY||| ≥ z

√
2t

n

)
≤ 2p exp (−2t+ t) ≤ 2pe−t.

♠

Proof of Theorem 4.3.2. Following Proposition 2.3.2 we will show that the two probabili-
ties

P

(
λ1

(
n∑
j=1

(
1

θ
ψ(θYj)− EYj

))
≥ s

)

and

P

(
−λp

(
n∑
j=1

(
1

θ
ψ(θYj)− EYj

))
≥ s

)
(4.8)

are both bounden by

p exp

(
−θs+

θ2

2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n∑
j=1

Y2
j

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
)
.
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Having done this, we can conclude that

P

(∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣T− 1

n

n∑
j=1

EYj

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ≥ s

n

)
= P

(∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n∑
j=1

(
1

θ
ψ(θYj)− EYj

)∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ≥ s

)

≤ 2p exp

(
−θs+

θ2

2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n∑
j=1

Y2
j

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
)

≤ 2p exp

(
−θs+

θ2σ2
n

2

)
,

and taking s = t
√
n will yield the result.

Using the notation of Theorem 4.1.2 set

Xj =
1

θ
ψ(θYj), Hj = −EYj, H =

n∑
j=1

Hj

Wj(θ) = log

(
I + θYj +

θ2

2
Y2
j

)
, Mj(θ) =

θ2

2
EY2

j .

Because of Lemma 4.3.1 (c) it is clear that θXj �Wj for any j. Also,

logEeWj(θ) + θHj = log

(
I + θEYj +

θ2

2
EY2

j

)
− θEYj,

and by Lemma 4.3.1 (a), taking A = θEYj +
θ2

2
EY2

j and rearranging terms, we have that

logEeWj(θ) + θHj �Mj(θ) for all j. So Theorem 4.1.2 implies that

P

(
λ1

(
n∑
j=1

(
1

θ
ψ(θYj)− EYj

))
≥ s

)
≤ p exp

(
−θs+

θ2

2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n∑
j=1

Y2
j

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
)
.

The bound for (4.8) is obtained in the same way but redefining

Xj = −1

θ
ψ(θYj), Hj = EYj, H =

n∑
j=1

Hj

Wj(θ) = log

(
I− θYj +

θ2

2
Y2
j

)
, Mj(θ) =

θ2

2
EY2

j .

and noticing by Lemma 4.3.1 (c) that θXj = −ψ(θYj) � log
(
I− θYj + θ2Y2

j/2
)

= Wj

for any j. This ends the proof.
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Figure 4.3: Effect of p over the probability bound. We fixed α = 0.01 and σ = 1, and the
range of values of p is from 100 to 100,000. Left: p v.s. n. Right: p v.s.

√
2 log(2p)

Suppose that we choose the optimal value θ̃ for θ. If Y1, ...,Yn are iid, we define σ2
n = nσ2

for some σ > 0 such that σ2 ≥ |||EY2
1|||, and take t =

√
nσ
√

2 log(2p) to get that

P
(
|||T− EY1||| ≥ σ

√
2 log(2p)

)
≤ 1

(2p)n−1
. (4.9)

By this choice, we made the concentration bound to depend only on p, and the probability
bound is less than the unity. Therefore, for any α ∈ (0, 1), if

n ≥ log(2p/α)

log(2p)
,

we guarantee that

P
(
|||T− EY1||| < σ

√
2 log(2p)

)
≥ 1− α

In Figure 4.3 we show the effect of the dimension p over this choice of n and over the bound
σ
√

2 log(2p) fixing α = 0.01 and σ = 1. We observe that, as p grows, the number of samples
needed decreases very quickly. This seems counter intuitive, but it is a consequence that
in inequality (4.9) the probability bound decreases both with p and n. What is interesting
is that the upper bound σ

√
2 log(2p) increases very slowly with p, and only the term σ

can affect this behavior. This indicates that if p is very large, we do not need a very large
sample n to guarantee a reasonable deviation for the estimator T from EY1. With this
observation we can conclude that the performance of the estimator T doesn’t seem to be
much affected by the dimension p.
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Additional to the previous analysis, we observe that in the iid case when we choose θ = θ̃
and the mapping t 7→

√
nt, we have that

P (|||T− EY||| ≥ t) ≤ 2p exp

(
−nt2

2σ2

)
= 2n exp

(
−nt2

2σ2

)
p

n
.

So as long as p/n→ 0 when n→∞ we get that

|||T− EY||| P−→ 0, n→∞,

i.e., T is a consistent estimator of EY in terms of the operator norm.

4.4 Bounds for rectangular matrices

In this section we show how the estimator T is generalized to rectangular random matrices.
The procedure is analogous, but we need to make some modifications in order to work with
symmetric matrices. Recall that the symmetric dilation of a matrix B ∈Mp1,p2 is defined
as

H(B) =

(
0 B

Bᵀ 0

)
∈ Sp1+p2 .

Since we defined the matrix operator only for symmetric matrices, the concept of dilation
enables us to work with matrix operators of rectangular matrices, i.e., instead of defining
f(B), we’ll work with f(H(B)). One may argue that we can define f(B) by applying the
function f to the singular values of B in a similar way that we did with the eigenvalues
of symmetric matrices. But this formulation wont help since the main results rely on the
Lieb’s Theorem 2.4.1, and this result assumes that the matrices are symmetric. As far
as the author is concerned, there is no generalization of Lieb’s Theorem for more general
matrices.

Let Z1, ...Zn ∈Mp1,p2 be independent random matrices and define σ2
n such that

σ2
n ≥ max

{∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n∑
j=1

EZjZ
ᵀ
j

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣,
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n∑
j=1

EZᵀ
jZj

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
}
. (4.10)

Define the random matrix T ∈ Sp1+p2 as

T = T(θ) =
1

nθ

n∑
j=1

ψ (θH(Zj)) . (4.11)
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Consider the partition

T =

(
T11 T12

Tᵀ
12 T22

)
, (4.12)

where T11 ∈Mp1 , T22 ∈Mp2 and T12 ∈Mp1,p2 . Since

E

[
n∑
j=1

Zj

]
=

 0 E
[∑n

j=1 Zj

]
E
[∑n

j=1 Zᵀ
j

]
0

 ,

it is natural to think that T12 is a good estimator of 1
n
E
[∑n

j=1 Zj

]
. This intuition is

confirmed in Theorem 4.4.1. To state this result we’ll use that for any matrices A ∈ Sp1
and H ∈ Sp2 , ∣∣∣∣∣∣∣∣∣∣∣∣(A B

Bᵀ H

)∣∣∣∣∣∣∣∣∣∣∣∣ ≥ ∣∣∣∣∣∣∣∣∣∣∣∣( 0 B
Bᵀ 0

)∣∣∣∣∣∣∣∣∣∣∣∣,
and that |||H(B)||| = |||B|||. This two results are proved in Lemma A.5.6 and Corollary
A.5.3, respectively. The next result was taken from [32].

Theorem 4.4.1. For independent random matrices Z1, ...,Zn ∈ Mp1,p2, consider the def-
initions of σ2

n in (4.10), and T in (4.11) and (4.12). Then,∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣T12 −

1

n

n∑
j=1

EZj

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ≥ t√

n

with probability at most

2(p1 + p2) exp

(
−θt
√
n+

θ2σ2
n

2

)
.

Proof. First note that

H(Zj)
2 =

(
ZjZ

ᵀ
j 0

0 Zᵀ
jZj

)
and that

n∑
j=1

E
[
H(Zj)

2
]

=

(∑n
j=1 EZjZ

ᵀ
j 0

0
∑n

j=1 EZᵀ
jZj

)
.
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Then, since ∣∣∣∣∣∣∣∣∣∣∣∣(A1 0
0 A2

)∣∣∣∣∣∣∣∣∣∣∣∣ = max {‖A1‖, ‖A2‖} ,

(Lemma A.5.2) we have that∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n∑
j=1

E
[
H(Zj)

2
]∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ = max

{∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n∑
j=1

EZjZ
ᵀ
j

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ,
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n∑
j=1

EZᵀ
jZj

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
}
≤ σ2

n.

Then, by Minsker’s concentration inequality of Theorem 4.3.2, since T and H(Zj), j =
1, ..., n, are symmetric and EH(Zj) = H(EZj), we get that∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣T− 1

n

n∑
j=1

H(EZj)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ < t√

n
, t ≥ 0,

with probability at least

1− 2(p1 + p2) exp

(
−θt
√
n+

θ2σ2
n

2

)
. (4.13)

Now, by Lemma A.5.6 and Corollary A.5.3,∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣T− 1

n

n∑
j=1

H(EZj)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣( T11 T12 − 1
n

∑n
j=1 EZj

Tᵀ
12 − 1

n

∑n
j=1 EZᵀ

j T12

)∣∣∣∣∣∣∣∣∣∣∣∣
≥
∣∣∣∣∣∣∣∣∣∣∣∣( 0 T12 − 1

n

∑n
j=1 EZj

Tᵀ
12 − 1

n

∑n
j=1 EZᵀ

j 0

)∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣H
(

T12 −
n∑
j=1

EZj

)∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

=

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣T12 −

n∑
j=1

EZj

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣.

This provokes that ∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣T12 −

1

n

n∑
j=1

EZj

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ < t√

n
,

with probability at least (4.13).
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All the analysis made for symmetric matrices in the previous section can be applied for
matrices in Mp1,p2 with the only difference being the dimension factors change from p to
p1 + p2. In particular, for matrices in Mp the probability bound is

4p exp

(
−θt
√
n+

θ2σ2
n

2

)
,

i.e., the double of what was obtained for matrices in Sp.
Despite that we found the optimal value of the hyperparameter θ is θ̃ = t

√
n/σ2

n, the
ignorance of the parameter σ2

n avoid that we can fully calculate T. In the next section we
present a method that tries to overcome this difficulty.

4.5 Lepskii’s method of calculation

As before, Y1, ...,Yn ∈ Sp are iid random matrices and we want to estimate 1
n

∑n
j=1 EYj.

Recall that we do not know the parameter σ2
n ≥ |||

∑n
j=1 EY2

j |||. The adaptive method of

Lepskii for estimation [25] consists in defining an upper and lower bound for σ2
n and to

define sub-intervals whose union is the interval defined by the upper and lower bound. In
each interval we define a θj and choose the first index j such that the estimation T(θj) is
closed to the others T(θk), k > j. More precisely, consider a sequence z0, z1, ... of positive
numbers and define for j = 0, 1, ...

Tj =
1

nθj

n∑
i=1

ψ (θjYi) , where θj =

√
2t

n

1

zj
.

Suppose we know some positive bounds σmax and σmin such that

σmin ≤
σn√
n
≤ σmax,

where σ2
n ≥ |||

∑n
j=1 EY2

j |||. We define the sequence (zj)j≥0 as zj = γjσmin, where 1 < γ < 2
is arbitrary. The index set J is defined as

J = {j ≥ 0 : σmin ≤ zj < γσmax} .

The cardinality of |J | is at most 1 + log(σmax/σmin)/ log(γ). To see this, let N be the
power of γ such that σminγ

N = γσmax. Then, (N − 1) log(γ) = log(σmax/σmin), and solve
for N to get the bound.
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Input: sample Y1, ...,Yn and parameters σmax, σmin, γ, t.
Output: robust estimator T∗.

1. Calculate the cardinality c = b1 + log(σmax/σmin)/ log(γ)c of the set |J | and
the vector z = (zj)j=0,...,c−1, zj = γjσmin.

2. For j = 0, ..., c− 1, choose the first j such that

|||Tk −Tj||| ≤ 2zk

√
2t

n

for all k = j+1, ..., c−1. Define this minimum j as j∗. If the minimum doesn’t
exist, define j∗ = jc−1.

3. Return the matrix T∗ = Tj∗ .

Figure 4.4: Lepskii’s algorithm to obtain the robust estimator T∗.

Define the special random index

j∗ = min

{
j ∈ J : |||Tk −Tj||| ≤ 2zk

√
2t

n
∀k > j, k ∈ J

}
, (4.14)

where min ∅ := ∞ and z∞ := z|J |−1. The robust estimator is defined as T∗ = Tj∗ . A
resume of the Lepskii’s procedure is presented in Figure 4.4.

To prove the next result, we also define the auxiliary (non-random) index j0 as

j0 = min

{
j ∈ J : zj ≥

σn√
n

}
. (4.15)

Note that zj0 ≤ γσn/
√
n, because on the contrary we will get γj0σmin > γσn/

√
n and

zj0−1 > σn/
√
n, which contradicts the definition of j0. The next result is an improvement

of the one presented in [32].

Theorem 4.5.1. Define Y = 1
n

∑n
i=1 Yi. Then, for any ε > 0,

|||T∗ − EY||| ≥ (3 + ε)
σn√
n

√
2t

n

68



with probability at most

2p
log(γσmax/σmin)

log(γ)
e−t.

Proof. For ease of notation, let the norm an probability bounds be

x = (3 + ε)
σn√
n

√
2t

n
and q = 2p

log(γσmax/σmin)

log(γ)
e−t,

respectively. We’ll proceed as follows. First we’ll define two sets B and E such that

B ⊂ E ⊂ {|||T∗ − EY||| ≤ x} ,

and then we’ll prove that P(B) ≥ 1− q.
Definition of sets: Define

B =
⋂

k∈J , k≥j0

{
|||Tk − EY||| ≤ zk

√
2t

n

}
and E = {j∗ ≤ j0} .

To see that B ⊂ E , note that

|||Tk −Tj0||| ≤ |||Tk − EY|||+ |||Tj0 − EY|||.

So, if B is true, we have that

|||Tj0 − EY||| ≤ zj0

√
2t

n
≤ zk

√
2t

n
, k > j0,

|||Tk − EY||| ≤ zk

√
2t

n
, k > j0,

since zk > zj0 for every k > j0. Then, by definition of j∗

B ⊂
⋂

k∈J , k≥j0

{
|||Tk −Tj0 ||| ≤ 2zk

√
2t

n

}
⊂ E .

Now, if B is true,

|||T∗ −Tj0||| ≤ 2zj0

√
2t

n
, (because B ⊂ E)
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|||Tj0 − EY||| ≤ zj0

√
2t

n
, (because B is true).

And using again the triangle inequality we get

|||T∗ − EY||| ≤ |||T∗ −Tj0 |||+ |||Tj0 − EY||| ≤ 3zj0

√
2t

n
.

Then, by definition of j0 in (4.15) we have that

|||T∗ − EY||| ≤ 3γ
σn√
n

√
2t

n
.

Fix ε > 0. By taking γ = 1 + ε/3 we get that if B is true, then |||T∗ − EY||| ≤ x.

Bound for P(B): The complement of the set B is

Bc =
⋃

k∈J , k≥j0

{
|||Tk − EY||| > zk

√
2t

n

}
.

Recall that, by definition, z0 ≥ z1 ≥ · · · , therefore

P (Bc) ≤
∑

k∈J , k≥j0

P

(
|||Tk − EY||| > zk

√
2t

n

)

≤
(

1 +
log(σmax/σmin)

log(γ)

)
P

(
|||Tk − EY||| > zj0

√
2t

n

)

=
log(γσmax/σmin)

log(γ)
P

(
|||Tk − EY||| > zj0

√
2t

n

)
,

where in the second inequality we used that |J | ≤ 1 + log(γσmax/σmin)/ log(γ). Finally, by
Remark 4.3.2 of Minsker’s concentration inequality, we bound the probability in the last
equality to get that

P (Bc) ≤ 2p
log(γσmax/σmin)

log(γ)
exp

(
−2t+

tσ2
n

nz2
j0

)
≤ 2p

log(γσmax/σmin)

log(γ)
e−t, (because zj0 ≥ σn/

√
n)

= q.

Then, P (B) ≥ 1− q which finally proves that P (|||T∗ − EY||| ≤ x) ≥ 1− q.
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To apply the Lepskii’s procedure, one need to establish the parameters σmax, σmin, γ and
t. The values of σmax, σmin can be obtained from the sample through a rough estimation.
The value of γ is reasonable to set it as the middle in (1, 2), i.e., γ = 3/2. From Theorem
4.5.1, we can establish that the values of t such that the probability bound is ≤ 1 are

t ≥ log (2pκ) , κ =
log(γσmax/σmin)

log(γ)
. (4.16)

Since greater values of t imply greater values of θj, this choice of t can provoke too much
regularization of the influence function ψ, i.e., only small values are not reduced. Therefore,
depending on the value of p and the other parameters of the process we can choose t as in
(4.16) or a much small value to adjust for less regularization. An implementation of this
procedure is explored in Chapter 5.

Remark 4.5.1. One major observation of this procedure is that the result of Theorem
4.5.1 is bases in two things: 1) the definition of the algorithm 4.4 and 2) the probability
bound of Remark 4.3.2, namely,

P

(
|||T− EY||| ≥ z

√
2t

n

)
≤ 2pe−t.

Therefore, the Lepskii’s procedure can be applied for any matrix estimator T which guar-
antees a concentration bound of the previous form. This observation will be useful in
Chapter 5 for the case of covariance matrix estimation. ♠

4.6 Applications

In this section we present applications of the methodology of this chapter in order to
obtain theoretical guarantees in two common statistical procedures: Principal Components
Analysis (PCA) and Community Detection. In order to do it, we need to present the Davis-
Kahan Theorem which is the subject of the next subsection.

4.6.1 The Davis-Kahan Theorem

The following theorem was first published in [11]. It gives a way to bound the angle between
eigenvalues of two symmetric matrices. We present a simpler version, the proof of which
can be found in [53].
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Theorem 4.6.1 (Davis-Kahan). Define A,H ∈ Sp with eigenvectors vi and wi such that
Avi = λi(A)vi and Hwi = λi(H)wi. Fix i ∈ {1, ..., p} and assume that

δi := min{λi−1(A)− λi(A), λi(A)− λi+1(A)} > 0,

where λ0(A) :=∞, λp+1(A) := −∞. Then,

sin (∠(wi,vi)) ≤
2|||H−A|||

δi
.

As pointed out in [47, p. 89], for unitary eigenvectors wi and vi, the Davis-Kahan Theorem
implies that

∃ρ ∈ {−1, 1} : ‖ρwi − vi‖2 ≤
23/2|||H−A|||

δi
. (4.17)

Indeed, recall that for x,y ∈ Rp,

sin(∠(x,y)) =

√
1− (xᵀy)2

‖x‖2
2‖y‖2

2

.

Then, if wᵀ
i vi ≥ 0,

‖wi − vi‖2 =
√
‖wi‖2

2 + ‖vi‖2
2 − 2wᵀ

i vi

= 21/2
√

1−wᵀ
i vi

≤ 21/2
√

1− (wᵀ
i vi)

2

= 21/2 sin(∠(wi,vi)),

because ‖wi‖2 = ‖wi‖2 = 1. On the other hand if wᵀ
i vi ≤ 0 then −wᵀ

i vi ≥ 0, and since
−wi is a unitary eigenvector associated to λi(H) we can perform the same calculations to
get

‖−wi − vi‖2 ≤ 21/2 sin(∠(wi,vi)).

The previous inequality (4.17) will be particularly useful for Community Detection.
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4.6.2 Robust PCA

PCA is a method to project data points to a lower dimension, and with that make statistical
analysis easier. Suppose X ∈ Rp is a random vector with EX = µ and CovX = Σ. The
PCA procedure is based on finding the unitary vector δ that maximizes the variance of
δᵀX, i.e.,

δ = arg max
‖x‖2=1

Var(xᵀX) = arg max
‖x‖2=1

xᵀΣx.

The Rayleigh quotient of Theorem A.2.4 implies that δ = v1, where v1 is the unitary
eigenvector associated to λ1(Σ). This says that if we want to project a vector X into a
lower dimension that guarantees maximum variance, we need to project it in the direction
of v1, the eigenvector of the maximum eigenvalue2. More generally, to obtain a lower
dimensional representation δ

ᵀ
1X
...

δᵀkX

 ,

where k < p and δ1, ..., δk are orthonormal, we choose the vector δi to be the unitary
eigenvector associated to λi(Σ). For more details on the PCA procedure one can see [1,
Chapter 11] or any other source on Multivariate Statistical Analysis. In essence, what
PCA is doing is to project the data so that we guarantee that the points are statistically
separated, i.e., we project in the direction of maximum variance.

Let X1, ...,Xn ∈ Rp be iid copies of X. We don’t know Σ a priori so we have to estimate
it through X1, ...,Xn. As X can be heavy-tailed, we want to formulate a robust estimator
of Σ. For simplicity, we assume that EX = 0. Just as we did in the simulation study
of the Lepskii’s method in the previous section, since EXXᵀ = Σ, we define the robust
estimator

Σ̃ = Σ̃(θ) =
1

nθ

n∑
j=1

ψ
(
θXjX

ᵀ
j

)
, θ > 0.

Let σ > 0 be such that σ2 ≥ |||E(XXᵀ)2||| = |||E[‖X‖2
2XX

ᵀ]|||. Taking θ =
√

t
n

1
σ

From

Minsker’s concentration inequality of Theorem 4.3.2 we can conclude that, for any t ≥ 0,

P

(
|||Σ̃−Σ||| ≤ σ

√
t

n

)
≥ 1− 2pe−t. (4.18)

2We specifically defined a linear combination of X, namely, δᵀX. This is just a model to project X,
so there could be more sophisticated formulations.
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This concentration bound indicates that Σ̃ concentrates well around Σ, particularly when
the sample size n increases. Note that we can establish the concentration bound of Theorem
4.5.1, but for this section we focus on the simpler result (4.18). Since we are interested
on how well we estimate the eigenvectors vi of Σ, can we derive concentration bounds for
the eigevectors ṽi of Σ̃ around vi? We can do it almost directly with the Davis-Kahan
Theorem as we present bellow.

Let ṽi and vi be unitary vectors satisfying

Σ̃ṽi = λi(Σ̃)ṽi and Σvi = λi(Σ)vi.

Using the notation of Davis-Kahan Theorem, we’ll assume for Σ that for all i = 1, ..., p

δi = min{λi−1(Σ)− λi(Σ), λi(Σ)− λi+1(Σ)} > 0.

The next theorem guarantees a concentration bound for the eigenvectors ṽi.

Theorem 4.6.2. With the assumptions made above we have that

P

(
min

ρ∈{−1,1}
‖ρṽi − vi‖2 ≥

23/2σ

δi

√
t

n

)
≤ 2pe−t.

Proof. Observe that for each i,

min
ρ∈{−1,1}

‖ρṽi − vi‖2
2 = min{2− 2ṽᵀi vi, 2 + 2ṽᵀi vi}

= 2− 2|ṽᵀi vi|
≤ 2− 2(ṽᵀi vi)

2

= 2 sin2(∠(ṽi,vi)),

so

min
ρ∈{−1,1}

‖ρṽi − vi‖2 ≤ 21/2 sin(∠(ṽi,vi)).

Therefore, from (4.18) and the Davis-Kahan Theorem we get that

P

(
min

ρ∈{−1,1}
‖ρṽi − vi‖2 ≤

23/2σ

δi

√
t

n

)
≥ P

(
|||Σ̃−Σ||| ≤ σ

√
t

n

)
≥ 1− 2pe−t.
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One particular model is well suited for this result. The spiked covariance model presented
in [20] establishes that Σ = µuuᵀ + I, where u ∈ Rp is unitary and µ > 0. Then, it is
immediate to see that

λ1(Σ) = µ+ 1 and λi(Σ) = 1, i > 1.

This is a model used when p � n, since, according to [20], in this context there is an
eigenvalue that is much greater that the others, i.e., a plot of the eigenvalues presents a
spike. Then, from the notation of Davis-Kahan Theorem, δ1 = min{∞, µ} = µ, so

P

(
min

ρ∈{−1,1}
‖ρṽ1 − v1‖2 ≥

23/2σ

µ

√
t

n

)
≤ 2pe−t.

4.6.3 Community detection with noise

Consider a undirected graph G with vertex set V ⊂ Z and edge set E. We say that G is
a random graph if the edge set E is random, i.e., two vertices i and j are connected with
certain probability. The objective of community detection on graphs is to discern which
vertices in V belongs to a certain community. More precisely, we assume that we have the
partition V = V1 ∪ · · · ∪ VK , where V` is called a community, and we say that i belongs to
community ` if i ∈ V`. We focus on the case k = 2 and the model called Stochastic block
model.

Definition 4.6.3 (Stochastic block model). Let G be a random graph with 2p vertices
divided by two set of size p each. Connect any pair of vertices independently with probability
δ if they belong to the same community and probability ε, where ε < δ, if they belong to
different communities. This distribution on graphs is called the stochastic block model and
is denoted G(2p, δ, ε).

The random matrix associated to a random graph is called adjacency matrix and is defined
as follows.

Definition 4.6.4 (Adjacency matrix). Let G ∼ G(2p, δ, ε). The adjacency matrix A ∈
S2p of G has entries (aij) with distribution aij ∼Bernoulli(δ) if i, j belongs to the same
community and aij ∼Bernoulli(ε) otherwise. We write A ∼ G(2p, δ, ε) to indicate that A
is the adjacency matrix of the graph G.

The entry aij of the adjacency matrix A indicates if the vertices i and j are connected. To
identify which community each vertex belongs, we need the matrix EA, since it has entries
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Figure 4.5: Stochastic block model. Image taken from [14].

either δ or ε, and according to our model this identifies the communities. A realization of
an stochastic block model is presented in Figure 4.5, where the square represents the matrix
EA with the rows ordered in communities, i.e., the darker square represents a community
different that the lighter square.

As pointed out in [47, p. 88], the second eigenvector of EA identifies the communities
correctly. This is established in the next proposition.

Proposition 4.6.5. Let A ∼ G(2p, δ, ε). Define ui(EA) as the (non-unitary) eigenvec-
tor of EA associated with the eigenvalue λi(EA). Then, EA has rank 2 and non-zero
eigenvalues

λ1(EA) =

(
δ + ε

2

)
p, λ2(EA) =

(
δ − ε

2

)
p.

Furthermore, the entries of u2(EA) belongs to {−1, 1} and u2(EA)j = 1 if an only if the
vertex j belongs to the first community.

Proposition 4.6.5 indicates that in order to detect the communities we need to calculate
the second eigenvector of EA and classify the vertices according to the signs of its entries.
Unfortunately, we don’t have access to EA. Instead, we observe a sampled adjacency
matrix A.

We are interested in the case where we observe the adjacency matrix plus noise. Let
A ∈ S2p be distributed according to G(2p, δ, ε) and define M = EA. We observe the noisy
random adjacency matrix

X = A + R, (4.19)

76



Input: an observed noisy adjacency matrix X and parameters t, σ2.
Output: a partition of the rows (or columns) of X into two communities.

1. Compute the estimator M̂ = θ−1ψ(θX) where θ = t/σ2.

2. Compute the eigenvector v = v2(M) corresponding to the eigenvalue λ2(M).

3. Partition the vertices in two communities on the basis of the sign of the co-
efficients of v2(M), i.e., if vj > 0 then put vertex j into the first community,
otherwise into the second.

Figure 4.6: Spectral clustering algorithm for the stochastic block model.

where R ∈ S2p is a random matrix with ER = 0. The matrix R represents the noise of the
observations. Note that the distribution of the entries of R can be heavy-tailed as long as
they are centered. Define the robust estimator

M̂ =
ψ(θX)

θ
, θ =

t

σ2
,

where σ2 ≥ |||EX2|||. Note that we want to estimate M = EX. The algorithm to identify
the communities is presented in Figure 4.6 and is refereed to spectral clustering.

The next theorem is an adaptation of Theorem 4.5.6 of [47] to the case of general noisy
observations. It’s important to note that here the sample size can be understood as n = 1
or as the number of observed vertices, i.e., 2p. The concentration bound in the proof of
Theorem 4.6.6 is derived from the general result of Theorem 4.1.2 for the case n = 1, but
taking special parameters we get a bound that depends on p, the number of members in
each community.

Theorem 4.6.6 (Spectral clustering for the stochastic block model). Let G ∼ G(2p, δ, ε)
with min{δ, (δ − ε)/2} = µ > 0 and adjacency matrix A. Define X as (4.19). Then, with
probability at least 1− (2p)−1, the spectral clustering algorithm identifies the communities
of G correctly upto 32σ2(2− 1/p)/µ2 missclassified vertices.

Proof. Recall the definition of u2(·) from Proposition 4.6.5 as the (non-unitary) eigenvector
associated with λ2(·). Define the set

K = {j : sign(u2(M)j) 6= sign(u2(M̂)j)}
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and its cardinality K = |K|. We want to prove that

P
(
K ≤ 32σ2

µ2

(
2− 1

p

))
≥ 1− 1

2p
. (4.20)

To do so we’ll make use of the Davis-Kahan Theorem of the previous section.

First, by Theorem 4.1.2, taking t = 2σ
√

log(2p) and θ = t/σ2, we get the following
concentration inequality

P
(
|||M̂−M||| ≤ 2σ

√
log(2p)

)
≥ 1− 1

2p
.

Note that this is true due to the fact that EX = M.

On the other hand,

min {λ1(M)− λ2(M), λ2(M)} = min

{
δ − ε

2
, ε

}
p = µp.

Now, using inequality (4.17) of the Davis-Kahan Theorem (Theorem 4.6.1) we get that
with probability at least 1− 1/2p there exists a ρ ∈ {−1, 1} such that

‖v2(M)− ρv2(M̂)‖2 ≤
25/2σ

√
log(2p)

µp
,

where v2(·) is the unitary eigenvector associated to λ2(·). Multiplying both sides of the
norm inequality by

√
p we get that with probability at least 1 − 1/2p there exists a ρ ∈

{−1, 1} such that

‖u2(M)− ρu2(M̂)‖2 ≤
25/2σ

µ

√
log(2p)

p
≤ 25/2σ

µ

√
2− 1

p
. (4.21)

Squaring both sides of (4.21) we get

p∑
j=1

(
u2(M)j − ρu2(M̂)j

)2

≤ 32σ2

µ2

(
2− 1

p

)
. (4.22)

Since u2(M)j ∈ {−1, 1} from Proposition 4.6.5 and ρ ∈ {−1, 1}, every coefficient j for

which the signs u2(M)j and ρu2(M̂)j disagree contributes at least 1 to the left sum in

78



(4.22). Therefore, the number of disagreeing signs in the left sum of (4.22) must be
bounded by

32σ2

µ2

(
2− 1

p

)
.

More precisely, define the set

K′ = {j : ∃ρ ∈ {−1, 1} such that sign(u2(M)j) 6= sign(u2(M̂)j)}

and its cardinality K ′ = |K′|. Then, whenever there exists a ρ ∈ {−1, 1} such that (4.22)
is true, we get that

K ′ ≤
∑
j∈K′

(
u2(M)j − ρu2(M̂)j

)2

≤
∑
j∈K′

(
u2(M)j − ρu2(M̂)j

)2

+
∑
j∈K′c

(
u2(M)j − ρu2(M̂)j

)2

≤ 32σ2

µ2

(
2− 1

p

)
.

Therefore, we just proved that

P
(
K ′ ≤ 32σ2

µ2

(
2− 1

p

))
≥ 1− 1

2p
.

Since K ⊂ K′, we get that K ≤ K ′ and inequality (4.20) is proved.

Summary and observations

In this chapter we presented the main results of the thesis. Specifically, The concentration
result of Theorem 4.1.2 guarantee that the general estimator T = (nθ)−1

∑n
j=1 ψ(θYj) is

a good robust estimator of E
∑n

j=1 Yj, in the sense that we assured consistency of T and
only required that ∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣
n∑
j=1

EY2
j

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ <∞, (4.23)
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without any distributional assumption. Theorem 4.1.2 was shown to be versatile and
applicable to different scenarios: we could extended it to the case of arbitrary real matrices
inMp,r and we showed two different applications, namely, PCA and community detection.
Also, we presented the Lepskii’s method to calculate T by giving a rough estimation of
(4.23). In the following chapters we dive into two more different applications of this robust
estimation procedure.
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Chapter 5

Robust covariance matrix estimation

Let X ∈ Rp be a random vector with EX = µ and CovX = Σ. As in Chapter 3, we want
to estimate Σ through the iid copies X1, ...,Xn of X. One way is to use the estimator Σ̂.
We saw in Chapter 3 that in order to obtain good concentration results for Σ̂ we needed
to assume that it was calculated from a Gaussian or sub-Gaussian ensemble, or that ‖X‖
has some upper bound. Instead, in this chapter we will use techniques similar to the ones
developed in the previous chapter.

In Chapter 4 we defined the truncation operator

ψτ (x) = (|x| ∧ τ) sign(x), τ > 0,

which satisfies the inequality

−τ log
(
1− τ−1x+ τ−2x2

)
≤ ψτ (x) ≤ τ log

(
1 + τ−1x+ τ−2x2

)
. (5.1)

Figure 5.1 shows the function ψτ for different values of τ . We can see that the function
truncates values of x that are away from the origin at the value τ or −τ . The bigger
the value of τ , the less truncation the function performs. For this reason we call ψτ the
truncation operator and τ the robustification parameter. Due to the ease of interpretation
of ψτ we will use this function throughout this chapter.

Suppose for the moment that µ = 0, so a natural estimator of Σ is the sum of iid symmetric
matrices

Σ̂0 =
1

n

n∑
i=1

XXᵀ
i .
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Figure 5.1: Function ψτ for different values of τ .

Then, as we did in Chapter 4, to get a robust estimation of Σ it is intuitive to think in the
truncated version

Σ̂
τ

0 =
1

n

n∑
i=1

ψτ (XXᵀ
i ) .

By inequalities (5.1) we can use the same techniques of Chapter 4 to obtain a concentration

inequality for Σ̂
τ

0. More specifically, by Minsker’s concentration inequality of Theorem 4.3.2
one can show that for t ≥ 0

P
(
|||Σ̂

τ

0 −Σ||| ≥ t
)
≤ 2p exp

(
−nt
σ2

)
,

where σ2 ≥ |||E [‖X‖2
2XX

ᵀ] |||. Note that the factor 1/2 inside the exponential is missing
do to the weaker inequalities that ψτ satisfies.

In order to obtain a more general result, suppose that µ 6= 0. Generally, Σ̂
τ

0 can be thought
as a robust estimator of the Gram matrix EXXᵀ, and with an additional robust estimator
of µ (see for example [28]) we can obtain a robust estimator of Σ since Σ = EXXᵀ−µµᵀ.
We want to emphasize that the estimator

Σ̂ =
1

n

n∑
i=1

(X i − X̄)(X i − X̄)ᵀ

has no independent addends, so we can not use directly the methods presented in Chapter
4. In this sense, instead of proposing a robust estimator of µ, we’ll follow the procedure
of [21] to circumvent this complication.
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Let N =
(
n
2

)
= n(n− 1)/2 and define the identically distributed paired data Y 1, ...,Y N as

Y 1 = X1 −X2,

Y 2 = X1 −X3,

...

Y N = Xn−1 −Xn.

Since EY 1 = 0 and EXXᵀ = Σ + µµᵀ, we have that

CovY 1 = E [(X1 −X2)(X1 −X2)ᵀ] = E [X1X
ᵀ
1 −X1X

ᵀ
2 −X2X

ᵀ
1 +X2X

ᵀ
2]

= Σ + µµᵀ − 2µµᵀ + Σ + µµᵀ

= 2Σ. (5.2)

So the random vectors Y 1, ...,Y N are identically distributed with mean 0 and covariance
matrix 2Σ, but they are not independent. It is a classical method in statistics to replace
Σ̂, which is not biased1, for the unbiased version or U-statistic version2

Σ̂ =
1

N

N∑
i=1

1

2
Y iY

ᵀ
i .

See [39, Chapter 5] for more information on U -statistics. It seems that we win very little
with this construction because the addends are still dependent. But we’ll see later that
this representation can be further modified to have a sum of sums of independent random
matrices. Additionally, we wont need to estimate directly µ, so any manipulation of Σ̂
will be straightforward.

The spectrum-wise truncated estimator of Σ proposed in [21] is

Σ̂
τ

=
1

N

N∑
i=1

ψτ (Y iY
ᵀ
i /2) . (5.3)

Note that Y iY
ᵀ
i /2 its symmetric and has rank one, and that(

1

2
Y iY

ᵀ
i

)
Y i

‖Y i‖2

=
‖Y i‖2

2

2

Y i

‖Y i‖2

.

1One can verify in Appendix C that (n/(n− 1))Σ̂ is unbiased.
2It is more common to define Y ij = Xi −Xj for i 6= j and write Σ̂ = 1

2N

∑
i 6=j Y iY

ᵀ
j . But we’ll

maintain the stated definition for notational convenience.
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So it has eigenvalue ‖Y i‖2
2/2 with unitary eigenvector Y i/‖Y i‖2. Then, by Example 2.1.2,

we can write

Σ̂
τ

=
1

N

N∑
i=1

ψτ

(
‖Y i‖2

2

2

)
Y iY

ᵀ
i

‖Y i‖2
2

,

so the estimator Σ̂
τ

is very easy to calculate from the sample since we don’t need to spend
computational power in any spectral decomposition.

In what follows, we’ll develop the theory necessary to obtain concentration inequalities
for Σ̂

τ
. Section 5.1 is devoted to a general framework for concentration results of sum of

dependent matrices. Section 5.2 derives the main theorem of this chapter for the estimation
of the covariance matrix. Section 5.3 is dedicated to present data dependent methods to
determine τ . Finally, Section 5.4 shows a simulation study of the robust procedure from
this chapter.

5.1 Concentration for the sum of dependent matrices

Following the procedure of [17] we define the random matrix X ∈ Sp as the convex combi-
nation

X = q1X1 + · · ·+ qMXM , (5.4)

where
∑M

i=1 qi = 1, qi ≥ 0, and X1, ...,XM are each one a sum of independent p × p
symmetric random matrices, i.e., for i = 1, ...,M define

Xi = X∗i,1 + · · ·+ X∗i,m,

where X∗i,1, ...,X
∗
i,m ∈ Sp are independent random matrices. We insist that the definition

of X do not requires X1, ...,XM to be independent, but it does asks for X∗i,1, ...,X
∗
i,m to be

independent for each i = 1, ..., n. In particular, we allow for X∗i,k and X∗j,`, i 6= j, to be
dependent, which provokes a possible dependence structure for the matrices X1, ...,XM .
For example, if S1,S2 ∈ Rp are independent random vectors, we can define X to be

X = S1S
ᵀ
1 + S2S

ᵀ
2

=
1

2
(S1S

ᵀ
1 + S2S

ᵀ
2) +

1

2
(S1S

ᵀ
1 + S2S

ᵀ
2)

=:
1

2
X1 +

1

2
X2.
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Clearly, the matrices X1 and X2 are dependent, but the addends of each one are indepen-
dent.

The next theorem is analogous to Theorem 4.1.2. The difference is that the sum is not of
iid matrices.

Theorem 5.1.1. Let X be defined as (5.4) and H ∈ Sp a fixed matrix. Also, for each
i = 1, ...,M let Wi,1(θ), ...,Wi,m(θ) ∈ Sp be independent random matrices such that θX∗i,j �
Wi,j(θ), for all i, j and θ > 0. Then, for every θ > 0 and t ≥ 0,

P (λ1 (X + H) ≥ t) ≤ e−θt
M∑
i=1

qitr exp

(
m∑
j=1

logEeWi,j + θH

)
. (5.5)

Furthermore, if H =
∑m

j=1 Hj with Hj ∈ Sp fixed and Mi,j(θ) ∈ Sp, i = 1, ...,M , j =
1, ...,m, are fixed matrices such that

logEeWi,j(θ) + θHj �Mi,j(θ), ∀i, j, θ > 0,

and the constant ν > 0 satisfies ν2 ≥ |||
∑m

j=1 Mi,j(θ)||| for all i and θ > 0, then

P (λ1 (X + H) ≥ t) ≤ p exp
(
−tθ + ν2

)
.

Proof. Using the convexity of the two mappings A 7→ λ1(A), A ∈ Sp (Lemma A.2.8) and
x 7→ ex, x ∈ R, we obtain that

exp (λ1(X + H)) = exp

(
λ1

(
M∑
i=1

qi(Xi + H)

))

≤ exp

(
M∑
i=1

qiλ1(Xi + H)

)

≤
M∑
i=1

qi exp (λ1(Xi + H)) . (5.6)

Now by Markov inequality, the previous inequality (5.6) and Lemma 2.1.7, we get that

P(λ1(X + H) ≥ t) ≤ e−θtE exp (λ1(θX + θH))

≤ e−θt
M∑
i=1

qiE exp (λ1(θXi + θH))
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≤ e−θt
M∑
i=1

qiEtr exp (θXi + θH) .

Then, by Lemma 4.1.1 we have that

e−θt
M∑
i=1

qiEtr exp {θXi + θH} ≤ e−θt
M∑
i=1

qitr exp

{
m∑
j=1

logEeWi,j(θ) + θH

}
.

This proves the first inequality (5.5). Finally, the hypothesis logEeWi,j(θ) + θHj �Mi,j(θ)
implies that for every i = 1, ...,M

m∑
j=1

logEeWi,j(θ) + θH �
m∑
j=1

Mi,j(θ)

and

tr exp

{
m∑
j=1

logEeWi,j(θ) + θH

}
≤ tr exp

{
m∑
j=1

Mi,j(θ)

}
.

Using the inequality tr eA ≤ pe|||A|||, A ∈ Sp, of Lemma 2.1.7, we arrive at

P(λ1(X + H) ≥ t) ≤ e−θt
M∑
i=1

qitr exp

{
m∑
j=1

logEeWi,j(θ) + θH

}

≤ e−θt
M∑
i=1

qitr exp

{
m∑
j=1

Mi,j(θ)

}

≤ e−θt
M∑
i=1

qip exp

{∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
m∑
j=1

Mi,j(θ)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
}

≤ e−θt
M∑
i=1

qip exp
{
ν2
}

≤ p exp
{
−θt+ ν2

}
,

which ends the proof.

In the next section we’ll see how to decompose the estimator Σ̂
τ

defined in (5.3) in a sum
of the form (5.4). This representation, with the aid of the truncation operator ψτ , will give

us the desired concentration guarantee for Σ̂
τ
.
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5.2 The Hoeffding decomposition

Remember that X1, ...,Xn are iid copies of X ∈ Rp with EX = µ and CovX = Σ. The
sample Y 1, ...,Y N , N = n(n− 1)/2, is defined as

{Y 1,Y 2, ...,Y N} = {X1 −X2,X1 −X3, ...,Xn −Xn−1} (5.7)

In this section we want to see that the estimator

Σ̂
τ

=
1

N

N∑
i=1

ψτ (Y iY
ᵀ
i /2)

can be represented as in (5.4). To see this define h : Rp × Rp →Mp as

h(x,y) =
1

2
(x− y)(x− y)ᵀ

Note that Eh(X i,Xj) = Σ, i 6= j (see equation (5.2)). From the iid sample X1, ...Xn we
define the random matrices Zi,j, 1 ≤ i < j ≤ n, as

Zi,j = ψτ (h(X i,Xj)) , τ > 0.

Then we rewrite Σ̂
τ

in the following way:

Σ̂
τ

=
1(
n
2

) ∑
1≤i<j≤n

Zi,j. (5.8)

Now, let P the set of permutations of {1, ..., n}. For π ∈ P define the matrices Zπ,j,
j = 1, ...,m, m = bn/2c, as

Zπ,j = Zπ(2j−1),π(2j).

Finally, defining

Vπ =
Zπ,1 + · · ·+ Zπ,m

m
, π ∈ P ,

we can write

Σ̂
τ

=
∑
π∈P

1

n!
Vπ. (5.9)
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π = {i1, ..., in} ∈ P
⇓

X i1, X i2︸ ︷︷ ︸
Zπ,1

, X i3, X i4︸ ︷︷ ︸
Zπ,2

, ..., X in−1, X in︸ ︷︷ ︸
Zπ,m︸ ︷︷ ︸

Vπ=m−1
∑m
j=1 Zπ,j

⇓

Σ̂
τ

=
1

n!

∑
π∈P

Vπ

Figure 5.2: How to compute the Hoeffding decomposition of Σ̂
τ
.

Figure 5.2 presents a description on how to construct this decomposition. The sums (5.8)
and (5.9) are indeed equal since h(x,y) = h(y,x) imply that Zi,j = Zj,i, so in the sum
(5.9) each Zi,j is repeated 2(n− 2)!m times3. Then,∑

π∈P

1

n!
Vπ =

1

n!m

∑
1≤i<j≤n

2(n− 2)!mZi,j =
1(
n
2

) ∑
1≤i<j≤n

Zi,j.

We refer to (5.9) as the Hoeffding decomposition of Σ̂
τ

and we’ll use it just for its theoretical
advantages. This is different from the classic definition of Hoeffding decomposition that is
made under projections of the function h (see for example [12].) As we mentioned in the

beginning of this section, we have been able to write Σ̂
τ

in the form (5.4), so in the next
result we’ll prove a concentration bound based on Theorem 5.1.1.

Theorem 5.2.1. Let X1, ...,Xn ∈ Rp be iid random vectors with

v2 =
1

4
|||E ((X1 −X2)(X1 −X2)ᵀ)2 ||| <∞.

For τ > 0 define Σ̂
τ

as (5.3). Then, for any s ≥ 0,

|||Σ̂
τ
−Σ||| ≥ s√

m

3There are 2(n− 2)! permutations in which element i is next to element j in the first two places and m
places to put this elements together.
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with probability at most

2p exp

(
−s
√
m

τ
+
mv2

τ 2

)
, (5.10)

where m = bn/2c.

Proof. Analogously to the proof of Theorem 4.3.2, we’ll prove that the two probabilities

P
(
λ1

(
Σ̂
τ
−Σ

)
≥ s√

m

)
(5.11)

and

P
(
−λp

(
Σ̂
τ
−Σ

)
≥ s√

m

)
, (5.12)

have the same bound equal to

p exp

(
−s
√
m

τ
+
mv2

τ 2

)
.

Once this is done, the result follows from Proposition 2.3.2.

First, for (5.11) we have that for any s ≥ 0

P
(
λ1

(
Σ̂
τ
−Σ

)
≥ s√

m

)
= P

(
λ1

(
mΣ̂

τ
−mΣ

)
≥ s
√
m
)
,

Using the Hoeffding decomposition of Σ̂
τ

given in (5.9), note that

mΣ̂
τ

=
1

n!

∑
π∈P

mVπ

=
∑
π∈P

1

n!

m∑
j=1

Zπ,j.

So mΣ̂
τ

is of the form (5.4) with qπ = 1/n!

Now, following the notation of Theorem 5.1.1 and the Hoeffding decomposition Σ̂
τ
, define

θ = τ−1 and

X∗π,j = Zπ,j, Hj = −Σ, H = −mΣ,
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Wπ,j(θ) = log
(
I + τ−1Uπ,j + τ−2U2

π,j

)
, Mπ,j(θ) = τ−2EU2

π,j,

where Uπ,j = h(Xπ(2j−1),Xπ(2j)) = (Xπ(2j−1) −Xπ(2j))(Xπ(2j−1) −Xπ(2j))
ᵀ/2.

Note that unlike Theorem 5.1.1 we are using the sub index π ∈ P instead of i ∈ {1, ...,M}.
This doesn’t change anything from the conclusion of Theorem 5.1.1 since it is only a
notation issue.

From Remark 4.3.1 we derive that

θX∗π,j = ψ1

(
τ−1Uπ,j

)
� log

(
I + τ−1Uπ,j + τ−2U2

π,j

)
= Wπ,j(θ)

for π ∈ P and j = 1, ...,m. Also, by Lemma 4.3.1 (taking A = τ−1Σ + τ−2EU2
π,j) and

rearranging terms we get that

logEeWπ,j(θ) + θHj = log
(
I + τ−1Σ + τ−2EU2

π,j

)
− τ−1Σ

� τ−2EU2
π,j

= Mπ,j(θ).

Since for all π ∈ P it is true that∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
m∑
j=1

Mπ,j(θ)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ = τ−2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
m∑
j=1

EU2
π,j

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

=
τ−2

4

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
m∑
j=1

E ((X1 −X2)(X1 −X2)ᵀ)2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

= mτ−2v2,

then, by Theorem 5.1.1, we conclude that

P
(
λ1

(
Σ̂
τ
−Στ

)
≥ s

m

)
= P

(
λ1

(
mΣ̂

τ
−mΣτ

)
≥ s
√
m
)

≤ p exp

(
−s
√
m

τ
+
mv2

τ 2

)
.

Finally, for probability (5.12) we proceed in the same way by redefining the random ma-
trices of Theorem 5.1.1:

X∗π,j = −Zπ,j, Hj = Σ, H = mΣ,

Wπ,j(θ) = log
(
I− τ−1Uπ,j + τ−2U2

π,j

)
, Mπ,j(θ) = τ−2EU2

π,j.
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Since

−l − og
(
I− τ−1Uπ,j + τ−2U2

π,j

)
� Zπ,j,

the procedure is analogous to the one done for (5.11).

The result of Theorem 5.2.1 is remarkable since we’ve been able to obtain a concentration
inequality for the covariance matrix estimation problem by just assuming that

|||E ((X1 −X2)(X1 −X2)ᵀ)2 ||| <∞.

This should be compared with the results presented in Chapter 3, in which we placed dis-
tributional assumptions on X. Additionally, this concentration bound is almost identical
to the one obtained in Theorem 4.3.2 with the main differences being n substituted by
m = bn/2c and the 1/2 factor inside the exponential.

As we did in Chapter 4, optimizing the probability bound (5.10) over τ > 0 we get that it
is minimized in τ̃ = 2

√
mv2/s. Taking τ = τ̃ and s = 2v

√
log(2p) + t, t ≥ 0, we get that

τ = v

√
m

log(2p) + t
. (5.13)

and

|||Σ̂
τ
−Σ||| ≥ 2v

√
log(2p) + t

m
(5.14)

with probability at most e−t. The bound (5.14) increases slowly with the dimension p
and decreases with the sample size n. It could be only seriously affected by the unknown
parameter v. Note that we are presenting an ideal choice of the hyperparameter τ in
equation (5.13) and this choice depends directly on v. In the next section we show an
heuristic method to determine τ based on this observations.

5.3 How to choose the hyperparameter

In this section we present three different methods to choose the hyperparameter τ . The
first has a theoretical guarantee whereas the other two doesn’t. The objective is to show
that there exist different criteria to overcome this difficulty and the selection of a method
can depend in the context of the application.
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5.3.1 Lepskii’s method

One way to choose τ for Σ̂
τ

is with the Lepskii method presented in Chapter 4. Indeed,
by defining θ =

√
2/τ and t = s/

√
2 we get from Theorem 5.2.1 that

P

(
|||Σ̂

√
2/θ
−Σ||| ≥

√
2t√
m

)
≤ 2p exp

(
−t
√
mθ +

mv2θ

2

)
,

which is the same concentration bound obtained in Theorem 4.3.2 with n substituted by
m = bn/2c and σ2

n substituted by mv2, and the additional constant
√

2 in the norm lower

bound. Then, by Remark 4.3.2, taking θ =
√

2t
m

1
z
, with z > 0 such that z > v, and the

mapping t 7→ z
√

2t we get that

P

(
|||Σ̂

√
2/θ
−Σ||| ≥ z2

√
t

m

)
≤ 2pe−t

or

P

(
|||Σ̂

√
2/θ
−Σ||| ≥ z

√
2t

m

)
≤ 2pe−t/2,

which is almost the same concentration bound of Remark 4.5.1, with the only difference
being the term 1/2 in the exponential. Therefore, the same procedure of Lepskii from the

previous chapter can be applied to Σ̂
τ
. We define the robust estimator Σ̂

∗
as

Σ̂
∗

= Σ̂
τj∗
, τj∗ =

√
2

θj∗
,

where θj =
√

2t
m

1
zj

and zj = γjvmin, γ ∈ (1, 2), and j∗ is defined in (4.14) with Tj replaced

with Σ̂
τj

. A resume of the algorithm is shown in Figure 5.3. We present the next result as
a corollary of Theorem 4.5.1 without proof since the procedure is the same.

Corollary 5.3.1. Let X1, ...,Xn be an iid sample with same assumptions of Theorem
5.2.1. Then, for any ε > 0,

|||Σ̂
∗
−Σ||| ≥ (3 + ε)v

√
2t

m

with probability at most

2p
log(γvmax/vmin)

log(γ)
e−t/2.
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Input: sample X1, ...,Xn and parameters vmax, vmin, γ, t.

Output: robust estimator Σ̂
∗
.

1. Create the sample Y 1, ...,Y N .

2. Calculate the cardinality c = b1 + log(vmax/vmin)/ log(γ)c of the set |J | and
the vector z = (zj)j=0,...,c−1, zj = γjvmin.

3. For j = 0, ..., c− 1, choose the first j such that

|||Σ̂
τk − Σ̂

τj ||| ≤ 2zk

√
2t

m
,

for all k = j + 1, ..., c − 1, where τj =
√

2/θj and θj =
√

2t
m

1
zj

. Define this

minimum j as j∗. If the minimum doesn’t exist, define j∗ = jc−1.

4. Return the matrix Σ̂
∗

= Σ̂
τj∗

.

Figure 5.3: Lepskii’s algorithm to obtain the robust estimator Σ̂
∗
.

The previous result is almost identical to the one obtained in Chapter 4, but with the
substitution of n by m and e−t by e−t/2. This is the price to pay for the non-independence
if the addends of the estimator.

5.3.2 Forth moment estimation

In [21] the authors presented a more intuitive method to establish τ . The argument is
as follows. According to equation (5.13), for a fixed t ≥ 0, in order to obtain a good
concentration with high probability, we need to chose

τ = v

√
m

log(2p) + t
, (5.15)

where

v2 =
1

4
|||E (Y 1Y

ᵀ
1)2 ||| = |||E (Y 1Y

ᵀ
1/2)2 |||.
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Of course v2 is unknown, but it is natural to think that for a well chosen τ , a good estimator
of E (Y 1Y

ᵀ
1/2)2 is

1

N

N∑
i=1

[ψτ (Y iY
ᵀ
i /2)]2 =

1

N

N∑
i=1

ψ2
τ

(
1

2
‖Y i‖2

2

)
Y iY

ᵀ
i

‖Y i‖2
2

. (5.16)

Therefore, substituting (5.16) into (5.15), a good choice of τ is such that it satisfies the
equality ∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣ 1

τ 2N

N∑
i=1

ψ2
τ

(
1

2
‖Y i‖2

2

)
Y iY

ᵀ
i

‖Y i‖2
2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ =

log(2p) + t

m
. (5.17)

Following [49] for the univariate case, we present in the next theorem a condition under
which equation (5.17) has a unique solution.

Theorem 5.3.2. Suppose that the iid sample X1, ...,Xn satisfies the following two condi-
tions:

1. X i is a random vector with continuous coordinates.

2. Let λ = ‖X1 −X2‖2
2. Then, for any τ ∈ (0,∞), P(λ > τ) < 1.

Then, if ∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ m

log(2p) + t

N∑
i=1

Y iY
ᵀ
i

‖Yi‖2
2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ > 1,

there exists a unique τ such that equality (5.17) is satisfied.

The proof of Theorem 5.3.2 is presented in appendix C.

5.3.3 Cross-validation

Another method to determine τ is by leave-one-one cross-validation. The idea behind
cross validation is to minimize a loss function that depends on a hyperparameter and
choose this hyperparameter as the best one. But, since this loss function depends on an
unknown distribution we use an empirical version to estimate it. See the survey [2] for
a general review on cross-validation methods. This methodology applied to covariance
matrix estimation is presented in [41] and it is bases on the following proposition.
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Proposition 5.3.3. Let Z ∈ Rp be a random vector with EZ = 0 and CovZ = Σ. Then,

Σ = arg min
S∈Sp

E|||S−ZZᵀ|||22.

The proof of Proposition 5.3.3 can be found in appendix C. Since

E
[
(X1 − X̄)(X1 − X̄)ᵀ

]
=
n− 1

n
Σ,

(see appendix C) this result indicates that a good choice of τ is such that the expectation

E|||Σ̂
τ
− an(X1 − X̄)(X1 − X̄)ᵀ|||

2

2, an =
n

n− 1
.

is minimized, but because we don’t have access to this expected value we use a sample-
based approach. Let Σ̂

τ

(j) be the robust estimator (5.3) calculated without the observation
Xj. The leave-one-out procedure defined in [41] consists in calculating the loss function

L(τ) =
1

n

n∑
j=1

|||Σ̂
τ

(j) − an(Xj − X̄)(Xj − X̄)ᵀ|||
2

2
,

where τ ∈ C, where C is some subset of R, and choosing the hyperparameter

τ̂ = arg min
τ∈C

L(τ).

5.4 Simulation study

In this section we derive a simulation study to assess the performace of the robust estimator

Σ̂
∗
, obtained by the Lepskii method of Figure 5.3, against the classical empirical estimator

Σ̂ of Chapter 3.

The sample was obtained as follows: simulate independently X0
1, ...,X

0
n from a Gaussian

distribution with mean µ and covariance matrix Σ0. Let S1, ..., Sn be iid χ2
ν random

variables with ν = 3 (also independent of the X0
j). Define Xj = X0

j/
√
Sj/ν. The

distribution of Xj is said to be multivariate-T and has mean µ and covariance matrix
given by Σ = Σ0ν/(ν − 2).This distribution is the multivariate version of the classical T
distribution which is known for having heavy tails. Figure 5.4 presents the univariate T
density function given by

f(x; ν) =
γ((ν + 1)/2)√
νπγ(ν/2)

(
1 +

x2

ν

)−(ν+1)/2

.
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Figure 5.4: Univariate T density function for different values of ν.

One can observe that for smaller values of ν this density function has heavier tails. One
major caution is that a random variable with T distribution has finite variance only when
ν > 2. See [23, Chapter 1] for these and more properties of the multivariate-T distribution.

In Figure 5.5 we present four different data sets from this distribution. One can observe
that the appearance of atypical points is the rule rather than the exception. The mean
vector µ was fixed by simulating a p× 1 vector with iid N (0, 100) entries, and the matrix
Σ was fixed by simulating a matrix B with iid N (0, 5) entries and defining Σ = BᵀB.

We constructed the sample Y 1, ...,Y N , N = n(n − 1)/2, as (5.7) and calculated the

estimator Σ̂
∗

of Figure 5.3. The parameters were chosen as γ = 1.5 and vmax and vmin

where estimated as

vmax = 2

√√√√ 1

4N

N∑
j=1

|||(Y jY
ᵀ
j )

2|||, vmin =
vmax

100

i.e., vmax is two times the empirical estimator of |||E (Y Y ᵀ/2)2 |||. For different dimensions

p, we evaluated the difference |||Σ̂
∗
−Σ||| and compare it with |||Σ̂−Σ|||. Different values

of the parameter t were takin to observe its effect in the estimation. Figure 5.6 shows that

the robust estimator Σ̂
∗

outperforms the classical estimator Σ̂ for every dimension p and
every choice of t.

The values of the robustification parameter τ chosen by the algorithm are shown in Figure
5.7. We can observe that the value of τ does not change drastically when changing t for
t ≥ 0.5. This is reflected in Figure 5.6 were it is clear that the variability of the estimator
is reduced. This is due to the fact that for small τ (provoked by big t) a lot of observations
are truncated so they are given the same value to calculate the estimator.
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Figure 5.5: Four different data sets of sample size n = 100 simulated from the t-multivariate
distribution in the case p = 2.
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(a) t = 0.25 (b) t = 0.5

(c) t = 2 (d) t = 10

Figure 5.6: Performance evaluation of Σ̂
∗

vs Σ̂. The values of p are in
{5, 10, 20, 50, 80, 100, 200}. The sample size is n = 50. For every p there are 20 simu-
lations of the estimator and the mean of them is shown with stronger color. The scale of
the y-axis is presented in log10.
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(a) t = 0.25 (b) t = 0.5

(c) t = 2 (d) t = 10

Figure 5.7: Values of τ obtained in the simulations of Figure 5.6.
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Figure 5.8: Lower bounds for t given p for different values of α. We take γ = 1.5 and
vmin = vmax/100.

If one wants to choose t such that

P

(
|||Σ̂

∗
−Σ||| ≥ (3 + ε)v

√
2t

m

)
≤ α

for some α ∈ (0, 1), by Corollary 5.3.1, its is sufficient to choose

t ≥ 2 log

(
2pκ

α

)
, (5.18)

where κ = log(γvmax/vmin)/ log(γ). Figure 5.8 shows the lower bound (5.18) for different
dimensions p and different values of α. Despite that the bound increases slowly after certain
point, as we saw in Figure 5.6 a big value of t can cause two much regularization (small τ)
provoking that a lot of sampled points are assigned the same small value. Therefore, the
election of t have to be done with caution.

As we discussed earlier, when the parameter ν of the T distribution is big, the tails of the

distribution are lighter. In order to observe the performance of Σ̂
∗

in a light-tail case, we
performed the same simulation study choosing the parameter ν = 30. Figure 5.9 shows

that the performance of Σ̂
∗

is similar to Σ̂ since there are fewer outliers that make the

performance of Σ̂ worse. Nevertheless, the estimator Σ̂
∗

always has smaller error even in
higher dimensions.
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Figure 5.9: Same simulation study with ν = 30 and t = 0.5.

Summary and observations

In this chapter we presented a straightforward way to estimate the covariance matrix of a
random vector making few assumptions abound the moments. By performing a combina-
torial decomposition of the estimator we’ve been able to prove a concentration bound that
is similar to the one obtained in Chapter 4 and without assuming that the random vector is
centered, in contrast with Chapter 3. Additionally, we mentioned three methods to choose
the robustification parameter τ , one of which has a concentration guarantee. The simula-
tion study shows that the robust estimator presented outperforms the classical empirical
estimator. Nevertheless, the Lespkii’s procedure used depends on the hyperparameter t
that can affect the performance of the estimations.
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Chapter 6

Robust matrix completion

In this chapter we present a different application of the concentration results obtained in
Chapter 4. The problem of matrix completion has been a prolific research subject since
the last decade. See for example the articles [7], [8] and [5] and references therein. This
context differs from what we have presented so far in the sense that the estimator has
no explicit form because it is obtained from an optimization problem. This yields a clear
difficulty: how can we guarantee concentration results in matrix completion since we can
not manipulate the estimator directly? Even more, how can we adapt the known estimation
methods to make the estimators robust? This will be addressed in what follows.

Section 1 gives the context of matrix completion that we’ll be working on. Then, in Section
2 we present some methods for estimation in this context, and in Section 3 we show how to
adapt these methods to obtain a robust estimator with concentration guarantees that are
fully proved. Finally, Section 4 describes how to compute the robust estimator presented.

6.1 What is matrix completion?

Let B0 ∈ Mm1,m2 be an unknown matrix. We observe only a subset of its entries with
noise, and we want to estimate B0 through this partial and noisy observations. Stated
more formally, define the set of m1 ×m2 matrices X as

X = {ej(m1)eᵀk(m2), j = 1, ...,m1, k = 1, ...,m2} ,
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where {e1(m1), ...., em1(m1)} and {e1(m2), ...., em2(m2)} are the canonical bases of Rm1

and Rm2 , respectively. Let1 X ∼ U(X ) and Y be the random variable

Y = tr (XᵀB0) + ξ, (6.1)

where ξ is a random noise such that E [ξ|X] = 0. The model 6.1 is called Trace Regres-
sion Model. Suppose that (Y1,X1), ..., (Yn,Xn) are iid copies of (Y,X). The problem of
matrix completion consists on developing a methodology to estimate B0 from the sample
{(Yj,Xj)}.

As pointed out in [38] and [22], this model is called Uniform Sampling at Random (USR),
which differs from the popular work of [7], called Collaborative Sampling (CS). The main
difference is that in USR we can have repetitions in the matrices X1, ...,Xn, while in CS
this is not possible. The CS matrix completion model is used to describe recommenda-
tion systems in which a customer rates an item only once. Meanwhile, the USR matrix
completion model can be used to describe the transmission of large matrices through a
noisy communication channel. In this thesis we work with the USR model and present
the concentration results from Koltchisnskii et al. in [22] and the robust procedure from
Minsker in [32].

It is necessary to mention that important work has been done in the CS model within a
robust context. The seminal work of [6] presents a generic method of matrix estimation
that translates into robust matrix completion and robust PCA (something that deviates
broadly from what we did in Chapter 4.)

6.2 Nuclear norm penalization

As pointed out in [7], in many instances the matrix B0 can be thought to have low rank
or be approximately low rank. With this assumption, one wants to perform an estimation
procedure that captures this low-rank structure. This is performed typically by penalizing
with the Schatten 1-norm also called the nuclear norm. This is done since the nuclear
norm is the Schatten p-norm that is convex and closest to the Shatten 0-norm2, which
gives the rank of a matrix. Before presenting the penalized estimator let us derive an
unbiased estimator of B0.

1This means that X is uniformly distributed in the set X . More specifically, for any j, k, with probability
1

m1m2
we obtain the matrix X = ej(m1)eᵀk(m2).

2The Schatten p-norms satisfy being a norm only when p ≥ 1, but are called norm for any p ≥ 0 just
for simplicity.
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With the assumptions made earlier, it’s easy to verify that

EYX =
1

m1m2

B0.

Indeed, since X ∼ U(X ) and E[ξ|X] = 0,

EYX = E [(tr (XᵀB0) + ξ)X]

= E [tr (XᵀB0)X] + E [XE[ξ|X]]

=
1

m1m2

m1∑
j=1

m2∑
k=1

(B0)jkej(m1)eᵀk(m2)

=
1

m1m2

B0,

where the last inequality follows because ej(m1)eᵀk(m2) is a matrix of zeros except that in
the j, k-entry it has a 1. This indicates that an unbiased estimator of B0 is

B̂ =
m1m2

n

n∑
j=1

YjXj.

Therefore, in [22] the authors proposed the penalized estimator B̂
τ
, τ > 0, defined as

B̂
τ

= arg min
B∈Mm1,m2

{
1

m1m2

|||B− B̂|||
2

2 + τ |||B|||1
}
,

i.e., B̂
τ

is the closest matrix to B in Frobenius norm with penalized rank. The next
theorem, proved in [22] (Theorem 1), gives us a first upper bound for the performance of
this estimator.

Theorem 6.2.1. Define M ∈Mm1,m2 as

M = B̂− EYX.

If τ ≥ 2|||M|||, then

1

m1m2

|||B̂
τ
−B0|||

2

2 ≤ inf
B∈Mm1,m2

 1

m1m2

|||B−B0|||22 +

(
1 +
√

2

2

)2

m1m2τ
2rank(B)

 .
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As we see, the condition τ ≥ 2|||M||| is not certain, so to obtain a concentration inequality
one has to calculate

P(τ ≥ 2|||M|||).

In order to do so it is common to make distributional assumptions on the noise ξ. For
example, in [22] the authors assume that ξ follows a sub-exponential distribution (see
Appendix B for a definition of sub-exponential distributions.) We’ll prove a version of
Theorem 6.2.1 in form of a lemma (Lemma 6.3.2) in the context of robust estimation.
More specifically, we’ll just assume that

Varξ <∞ and |||B0|||max <∞,

where |||B0|||max = maxi,j |(B0)ij|. The proof is essentially the same as the one presented in
[22], but some careful has to be taken because we’ll incorporate the matrix dilation defined
on previous chapters.

6.3 Robust penalized estimation

The matrices B0 and B̂ are rectangular (and non-symmetric), so to use the concentration
results of Chapter 4 we need to incorporate the matrix dilation H into the equation. In
[32] Minsker proposed the estimator R̂ ∈ Sm1+m2 of H(B0) defined as

R̂ =
1

nθ

n∑
j=1

ψ (θm1m2YjH(Xj)) ,

with the specific choice of θ given by

θ = θ(t, n,B0) =
1√

Varξ ∨ |||B0|||max

√
t+ log(2(m1 +m2))

nm1m2(m1 ∨m2)
.

The estimator R̂ is a robust surrogate of B̂. To incorporate the nuclear norm penalization,
Minsker defined the following penalized robust estimator:

R̂
τ

= arg min
B∈Mm1,m2

{
1

m1m2

|||H(B)− R̂|||
2

2 + 2τ |||B|||1
}
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Note that by Theorem A.3.5 2|||B|||pp = |||H(B)|||pp for any p > 0. Define A ⊂ Sm1+m2 as

A = {A ∈ Sm1+m2 : A = H(B) for some B ∈Mm1,m2} .

Then, we can write

H(R̂
τ
) = arg min

A∈A

{
1

m1m2

|||A− R̂|||
2

2 + τ |||A|||1
}
.

Note that R̂
τ
∈ Mm1,m2 but H(R̂

τ
) ∈ Sm1+m2 . The next theorem, provided in [32], gives

us a concentration bound for the performance of R̂
τ

in Frobenius norm.

Theorem 6.3.1. Define the matrix M ∈ Sm1+m2 as

M = R̂− E [m1m2YH(X)]

= R̂−H(B0).

If ξj and Xj are independent, j = 1, ..., n, and Varξ <∞, then for any

τ ≥ 8m1m2(m1 ∨m2)
(
|||B0|||max ∨

√
Varξ

)√t+ log(2(m1 +m2))

n
,

we have that

1

m1m2

|||R̂
τ
−B0|||

2

2 ≤ inf
B∈Mm1,m2

 1

m1m2

|||B−B0|||22 +

(
1 +
√

2

2

)2

m1m2τ
2rank(B)

 ,

with probability at least 1− e−t.

The result of Theorem 6.3.1 differs from what we obtained in previous chapters:

1. The norm bound has no explicit form. This is due to the fact that the estimator also
has no explicit form and we have to use different machinery to control the norm of
the difference.

2. We are working with the 2-Schatten norm (or Frobenius norm) instead of the usual∞-
Schatten norm (or spectral norm.) This follows from the definition of the estimator,
since we are trying to minimize the Frobenius norm instead of the nuclear norm.
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3. The main information that we can get from this theorem is the range of values of the
penalization τ for which we can obtain a “good concentration bound.”

To prove Theorem 6.3.1 we need the following lemma. As mentioned earlier, this is a
version of Theorem 6.2.1 presented in [22]. The main idea behind the proof is that the
minimization problem involves a convex function in a convex set so we can use the methods
of subdifferential calculus presented in Appendix C.

Lemma 6.3.2. Define M as in Theorem 6.3.1. If τ ≥ 4|||M|||, then,

1

m1m2

|||H(R̂
τ
)−H(B0)|||

2

2 ≤ inf
A∈A

 1

m1m2

|||A−H(B0)|||22 +

(
1 +
√

2

2

)2

m1m2τ
2rank(A)

 .

To prove Lemma 6.3.2 it will be necessary to recall the trace duality property of Theorem
A.5.9, which states that for matrices B,B′ ∈ Mn,m we have that |〈B,B′〉| ≤ |||B|||1|||B

′|||.
Throughout this chapter, 〈B,B′〉 = tr (BᵀB′).

Proof of Lemma 6.3.2. Write Â
τ

= H(R̂
τ
), A0 = H(B0) and

Fτ (A) = µ|||A− R̂|||
2

2 + τ |||A|||1, µ = (m1m2)−1, A ∈ Sm1+m2 .

Then, we want to prove that whenever τ ≥ 4|||M|||,

µ|||Â
τ
−A0|||

2

2 ≤ inf
A∈A

µ|||A−A0|||22 +

(
1 +
√

2

2

)2

µ−1τ 2rank(A)

 ,

where

Â
τ

= arg min
A∈A

Fτ (A).

It is important to mention that, due to the form of R̂, this lemma is not a consequence of
Theorem 6.2.1, but it can be derived following the same steps.

The proof is divided in four parts. Part I is dedicated to obtain a bound for the inner
product 〈Â

τ
−A0, Â

τ
−A〉 for some A ∈ A. Part II develops a generic bound on the norm

difference |||Â
τ
−A0|||

2

2. Part III focuses on bounding the inner product 〈M, Â
τ
−A〉. Part

IV joins everything and finally obtains the desired bound for |||Â
τ
−A0|||

2

2.
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Part I. By Proposition C.10.4 (b) and Theorem C.10.5 which gives the form of ∂Fτ (Â
τ
),

there exists a V̂ ∈ ∂|||Â
τ
|||1 such that, for all A ∈ A,

〈2µ(Â
τ
− R̂) + τV̂,A− Â

τ
〉 ≥ 0,

or , by linearity and changing signs,

2µ〈Â
τ
, Â

τ
−A〉 − 2µ〈R̂, Â

τ
−A〉+ τ〈V̂, Â

τ
−A〉 ≤ 0. (6.2)

Fix an arbitrary A ∈ A of rank r with SVD A =
∑r

j=1 sjujv
ᵀ
j and support3 (S1, S2), and

consider an arbitrary V ∈ ∂|||A|||1. Recall that M = R̂−A0, so by adding and subtracting

−2µ〈A0, Â
τ
−A〉+ τ〈V, Â

τ
−A〉

to inequality (6.2) we get that

2µ〈Â
τ
−A0, Â

τ
−A〉+ τ〈V̂ −V, Â

τ
−A〉 ≤ −τ〈V, Â

τ
−A〉+ 2µ〈M, Â

τ
−A〉. (6.3)

By the monotonicity of the subdifferential of convex functions presented in Proposition
C.10.3, we have that 〈V̂ −V, Â

τ
−A〉 ≥ 0, which implies from (6.3) that

2µ〈Â
τ
−A0, Â

τ
−A〉 ≤ −τ〈V, Â

τ
−A〉+ 2µ〈M, Â

τ
−A〉. (6.4)

On the other hand, by Theorem C.10.5, for an arbitrary matrix W with |||W||| ≤ 1, we
can write

V =
r∑
j=1

ujv
ᵀ
j + PS⊥1

WPS⊥2
, (6.5)

where PS⊥1
,PS⊥2

∈ Sm1+m2 are the orthogonal projectors in S⊥1 and S⊥2 , respectively4. But,
observe that

〈PS⊥1
WPS⊥2

, Â
τ
−A〉 = tr

[
PS⊥2

WᵀPS⊥1
(Â

τ
−A)

]
= tr

[
PS⊥2

WᵀPS⊥1
Â
τ
]

= tr
[
WᵀPS⊥1

Â
τ
PS⊥2

]
3For A of rank r with SVD A =

∑r
j=1 sjujv

ᵀ
j we define S1 = span{u1, ...,ur} and S2 =

span{v1, ...,vr}, and the pair (S1, S2) is called the support of A.
4We also define PS1 ∈ Sm1 and PS2 ∈ Sm2 as PS1 = I−PS⊥

1
and PS2 = I−PS⊥

2
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= 〈W,PS⊥1
Â
τ
PS⊥2
〉,

where the second equality follows from Theorem A.3.4, i.e., since S1 is the columns space
of A then PS⊥2

A = 0. Now, by Proposition A.5.10 of equality in trace duality, there exists
W with |||W||| ≤ 1 such that

〈PS⊥1
WPS⊥2

, Â
τ
−A〉 = 〈W,PS⊥1

Â
τ
PS⊥2
〉 = |||PS⊥1

Â
τ
PS⊥2
|||

1
.

For this choice of W, inequality (6.4) and equation (6.5) implies

2µ〈Â
τ
−A0, Â

τ
−A〉+ τ |||PS⊥1

Â
τ
PS⊥2
|||

1
≤ −τ

〈 r∑
j=1

ujv
ᵀ
j , Â

τ
−A

〉
+ 2µ〈M, Â

τ
−A〉.

(6.6)

Part II. On the other hand, we have the following three equalities:

|||A−A0|||22 = |||Â
τ
−A|||

2

2 + |||Â
τ
−A0|||

2

2 − 2〈Â
τ
−A, Â

τ
−A0〉;

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
r∑
j=1

ujv
ᵀ
j

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ = 1,

which is due to the fact that
∑r

j=1 ujv
ᵀ
j defines the SVD of a matrix with an identity in

the middle; and 〈 r∑
j=1

ujv
ᵀ
j , Â

τ
−A

〉
=

〈 r∑
j=1

ujv
ᵀ
j ,PS1(Â

τ
−A)PS2

〉
,

which emerges from PS1APS2 = A, uᵀ
jPS1 = uᵀ

j and PS1vj = vj. Then, from (6.6) and
trace duality we get

µ|||Â
τ
−A0|||

2

2 + µ|||Â
τ
−A|||

2

2 + τ |||PS⊥1
Â
τ
PS⊥2
|||

1

≤ µ|||A−A0|||22 + τ |||PS1(Â
τ
−A)PS2|||1 + 2µ〈M, Â

τ
−A〉 (6.7)

Part III. Now, we proceed to bound 〈M, Â
τ
−A〉. Define the linear map PA :Mm1+m2 →

Mm1+m2 as

PA(A′) = A′ −PS⊥1
A′PS⊥2

.
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Then, for any A′ ∈Mm1+m2

〈PA(M),PA(A′)〉 = tr [PA(M)ᵀPA(A′)]

= tr
[
MᵀA′ −MᵀPS⊥1

A′PS⊥2
−PS⊥2

MᵀPS⊥1
A′ + PS⊥2

MᵀPS⊥1
A′PS⊥1

]
= tr

[
MᵀA′ −MᵀPS⊥1

A′PS⊥2

]
= 〈PA(M),A′〉,

from which we obtain that

〈M, Â
τ
−A〉 = 〈PA(M), Â

τ
−A〉+ 〈PS⊥1

MPS⊥2
, Â

τ
−A〉

= 〈PA(M),PA(Â
τ
−A)〉+ 〈PS⊥1

MPS⊥2
, Â

τ
〉

= 〈PA(M),PA(Â
τ
−A)〉+ 〈PS⊥1

MPS⊥2
,PS⊥1

Â
τ
PS⊥2
〉.

Define Λ = 2µ|||PA(M)|||2 and Γ = 2µ|||PS⊥1
MPS⊥2

|||. By Cauchy-Schwarz and trace duality,

2µ〈M, Â
τ
−A〉 ≤ Λ|||PA(Â

τ
−A)|||2 + Γ|||PS⊥1

Â
τ
PS⊥2
|||

1

≤ Λ|||Â
τ
−A|||2 + Γ|||PS⊥1

Â
τ
PS⊥2
|||

1
.

The second inequality follows from Proposition A.5.12 since PA is a orthogonal projec-
tion operator. Now, by submultiplicity of the norm and the fact that |||P||| = 1 for any
orthogonal projection matrix P, we have that

Γ ≤ 2µ|||M|||
(
|||PS⊥1

||| · |||PS⊥1
|||
)
≤ τµ.

Additionally, note that

PA(M) = M− (I−PS1)M(I−PS2) = PS⊥1
MPS2 + PS1M,

and because rank(PSj) ≤ rank(A), j = 1, 2 and |||A′|||22 ≤ rank(A′)|||A′|||2, for any matrix
A′, we get that

Λ ≤ 2µ
√

rank(PA(M))|||PA(M)|||

≤ 2µ
√

rank(PS⊥1
MPS2 + PS1M)|||PS⊥1

MPS2 + PS1M|||

≤ 4µ
√

2rank(A)|||M|||
≤ τµ

√
2rank(A),
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where we used that rank(A′+A′′) ≤ rank(A′)+rank(A′) and rank(A′A′′) ≤ min {rank(A′), rank(A′′)}
for any matrices A′ and A′′, and the triangle inequality.

Also, by Cauchy-Schwarz inequality, |||A′|||1 ≤
√

rank(A′)|||A′|||2 for any matrix A′, so we
have that

|||PS1(Â
τ
−A)PS2|||1 ≤

√
rank(A)|||PS1(Â

τ
−A)PS2|||2

≤
√

rank(A)|||Â
τ
−A|||2.

In the first inequality we use that rank(A′A′′) ≤ min{rank(A′), rank(A′′)}, and in the last
inequality we used Proposition A.5.12.

Part IV. Therefore, by (6.7) and the fact that τ ≥ 4|||M|||, we arrive at

µ|||Â
τ
−A0|||

2

2 + µ|||Â
τ
−A|||

2

2 + τ |||PS⊥1
Â
τ
PS⊥2
|||

1

≤ µ|||A−A0|||22 + τ
√

rank(A)|||Â
τ
−A|||2

+ τµ
√

2rank(A)|||Â
τ
−A|||2 + τµ|||PS⊥1

Â
τ
PS⊥2
|||

1
. (6.8)

Since µ ≤ 1, we have that

τµ
√

2rank(A)|||Â
τ
−A|||2 ≤ τ

√
2rank(A)|||Â

τ
−A|||2. (6.9)

Rearranging terms and multiplying by µ−1 in (6.8) we obtain that

|||Â
τ
−A0|||

2

2 + τ(µ−1 − 1)|||PS⊥1
Â
τ
PS⊥2
|||

1
≤ |||A−A0|||22

+ µ−1τ
√

rank(A)(
√

2 + 1)|||Â
τ
−A|||2 − |||Â

τ
−A|||

2

2.
(6.10)

Note that we used inequality (6.9). Since the function x 7→ αx− x2, α > 0, is dominated
by α2/4, we get that

µ−1τ
√

rank(A)(
√

2 + 1)|||Â
τ
−A|||2 − |||Â

τ
−A|||

2

2 ≤ µ−2τ 2rank(A)(
√

2 + 1)2 1

4
,

and finally, since

|||Â
τ
−A0|||

2

2 ≤ |||Â
τ
−A0|||

2

2 + τ(µ−1 − 1)|||PS⊥1
Â
τ
PS⊥2
|||

1
,

we conclude from (6.10) that

|||Â
τ
−A0|||

2

2 ≤ |||A−A0|||22 + µ−2τ 2rank(A)

(
1 +
√

2

2

)2

.

Multiplying by µ and taking infimum on A ends the proof.
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With the aid of Lemma 6.3.2, we just need to find a bound for P(τ ≥ 4|||M|||) in order to
prove Theorem 6.3.1. Before doing it, we need a technical straightforward lemma.

Lemma 6.3.3. Define σ2 as

σ2 = (m1m2)2 max
{
|||E
[
Y 2XXᵀ

]
|||, |||E

[
Y 2XᵀX

]
|||
}
.

If ξ is independent of X, then,

σ2 ≤ (m1m2)2(Varξ ∨ |||B0|||2max)
2

m1 ∧m2

= 2m1m2(m1 ∨m2)(Varξ ∨ |||B0|||2max)

Proof. By definition of Y ,

E
[
Y 2XXᵀ

]
= E

[
(tr (XᵀB0) + ξ)2XXᵀ

]
= E

[
ξ2XXᵀ

]
+ E

[
tr (XᵀB0)2XXᵀ

]
.

Observe that tr (XᵀB0) ≤ |||B0|||max and

EXXᵀ =
1

m1m2

m1∑
j=1

m2∑
k=1

ej(m1)eᵀk(m2)ek(m2)eᵀj (m1)

=
1

m1

m1∑
j=1

ej(m1)eᵀj (m1)

=
1

m1

I,

so |||EXXᵀ||| = 1/m1. By independence of ξ and X, E [ξ2XXᵀ] = (Varξ)(EXXᵀ). There-
fore,

|||E
[
Y 2XXᵀ

]
||| ≤ 1

m1

Varξ +
1

m1

|||B0|||max.

In the same way,

|||E
[
Y 2XᵀX

]
||| ≤ 1

m2

Varξ +
1

m2

|||B0|||max.

This ends the proof of the lemma.

Now we are ready to prove the main result.
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Proof of Theorem 6.3.1. By Theorem A.3.5

|||H(R̂
τ
)−H(B0)|||

2

2 = |||H(R̂
τ
−B0)|||

2

2 = 2|||R̂
τ
−B0|||

2

2.

Also rank(H(B)) = 2rank(B), so

inf
A∈A

 1

m1m2

|||A−H(B0)|||22 +

(
1 +
√

2

2

)2

m1m2τ
2rank(A)


= 2 inf

B∈Mm1,m2

 1

m1m2

|||B−B0|||22 + 2

(
1 +
√

2

2

)2

m1m2τ
2rank(B)

 .

Then, Lemma 6.3.2 imply that whenever τ ≥ 4|||M|||,

|||R̂
τ
−B0|||

2

2 ≤ inf
B∈Mm1,m2

 1

m1m2

|||B−B0|||22 + 2

(
1 +
√

2

2

)2

m1m2τ
2rank(B)

 .

Now we just need to verify that for the specified range of τ we have that P(τ ≥ 4|||M|||) ≥
1− e−t, t ≥ 0.

Recall that M is defined as

M =
1

nθ

n∑
j=1

ψ(θm1m2YjXj)− E [m1m2YX] .

This is of the same form T− EY of Theorem 4.3.2. Observe that by Lemma A.5.2,

E|||(m1m2)2Y 2H(X)2||| = σ2,

where σ2 is defined in Lemma 6.3.3. Now, by Remark 4.3.2, taking

t 7→ t+ log(2(m1 +m2)) and s =

√
2m1m2(m1 ∨m2)(Varξ ∨ |||B0|||2max),

we get that

P

(
|||M||| ≤ 2

√
m1m2(m1 ∨m2)(|||B0|||max ∨

√
Varξ)

√
t+ log(2(m1 +m2))

n

)
≥ 1− e−t,
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where the parameter θ is

θ =

√
2t

n

1

s
=

√
t+ log(2(m1 +m2))

nm1m2(m1 ∨m2)(Varξ ∨ |||B0|||2max)
.

This end the proof since,

P (τ ≥ 4|||M|||) ≥ P

(
4|||M||| ≤ 8m1m2(m1 ∨m2)(|||B0|||max ∨

√
Varξ)

√
t+ log(2(m1 +m2))

n(m1 ∧m2)

)
.

Now that we have a concentration inequality for R̂
τ

we can proceed to find a method of
calculation. This is the topic of the next section.

6.4 Approximate computation of the estimator

Unlike [22], the estimator R̂
τ

has no explicit form due to the incorporation of the matrix
dilation that helped us obtain a robust concentration bound. Nevertheless, the work done
in [33] motivates an algorithmic procedure to calculate R̂

τ
. Even more, the method of [33]

allow us to calculate a more general estimator that will define as

R̂
τ

p = arg min
B∈Mm1,m2

{
1

m1m2

|||H(B)− R̂|||
2

2 + 2τ |||B|||pp
}
, p ∈ (0, 1]. (6.11)

Note that R̂
τ

= R̂
τ

1. This estimator is promising because taking p < 1 let us to get an
estimator that has a more accurate penalization that resembles rank(B). Unfortunately,
when p < 1 we can not obtain a concentration guarantee with the same method of Lemma
6.3.2 since the function B → |||B|||p turns out to be not convex and we can not define a

subdifferential. However, being able to calculate R̂
τ

p for any p ∈ (0, 1] can be a benefit for
future research.

The optimization problem (6.11) can be rewritten as

min
B,A

A=H(B)

{
1

m1m2

|||A− R̂|||
2

2 + τ |||A|||pp
}
. (6.12)
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Input: ρ ∈ (1, 2) and some initializations µ > 0 and Ω ∈ Rn.
Output: An x∗ ∈ Rn that minimizes (6.13).

While not converge do

1. Update x← minx∈Rn
{
f(x) + µ

2
‖h(x) + 1

µ
Ω‖2

2

}
.

2. Update Ω← Ω + µh(x).

3. Update µ← ρµ.

End while.

Figure 6.1: ALM algorithm to solve (6.13).

This last problem is similar to the problem

min
x∈Rn
h(x)=0

f(x), (6.13)

where f : Rn → R is the objective function and h : Rn → V ⊂ Rn is some constraint.
To solve problem (6.13), in [33] the authors proposed to use the Augmented Lagrangian
Method (ALM) described in Figure 6.1. Of course, as pointed out in [33], this procedure
can be applied to the matrix case substituting the `2 vector norm by the 2-Schatten matrix
norm, i.e., the Frobenius norm.

In the case at hand we have f :Mm1,m2 × Sm1+m2 → R defined as

f(B,A) =
1

m1m2

|||A− R̂|||
2

2 + τ |||A|||pp,

and h :Mm1,m2 × Sm1+m2 → Sm1+m2 defined as

h(B,A) = A−H(B).

For problem (6.12) the step one of ALM algorithm is

min
B,A

g(B,A), (6.14)
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where,

g(B,A) =
1

m1m2

|||A− R̂|||
2

2 + τ |||A|||pp +
µ

2

∣∣∣∣∣∣∣∣∣∣∣∣h(B,A) +
1

µ
Ω

∣∣∣∣∣∣∣∣∣∣∣∣2
2

,

where Ω ∈Mm1+m2 . Up to a constant factor we get with a little a algebra that

g(B,A) =

(
1

m1m2

+
µ

2

)
|||A|||22 −

2

m1m2

〈A, R̂〉+ τ |||A|||pp

+
µ

2
|||H(B)|||22 +

1

2
〈H(B),Ω〉+ µ〈A,H(B)− µ−1Ω〉.

As in [33] we use Alternating Direction Method (ADM) to solve (6.14). First, fixing A we
need to solve

min
B∈Mm1,m2

{
|||H(B)|||22 + 〈H(B), µ−1Ω + 2A〉

}
= min

B∈Mm1,m2

|||H(B) + (2µ)−1Ω + A|||22
(6.15)

By an analogous procedure to Proposition C.9.1, we can verify that for any C ∈Mm1+m2 ,
the function B 7→ |||H(B)−C|||22 is strictly convex. Then, there exist a unique minimum
and we can find it by differentiation. Let C12 ∈Mm1,m2 and C21 ∈Mm2,m1 be such that

C =

(
? C12

C21 ?

)
.

Then,

|||H(B)|||22 = 2|||B|||22 = 2tr (BᵀB)

and

〈H(B),C〉 = tr (BC21) + tr (BᵀC12) .

Therefore, by the matrix derivation techniques presented in [36],

∂

∂B
|||H(B)−C|||22 = 4B− 2Cᵀ

21 − 2C12.

So the value of B that minimizes (6.15) is

Bopt =
1

2
(Cᵀ

21 + C12) (6.16)
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where in this case

C = −(2µ)−1Ω−A.

Now, fixing B we need to solve

min
A∈Sm1+m2

{
1

2
|||A−Q|||22 + γ|||A|||pp

}
, (6.17)

where

Q =

(
1

m1m2

+
µ

2

)−1/2(
1

m1m2

R̂ +
1

2
Ω− µ

2
H(B)

)
, (6.18)

γ =
τ

2

(
1

m1m2

+
µ

2

)−p+1
2

.

The restriction A ∈ Sm1+m2 in (6.17) is a major drawback since there is no standard
method to solve this problem. As we show in a few lines, this is provoked by the fact that
Q is not necessarily symmetric. To keep things simple, we relax (6.17) and instead solve

A∗ = arg min
A∈Mm1+m2

{
1

2
|||A−Q|||22 + γ|||A|||pp

}
, (6.19)

Fortunately, problem (6.19) has a unique solution. Before presenting this solution, to get a
symmetric result we choose the symmetric matrix that is closest to A∗ in Frobenius norm,
i.e., we choose as the optimum

Aopt = arg min
A∈Sm1+m2

|||A−A∗|||22.

By Proposition C.11.1, this problem has a unique solution given by

Aopt =

(
1

2
J +

1

2
I

)
◦ (A∗ + Aᵀ

∗ + A∗ ◦ I) , (6.20)

where ◦ is the Hadamard or entry-wise product and J is the all ones matrix.

Now, we need to obtain A∗. Let Q = UDVᵀ be a full SVD of Q where D = diag(s1, ..., sm1+m2)
and s1 ≥ · · · ≥ sm1+m2 are the singular values of Q. For p = 1 the problem (6.19) has a
unique minimum attained at

A∗ = UTγ(D)Vᵀ,

117



where

Tγ(D) = diag (max {0, s1 − γ} , ...,max {0, sm1+m2 − γ}) .

A proof of this fact can be consulted in [5]. As we mentioned, A∗ is not necessarily
symmetric since in general U 6= V for squared or even symmetric matrices. In [33] the
authors prove more generally that (6.19) has a unique solution for any p ∈ (0, 1]. For p < 1
this solution is not explicit, but straightforward to find with a simple root finder like the
Newton method. To state the result, lets define some functions and quantities:

H(x; a) =
1

2
(x− a)2 + γ|x|p,

G(x; a) = x− a+ γp|x|p−1sgn(x),

v = [γp(1− p)]
1

2−p + γp [γp(1− p)]
p−1
2−p .

For a > v denote x(a) as the root of G(x; a) on the interval (v, a), i.e., G(x(a); a) = 0 and
x(a) ∈ (v, a). This root can be found with the Newton method.

Theorem 6.4.1. Recall the SVD Q = UDVᵀ. For p ∈ (0, 1] the unique solution of
problem (6.19) is

A∗ = U∆Vᵀ,

where ∆ = diag(δ1, ..., δm1+m2) and

δj =

{
0, sj ≤ v

arg minx∈{0,x(sj)}H(x; sj), sj > v.

As in [33] one can use for the convergence criteria the function

C(k, k − 1) =
|||R(k) −R(k−1)|||2
max

{
1, |||R(k)|||2

} , k ≥ 1,

and stop the process when C(k, k − 1) is less than some tolerance. The algorithm to find

R̂
τ

is presented in Figure 6.2.
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Input: ρ ∈ (1, 2), τ > 0, a tolerance ε and some initializations µ > 0, A ∈ Sm1+m2

and Ω ∈Mm1+m2 .

Output: Robust estimator R̂
τ

= R̂
τ

1.

k = −1; C(0,−1) = C(−1,−2) = ε+ 1
While C(k, k − 1) > ε do

1. Update B← 1
2

(Cᵀ
21 + C12), where C = −(2µ)−1Ω−A.

2. Calculate the SVD Q = UDVᵀ for Q defined in (6.18) and take A∗ =
UTγ(D)Vᵀ.

3. Update A←
(

1
2
J + 1

2
I
)
◦ (A∗ + Aᵀ

∗ + A∗ ◦ I).

4. Update Ω← Ω + µ (A−H(B)) and µ← ρµ.

5. k ← k + 1; R(k) = B.

End while.
Return R(k).

Figure 6.2: Calculation of R̂
τ

p defined in (6.11) for the case p = 1.
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Summary and observations

In this chapter we gave an application of the robust methodology of this thesis that differs
broadly from what we have presented in previous chapter since the form of the estimator is
not explicit and we use non-trivial methods to obtain concentration results. The problem
of matrix completion consisted in the estimation of a matrix that is partially observed with
noise. To do so, the estimator used in the literature finds the closest matrix in Frobenius
norm with reduced rank, where this is reflected through nuclear norm penalization. We
gave an overview of the work of Koltchinskii et al. and presented the robust methodology
from Minsker. The main theorem (Theorem 6.3.1) provided us with useful information to
choose the penalization parameter τ . Finally, we gave a novel approach to approximately
compute the estimator R̂

τ

p, where we are able to penalize with any p-Schatten norm with
p ∈ (0, 1] obtaining a better approximation to the rank.
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Appendix A

Some matrix analysis results

A.1 Definition of symmetric matrix operator

Let A be a p× p symmetric matrix with spectral decomposition

A = UDUᵀ.

Suppose that λj(A) ∈ C ⊂ R for all j, and that f : C → R is a real-valued function. In
Chapter 2 we defined the matrix f(A) as

f(A) = Uf(D)Uᵀ,

where

f(D) =


f (λ1(A)) 0 · · · 0

0 f (λ2(A)) · · · 0
...

...
. . .

...
0 0 · · · f (λp(A))

 .

To see that f(A) is well defined1, we first adopt the convention that for any polynomial
P (x) =

∑
j βjx

j, the matrix P (A) is equal to
∑

j βjA
j.

By simplicity, denote λj = λj(A). Also, without loss of generality suppose that λi 6= λj
for all i 6= j. Now, define the Lagrange polynomial interpolation L as

L(x) =

p∑
j=1

f(λj)`j(x), `j(x) =
∏
k 6=j

x− λk
λj − λk

.

1The matrix U is not unique.
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It is easy to see that

L(λi) = f(λi), ∀i,

so

L(D) = f(D),

and

UL(D)Uᵀ = Uf(D)Uᵀ.

On the other hand, L is a polynomial of degree p, so it has the form

L(x) =

p∑
j=0

αjx
j.

Then,

UL(D)Uᵀ =
∑
j=0

αjUDjUᵀ

=

p∑
j=0

αj(UDUᵀ) · · · (UDUᵀ)

=

p∑
j=0

αj(UDUᵀ)j

= L(A).

Therefore it doesn’t matter the choice of U, the matrix product Uf(D)Uᵀ will be equal
to L(A).

In the case that λi = λj for some i 6= j, one can apply the same reasoning taking only
different eigenvalues. And in the case λ1 = · · · = λp, we follow the same steps with the
constant polynomial L(x) = α0.

A.2 Variational principles for eigenvalues

In this section we study some properties of the eigenvalues of symmetric matrices. Most
of the results were taken from [3] and [18].
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Fact A.2.1. Let V1 and V2 be two subspaces of the vector space V , where dim(V ) = p.
Then,

dim(V1 ∩ V2) = dim(V1) + dim(V2)− dim(V1 ⊕ V2)

≥ dim(V1) + dim(V2)− p.

From this, we can deduce that if V3 is another subspace of V , then

dim(V1 ∩ V2 ∩ V3) ≥ dim(V1) + dim(V2) + dim(V3)− 2p.

The next theorem and it’s corollary were taken from [3, p. 58].

Theorem A.2.2 (Poncairé’s inequality). For A ∈ Sp and any subspace W ⊂ Rp such that
dim(W ) = k, 1 ≤ k ≤ p, there exit x,y ∈ W unitary such that

xᵀAx ≤ λk(A) and yᵀAy ≥ λn−k+1(A).

Proof. Let uj be the eigenvector associated to λj(A) and suppose that u1,u2, ...,up are or-
thonormal. Also let W ∗ be the subspace spanned by uk, ...,up. Then dim(W )+dim(W ∗) =
k+ p− k+ 1 = p+ 1 and by Fact A.2.1 we have that dim(W ∩W ∗) ≥ 1 and W ∩W ∗ 6= ∅.

Now let x ∈ W ∩W ∗ then x ∈ W ∗ and for some reals αk, ..., αp we can write

x =

p∑
j=k

αjuj.

We can suppose that
∑p

j=k α
2
j = 1. This is because the orthonormality of u1,u2, ...,up

implies that ‖x‖2
2 =

∑p
j=k α

2
j and by normalizing x we get that

∑p
j=k α

2
j = 1. Hence,

xᵀAx = 〈x,Ax〉

= 〈
p∑
j=k

αjuj, A

p∑
j=k

αjuj〉

= 〈
p∑
j=k

αjuj,

p∑
j=k

αjλj(A)uj〉

=
n∑
j=k

α2
jλj(A)
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≤ λk(A)

p∑
j=k

α2
j

= λk(A).

For the second inequality we proceed in the same way. Define W † as the subspace spanned
by u1, ...,up−k+1. By the same arguments take y ∈ W ∩W † such that y =

∑p−k+1
j=1 βjuj

with
∑p−k+1

j=1 β2
j = 1. Then,

yᵀAy =

p−k+1∑
j=1

β2
jλj(A) ≥ λp−k+1(A)

p−k+1∑
j=1

α2
j = λp−k+1(A).

The poof of Poncaire’s inequality illustrates how to verify the next fact: for every A ∈ Sp
and x ∈ Rp such that ‖x‖2 = 1 we have that

xᵀAx ≤ λ1(A). (A.1)

This is because there exist a orthonormal basis v1, ...,vp of Rp formed by eigenvector of A
and we can represent every normalized x ∈ Rp as x =

∑p
j=1 γjvj with

∑p
j=1 γ

2
j = 1. So,

with the same technique as in the later proof, we get that

xᵀAx =

p∑
j=1

γ2
jλj(A) ≤ λ1(A).

Similarly, define x ∈ {vi1 , ...,vi2}, for 1 ≤ i1 ≤ i2 ≤ p. We can write x =
∑i2

j=i1
αjvj with∑i2

k=i1
α2
k = 1. Then,

λi2(A) ≤
i2∑

k=i1

α2
kλk(A) = xᵀAx, (A.2)

and in the same way,

xᵀAx =

i2∑
k=i1

α2
kλk(A) ≤ λi1(A). (A.3)
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Corollary A.2.3 (Fischer-Courant min-max principle). For A ∈ Sp and 1 ≤ k ≤ p

λk(A) = max
W⊂Rp

dim(W )=k

min
x∈W
‖x‖2=1

xᵀAx = min
W⊂Rp

dim(W )=p−k+1

max
x∈W
‖x‖2=1

xᵀAx,

where W is taken as a subspace of Rp.

Proof. For any k-dimensional subspace W , the Poncaire’s inequality implies that

min
x∈W
‖x‖2=1

xᵀAx ≤ λk(A),

then

max
W⊂Rp

dim(W )=k

min
x∈W
‖x‖2=1

xᵀAx ≤ λk(A). (A.4)

In particular taking W as the subspace spanned by uk, ...,up, the orthonormal set of
eigenvalues associated with λk(A), ..., λp(A) respectively, then since uᵀ

kAuk = λk(A) the
inequality (A.4) turns into equality. For the second equality, define k′ = p− k + 1 so that
p − k′ + 1 = k and use the second inequality of Poncaire’s theorem with k′-dimensional
subspaces employing the same arguments as before.

Another more basic result is the so called Rayleigh quotient theorem. We’ll present it
without a proof since the techniques used are essentially the same as for the two previous
results. The statement and the proof can be found in [18, p. 234].

Theorem A.2.4 (Rayleigh quotient). Let A be a p × p symmetric matrix. Define some
integers 1 ≤ i1 < · · · < ik ≤ p, k ≤ p, and let vi1 , ...,vik be orthonormal such that
Avi` = λi`(A)vi`, ` = 1, ..., k. Take S = span{vi1 , ...,vik}.Then,

λi1(A) = max
x∈S
‖x‖2=1

xᵀAx.

An immediate corollary of the previous theorem is that

λ1(A) = max
‖x‖2=1

xᵀAx,

taking k = p, i1 = 1, ..., ip = p and noticing that S = span{v1, ...,vp} = Rp.

An important inequality that will be used later is the so called Weyl’s inequality.
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Theorem A.2.5 (Weyl’s inequalities). Let A and H be p× p symmetric matrices. Then,

λj(A + H) ≤ λi(A) + λj−i+1(H), i ≤ j,

λj(A + H) ≥ λi(A) + λj−i+p(H), i ≥ j.

Proof. For the first inequality, let uk, vk and wk, k = 1, ..., p, be the eigenvectors of A,
H and A + H, respectively. Let W1 = span{ui, ...,up}, W2 = span{vj−i+1, ...,vp} and
W3 = span{w1, ...,wj}. Because dim(W1) + dim(W2) + dim(W3) = 2p + 1, by Fact A.2.1
we can define x ∈ W1 ∩W2 ∩W3, and by equations (A.2) and (A.3) we get

λj(A + H) ≤ xᵀ(A + H)x

= xᵀAx+ xᵀHx

≤ λi(A) + λj−i+1(H).

The second inequality is proved in the same way by redefining W1 = span{u1, ...,ui},
W2 = span{v1, ...,vj−i+p} and W3 = span{wj, ...,wp}.

An immediate consequence of Weyl’s inequalities is the next double inequality.

Corollary A.2.6. For A,H ∈ Sp,

λp(H) ≤ λk(A + H)− λk(A) ≤ λ1(H), 1 ≤ k ≤ p.

Proof. Choose k ∈ {1, ..., p} and let i = j = k in Weyl’s inequalities.

Theorem A.2.7 (Cauchy’s Interlacing Theorem). Let A ∈ Sp and define the matrix Ar,
r ≤ p, as the r × r northwest corner of A, i.e.,

A =

(
Ar ?
? ?

)
. (A.5)

Then, for j = 1, ..., r,

λj(A) ≥ λj(Ar) ≥ λp−r+j(A). (A.6)

Proof. Let v1, ...,vp and u1, ...,ur be the eigenvectors of associated to λ1(A) ≥ · · · ≥ λp(A)
and λ1(Ar) ≥ · · · ≥ λr(Ar), respectively. Define the vectors ûi ∈ Rp as

ûi =

(
ui
0

)
, i = 1, ..., r.
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Choose j ∈ {1, ..., r} and define the sets S1 = span{vj, ...,vp} and S2 = span{û1, ..., ûj}.
Since dim(S1) + dim(S2) = p+ 1, the intersection S1 ∩ S2 is non-trivial. Take x ∈ S1 ∩ S2.
Then x ∈ S2 and is of the form xᵀ = (yᵀ,0ᵀ), where y ∈ span{u1, ...,uj}. Then,

xᵀAx = (yᵀ, 0ᵀ)

(
Ar ?
? ?

)(
y
0

)
= yᵀAry.

Hence, from inequalities (A.2) and (A.3) we have that

λj(Ar) ≤ yᵀAry = xᵀAx ≤ λj(A).

This proves the first inequality. The second inequality is proved analogously redefining S1

and S2 as S1 = span{v1, ...,vp−r+j} and S2 = span{ûj, ..., ûr}.

Theorem A.2.7 implies that if A ∈ Sp is of the form (A.5), then

λ1(A) ≥ λ1(Ar) and λp(A) ≤ λr(Ar).

Therefore, since |||A||| = max{|λ1(A)|, |λp(A)|}2, we get that

|||A||| ≥ |||Ar|||.

Other important observation is that the inequalities (A.6) are obtained if we have a matrix
A ∈ Sp of the form

A =

(
? ?
? Ar.

)
.

The proof follows analogous steps.

One interesting property of the maximum singular value as a function λ1 : Sp → R is that
it is convex. This is stated in the next Lemma.

Lemma A.2.8. The map A 7→ λ1(A) is convex in Sp.

Proof. Let A,H ∈ Sp and t ∈ [0, 1]. Using equation (A.1) we have that for every x ∈ Rp,
λ1(A) ≥ xᵀAx/xᵀx which implies that xᵀλ1(A)Ix− xᵀAx ≥ 0. Then

λ1(A)I−A � 0 and λ1(H)I−H � 0.

Multiplying by t and 1− t we obtain by Lemma 2.1.2 that

tA + (1− t)H � (tλ1(A) + (1− t)λ1(H))I.

Finally by Lemma 2.1.4 λ1(tA + (1− t)H) ≤ tλ1(A) + (1− t)λ1(H).
2See the definition of the spectral norm ||| · ||| = ||| · |||∞ in the Section A.3.

133



A.3 The singular value decomposition

Let B ∈Mn,p. A singular value decomposition (SVD) of B is a factorization

B = UDVᵀ, (A.7)

where U ∈ Mn is orthogonal, D ∈ Mn,p is diagonal and V ∈ Mp is orthogonal. This is
called a full or complete SVD of B. The diagonal elements of D are called singular values
and are denoted s1(B) ≥ · · · sm(B) ≥ 0, m = n ∧ p. Suppose that n ≥ p, then the SVD of
B can be expressed in reduced form as

B = U1DpV
ᵀ, (A.8)

where U1 ∈ Mn,p has orthogonal columns and Dp ∈ Mp is diagonal. Stated loosely, the
reduced SVD is obtained by dropping off the columns of U that are multiplied by zero
and the rows of D that are zero. Conversely, if one has the reduced SVD (A.8), then
define U2 ∈ Mn,(n−p) such that its columns are orthogonal to the ones of U1 and set
U = (U1,U2). An by completing D with zeros, we get the full SVD (A.7). The case n < p
can be done similarly by taking transpose.

We’ll mention the existence and uniqueness theorem for SVD without proof. The proof
can be found, e. g., in [42, p. 29].

Theorem A.3.1 (SDV existence and uniqueness). Every matrix B ∈ Mn,p has an SVD
(A.7). Furthermore, the singular values si(B) are uniquely determined, and if n = p and
si(B) are distinct, the columns of the matrices U and V are uniquely determined up to a
sign.

From the SVD we can find the rank of a matrix. This is stated in the next theorem.

Theorem A.3.2. The rank of B ∈Mn,p is the number of non-singular values.

Proof. Without loss of generality suppose n ≥ p. Let B = U1DpV
ᵀ be the reduced SVD

of B. Then, BᵀB = VD2
pV

ᵀ, so the eigenvalues of BᵀB are sj(B)2, j = 1, ..., p. Since3

rank(B) = rank(BᵀB), and the rank of any symmetric matrix are the number of non-zero
eigenvalues, the result follows.

3This comes from the facts p = rank(B)+dim Ker(B), p = rank(BᵀB)+dim Ker(BᵀB) and Ker(B) =
Ker(BᵀB).
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The next theorem indicates an special relationship between eigenvalues and singular values
of a symmetric matrix.

Theorem A.3.3. Let A ∈ Sp. Then, the singular values of A are the absolute values of
its eigenvalues.

Proof. Let A = PDPᵀ be the spectral decomposition of A. We can write

A = P|D|sign(D)Pᵀ,

where |D| = diag(|λi(A)|) and sign(D) = diag [sign(λi(A))]. This is an SVD of A since
sign(D)Pᵀ is orthogonal. This finishes the proof.

Theorem A.3.4. For n ≥ p define B ∈ Mn,p with rank r and full SVD given by B =
UDVᵀ. The column space (or range) of B is C(B) := span{u1, ...,ur}, and the row space
(or null space) of B is C(Bᵀ) := span{v1, ...,vr}.

Proof. This is a direct consequence of the fact that C(D) = span{e1, ..., er} and C(Dᵀ) =
span{er+1, ..., ep}.

Theorem A.3.4 also holds for p ≥ n by taking transpose.

There is no definition of eigenvalues for rectangular matrices, but we can always obtain
singular values for any matrix. Then, it is natural to think that by taking the symmetric
dilation of a rectangular matrix we can find its eigenvalues from the singular values of the
original matrix. The next Theorem, taken from [18, p. 450], indicates how to do this.

Theorem A.3.5. Let B ∈Mnp with m = n∧p. The eigenvalues of the symmetric dilation

H(B) =

(
0 B

Bᵀ 0

)
are

s1(B) ≥ · · · sm(B) ≥ 0 = · · · = 0︸ ︷︷ ︸
|n−p|

≥ −sm(B) ≥ · · · ≥ −s1(B).

Proof. Without loss of generality4, suppose that n ≥ p. Let

B = U1DpV
ᵀ

4Since the singular values of B and Bᵀ are the same, if p ≥ n do the same procedure but with H(Bᵀ).
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be the reduced singular value decomposition of B, where U1 is a n × p matrix with or-
thonormal columns, Dp = diag(s1(A), ..., sp(A)) and V is a p× p orthogonal matrix. And
let

B = UDVᵀ

be the complete singular value decomposition of B, where U = (U1,U2) is a n×n unitary
matrix and D is n× p and is such that Dᵀ = (Dp,0p×(n−p))

ᵀ.

Define the matrices, Û = U1/
√

2 and V̂ = V/
√

2, and the (n+ p)× (n+ p) matrix

W =

(
Û −Û U2

V̂ V̂ 0p×(n−p)

)
.

This construction implies that W is an orthogonal matrix and that

H(B) = W

Dp 0 0
0 −Dp 0
0 0 0(n−p)×(n−p)

Wᵀ

which is an spectral decomposition of H(B).

A.4 Schatten norms

The classical way to characterize the Schatten k-norms are as follows (see [3, Chapter 4],
[18, Chapter 7] and [51].) First we need to define symmetric gauge functions.

Definition A.4.1 (Symmetric gauge function). The function φ : Rm → R is said to be
symmetric gauge if it satisfies the following conditions:

1. φ(x) > 0 for x 6= 0,

2. φ(αx) = |α|φ(x),

3. φ(x+ y) ≤ φ(x) + φ(y),

4. φ(ε1xi1 , ..., εmxim) = φ(x),

where α is a scalar, εi = ±1 for all i and {i1, ..., imn} is a permutation of {1, ...,m}.

136



One immediate example of symmetric gauge function is φ(x) = ‖x‖k where ‖·‖k is the
classic `k vector norm with k ≥ 1. The following theorem indicates how to obtain a matrix
norm form a symmetric gauge function. The proof can be found in [3, Chapter 4].

Theorem A.4.2. Let m = n ∧ p. Given a symmetric gauge function φ in Rm, define the
function on Mn,p as

|||A|||φ = φ (s(A)) ,

where s(A) is the vector of singular values of A. Then, this defines a unitary invariant
norm5 on Mn,p.

From Theorem A.4.2, we define the Schatten k-norm, k ≥ 1, as

|||A|||k = ‖s(A)‖k.

We call ||| · ||| = ||| · |||∞ the operator norm, ||| · |||2 the Frobenius norm and ||| · |||1 the nuclear
norm. In particular |||A||| gives us the largest eigenvalue of A.

It is common to take k ≥ 0, and for k < 1 we call ||| · |||k a quasi-norm. The following
Proposition taken from [50, Chapter 1] enlists some properties of Schatten norms.

Proposition A.4.3 (Properties of Schatten p- norms). Let A ∈Mn,p and 1 ≤ k ≤ q ≤ ∞.
Then,

(a) |||A|||k =
(

tr
[
(AᵀA)k/2

])1/k

. In particular,

|||A|||22 = tr (AᵀA) =
n∑
i=1

m∑
j=1

|aij|2.

(b) |||A|||k ≥ |||A|||q (monotonicity).

(c) |||A|||k ≤ rank(A)1/k−1/q|||A|||q.

(d) For B ∈Mp,r, |||AB|||k ≤ |||A|||k|||B|||k (submultiplicity).

5A matrix norm ||| · |||′ is called unitary invariant if |||UAV|||′ = |||A|||′ for any orthogonal matrices
U,V.
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A.5 Properties of singular values and norms

SinceH(B) is symmetric, its singular values are the same as B but with each value repeated
at least once. Therefore, from Weyl’s inequality and Theorem A.3.5 we obtain the next
proposition.

Proposition A.5.1 (Singular values are Lipschitz). Let F,G ∈ Mn,p and m = n ∧ p.
Then,

|si(F)− si(G)| ≤ |||F−G|||, i = 1, ...,m.

Proof. Its easy to note that the matrix dilationH :Mn,p → S(n+p),(n+p) is a linear operator.
Then, H(F−G) +H(G) = H(F). Now, by Corollary A.2.6 we have that

λm (H(F−G)) ≤ λi (H(F−G) +H(G))− λi (H(G)) ≤ λ1 (H(F−G)) ,

for i = 1, ...,m. Then, by Theorem A.3.5 we have that

sm (F−G) ≤ si (F)− si (G) ≤ s1 (F−G) .

Since singular values are non-negative, sm (F−G) ≥ −s1 (F−G) and

|si (F)− si (G) | ≤ s1 (F−G) = |||F−G|||.

The next theorem gives us a way to calculate the the spectral norm of a block diagonal
symmetric matrix.

Lemma A.5.2. Define A ∈ Sp1+p2, A1 ∈ Sp1 and A2 ∈ Sp2 such that

A =

(
A1 0
0 A2

)
.

Then,

|||A||| = max {|||A1|||, |||A2|||} .
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Proof. We just need to prove that the set of eigenvalues of A is equal to the set of eigen-
values of A1 and A2. If we prove that, we obtain that

|||A||| = max {|λ1(A1)|, ..., |λp1(A1)|, |λ1(A2)|, ..., |λp2(A2)|}
= max {max (|λ1(A1)|, |λp1(A1)|) ,max (|λ1(A2)|, ..., |λp2(A2)|)}
= max {|||A1|||, |||A2|||} .

To see that the spectrum of A corresponds to that of A1 and A2, let v1, ...,vp1 and
u1, ...,up2 be a sets of ordered6 eigenvectors of Ap1 and Ap2 , respectively. Then, for some
i,

A

(
vi
0

)
=

(
A1vi

0

)
= λi(A1)

(
vi
0

)
,

and similarly

A

(
0
ui

)
=

(
0

A2ui

)
= λi(A2)

(
0
ui

)
.

This characterize all the eigenvalues of A.

Corollary A.5.3. Let B ∈Mn,p. Then, |||H(B)||| = |||B|||.

Proof. Note that

H(B)2 =

(
BBᵀ 0

0 BᵀB

)
.

By Lemma A.5.2 we get

|||H(B)2||| = max {|||BBᵀ|||, |||BᵀB|||} .

But, by taking any SVD representation of B with m = n ∧ p it’s easy to see that

|||BBᵀ||| = max
1≤i≤m

s2
i (B) = |||BᵀB|||

Then |||H(B)2||| = (max1≤i≤m si(B))2 = |||B|||2. Observing that |||H(B)2||| = |||H(B)|||2 ends
the proof. The last equality is true because for any symmetric matrix A ∈ Sp we have that

|||A2||| = max
1≤i≤p

λ2
i (A) =

(
max
1≤i≤p

|λi(A)|
)2

= |||A|||2.

6Order corresponding to the eigenvalues λi(·), e.g., A1λi(A1) = viλi(A1).
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Corollary A.5.3 could also be derived from Theorem A.3.5 that states that B ∈Mn,p and
H(B) have the same eigenvalues, with repetitions. This indicates that the Schatten k-norm
of H(B) is given by

|||H(B)|||k =

(
2m∑
j=1

|sj(B)|k
)1/k

= 21/k|||B|||k, m = n ∧ p.

Recall that our definition of operator norm of B ∈Mn,p is

|||B||| = |||B|||∞ = s1(B).

We’ll prove a different representation of this norm.

Theorem A.5.4. For any B ∈Mn,p,

|||B||| = max
‖x‖2=1

‖Bx‖2 = max
‖x‖2=1
‖y‖2=1

xᵀBy,

where x and y are of the correct dimensions.

Proof. Let B = UDVᵀ be the complete singular value decomposition of B. Note the
following set equality:

{y ∈ Rp |y = Vᵀx, for some x such that ‖x‖2 = 1} = {y ∈ Rp | ‖y‖2 = 1}, (A.9)

i.e., we are just rewriting the know fact that the unitary sphere in Rp is invariant under
orthogonal transformations. Then, we have that

max
‖x‖2=1

‖Bx‖2 = max
‖x‖2=1

‖UDVᵀx‖2

= max
‖x‖2=1

‖DVᵀx‖2, (since U is orthogonal)

= max
y=Vᵀx
‖x‖2=1

‖Dy‖2

= max
‖y‖2=1

‖Dy‖2, (from equality A.9)

≤ max
‖y‖2=1

‖s1(B)y‖2

= s1(B).
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But ‖Dy‖2 = s1(B) for y = e1. This establishes the first equality. The second equality
follows in a similar way:

max
‖x‖2=1
‖y‖2=1

xᵀBy = max
‖x‖2=1
‖y‖2=1

xᵀUDVᵀy

= max
z=Uᵀx,‖x‖2=1
w=Vᵀy,‖y‖2=1

zᵀDw

= max
‖z‖2=1
‖w‖2=1

zᵀDw

≤ max
‖z‖2=1
‖w‖2=1

|zᵀDw|

≤ s1(B) max
‖z‖2=1
‖w‖2=1

|zᵀw|

≤ s1(B),

where the last inequality follows from |zᵀw| ≤ ‖z‖2‖w‖2. Since zᵀDw = s1(B) taking
z = w = e1, the second equality is established.

Similarly, one can show the next representation of the smallest singular value.

Theorem A.5.5. For any B ∈Mn,p, m = n ∧ p,

sm(B) = min
‖x‖2=1

‖Bx‖2 = min
‖x‖2=1
‖y‖2=1

xᵀBy,

where x and y are of the correct dimensions.

Lemma A.5.6. Let B ∈Mn,p. Then, for any matrices A ∈ Sn and H ∈ Sp,∣∣∣∣∣∣∣∣∣∣∣∣(A B
Bᵀ H

)∣∣∣∣∣∣∣∣∣∣∣∣ ≥ ∣∣∣∣∣∣∣∣∣∣∣∣( 0 B
Bᵀ 0

)∣∣∣∣∣∣∣∣∣∣∣∣
Proof. In terms of eigenvalues, the spectral norm of a symmetric matrix M ∈ Sp is

|||M||| = max{|λ1(M)|, |λp(M)|}.

So, if Q is also symmetric, |||M||| ≥ |||Q||| if and only if |||M2||| ≥ |||Q2|||.
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Now, with and easy calculation we get(
A B
Bᵀ H

)2

=

(
A2 + BBᵀ AB + BH

BᵀA + HBᵀ H2 + BᵀB

)
.

Since A2 + BBᵀ is a sub-matrix of the square, by Theorem A.2.7 and the comment bellow
we have that ∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣
(

A B
Bᵀ H

)2
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ≥ |||A2 + BBᵀ||| ≥ |||BBᵀ|||,

where the second inequality follows because A2 and BBᵀ are non-negative definite and
from the fact A2 + BBᵀ � BBᵀ. Similarly,∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣
(

A B
Bᵀ H

)2
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ≥ |||H2 + BᵀB||| ≥ |||BᵀB|||.

Since (
0 B

Bᵀ 0

)2

=

(
BBᵀ 0

0 BᵀB

)
we get from Lemma A.5.2 that∣∣∣∣∣∣∣∣∣∣∣∣(BBᵀ 0

0 BᵀB

)∣∣∣∣∣∣∣∣∣∣∣∣ = max {|||BBᵀ|||, |||BᵀB|||} .

Observing that |||BBᵀ||| = |||BᵀB||| ends the proof.

From the Fischer-Courant min-max principle we can deduce the next characterization of
singular values.

Proposition A.5.7. For B ∈Mn,p and j = 1, ...,ml, m = n ∧ p,

sj(B) = max
W⊂Rp

dim(W )=j

min
x∈W
‖x‖=1

‖Bx‖2.

Proof. Without loss of generality, suppose that n ≥ p. Let B = UDVᵀ be a full SVD of
B. Hence, BᵀB = VDᵀDVᵀ, where DᵀD = diag(s2

1(B), ..., s2
m(B), 0, ..., 0). Then, by the

Fischer-Courant min-max principle,

s2
1(B) = max

W⊂Rp
dim(W )=j

min
x∈W
‖x‖=1

xᵀBᵀBx
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= max
W⊂Rp

dim(W )=j

min
x∈W
‖x‖=1

‖Bx‖2
2.

Taking square root completes the proof.

The following lemma tells us how to bound the singular values of product of matrices.

Lemma A.5.8. For any two matrices B ∈ Mn,p and A ∈ Mr,n we have that for j =
1, ...,m, m = min{n, p, r},

sj(AB) ≤ |||A|||sj(B)

sj(AB) ≤ |||B|||sj(A).

The previous lemma is also true for m = r ∧ p, as long as r ∧ p < n.

Proof. We’ll prove the first inequality. By Proposition A.5.7 we have that

sj(AB) = max
W⊂Rp

dim(W )=j

min
x∈W
‖x‖=1

‖ABx‖2.

Observe that by Theorem A.2.4, for any y ∈ Rn, y 6= 0, we have that

‖Ay‖2
2

‖y‖2
2

=
yᵀAᵀAy

‖y‖2
2

≤ λ1(AᵀA) = s2
1(A).

Then, for any y ∈ Rn, ‖Ay‖2 ≤ |||A|||‖y‖2. Therefore, we get that

sj(AB) = max
W⊂Rp

dim(W )=j

min
x∈W
‖x‖=1

‖ABx‖2

≤ max
W⊂Rp

dim(W )=j

min
x∈W
‖x‖=1

|||A|||‖Bx‖2

= |||A|||sj(B),

where the last equality follows from Proposition A.5.7. The second inequality of the lemma
can be proved analogously.

With Lemma A.5.8 we can prove the next useful theorem.

Theorem A.5.9 (Trace duality). For any A,B ∈Mn,p,

|tr (AᵀB)| ≤ |||A|||1|||B|||.
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Proof. First note that for any square matrix C ∈Mp with full SVD given by C = UDVᵀ,
we have that

tr C = tr (UDVᵀ) = tr (VᵀUD) .

Define Q = VᵀU and note that QᵀQ = QQᵀ = I, i.e., Q is orthogonal. Hence,

|tr C| = |tr (QD) | =
∣∣∣ p∑
j=1

qjjsj(C)
∣∣∣ ≤ p∑

j=1

|qjj|sj(C).

Observe that |qjj| = |eᵀjQej| ≤ |λj(Q)| (Theorem A.2.4), and since the eigenvalues of
orthogonal matrices are ±1, we get that

|tr C| ≤
m∑
j=1

sj(C).

Then, applying this to the square matrix AᵀB, we get

|tr (AᵀB)| ≤
m∑
j=1

sj(A
ᵀB).

And by Lemma A.5.8,

|tr (AᵀB)| ≤ |||B|||
m∑
j=1

sj(A
ᵀ) = |||B||||||Aᵀ|||1 = |||B||||||A|||1,

where the last equality is due to the fact that A and Aᵀ have the same singular values.

The next proposition establishes equality for trace duality.

Proposition A.5.10 (Equality in trace duality). For every B ∈Mn,p there exists a matrix
W ∈Mn,p with |||W||| ≤ 1 for which

〈B,W〉 = |||B|||1.

Proof. Suppose without loss of generality n ≥ p. Let UDVᵀ and U1DpV
ᵀ be a full and

reduced SVD of B, respectively. Define W = U1V
ᵀ. Then,

|||W||| = |||U1V
ᵀ||| = |||UIn×pV

ᵀ||| = 1,

where In×p is the n× p identity matrix. On the other hand,

〈B,W〉 = tr (BᵀW) = tr (VDpU
ᵀ
1W) = tr (DpU

ᵀ
1WV) = tr Dp = |||B|||1.

Therefore, 〈B,W〉 = |||B|||1 = |||B|||1|||W|||.
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A useful representation of the operator norm ||| · ||| = ||| · |||∞ for symmetric matrices is the
following.

Proposition A.5.11. For A ∈ Sp,

|||A||| = sup
‖x‖2=1

|xᵀAx|.

Proof. Let A = PDPᵀ be the spectral decomposition of A. For x such that ‖x‖2 = 1
define y = Pᵀx. Then ‖y‖2 = 1 and

|xᵀAx| = |yᵀDy| =
∣∣∣ p∑
j=1

λj(A)y2
j

∣∣∣ ≤ max
j
{|λj(A)|}

p∑
j=1

y2
j = |||A|||,

so

|||A||| ≥ sup
‖x‖2=1

|xᵀAx|.

Recall that |||A||| = max{λ1(A), |λp(A)|}, so by taking x as the corresponding unitary
eigenvector of A associated with λ1(A) or λp(A), the supremum achieves |||A|||.

The next proposition indicates that the Frobenius norm is invariant under projection op-
erators.

Proposition A.5.12. Let T : Mn,m → Mn,m be an orthogonal projection operator, i.e.,
an operator such that for A,B ∈Mn,m

1. T is linear,

2. T (T (A)) = T (A),

3. 〈T (A),B〉 = 〈A, T (B)〉.

Also, define P1 ∈ Mn and P ∈ Mm two orthogonal projection matrices, i.e., matrices
such that Pi = P2

i = Pᵀ
i . Then, for any A ∈Mn,m

(a) |||T (A)|||2 ≤ |||A|||2.

(b) |||P1AP2|||2 ≤ |||A|||2.
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(c) |||A−P1AP2|||2 ≤ |||A|||2.

Proof. (a) Since 〈T (A), (I − T )(A)〉 = 〈A, T (A − T (A))〉 = 〈A, T (A) − T (A)〉 = 0, we
have that

|||A|||22 = |||T (A)|||22|||(I − T )(A)|||22

and |||T (A)|||22 ≤ |||A|||
2
2.

(b) Define T (A) = P1AP2. Clearly, T is lineal and T 2(A) = T (A). Additionally,
〈T (A),B〉 = tr (P2A

ᵀP1B) = tr (AᵀP1BP2) = 〈A, T (B)〉. So the result follows
from (a).

(c) It is obvious that if T :Mn,m →Mn,m is a orthogonal projection operator then I − T
is also an orthogonal projection operator. Then, the result follows from (a) and (b).
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Appendix B

Stochastic processes and ε-nets

This appendix shows most of the technical details of Chapter 3. In the first section we
work with Gaussian processes and connect the ideas with Gaussian matrices. The following
sections are dedicated to the sub-Gaussian case and presents the classical theory of ε-nets.

B.1 Gaussian comparison inequalities

A collection (Xt)t∈T of real-valued random variables indexed by a non-empty set T , which
is usually a subset of Rp, p ≥ 1, is called random process . We say that the process is
centered if EXt = 0 for any t ∈ T .

Definition B.1.1 (Gaussian process). A random process (Xt)t∈T is called Gaussian process
if the vector (Xt1 , ..., Xtn)ᵀ has a Gaussian distribution for any n ∈ N and t1, ..., tn ∈ T .

The next proposition assures that the maximum singular value of a standard Gaussian
matrix, i.e., a matrix with iid standard Gaussian entries, is the maximum of a Gaussian
process.

Proposition B.1.2. Let U and V be subsets of Rn and Rp, respectively. Define the random
matrix W ∼ Nn×p(I) and let (Zu,v)u,v∈U×V be an stochastic process defined as

Zu,v = uᵀWv.

Then, (Zu,v)u,v∈U×V is a centered Gaussian process in U × V .
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Proof. Observe that for any (u,v) ∈ U × V , we have that

Zu,v =
n∑
i=1

p∑
j=1

uivjwij,

where (wij) are the entries of W. Let a1, ..., am, m ∈ N, be some arbitrary real numbers,
and take (u1,v1), ..., (um,vm) in U × V . Then,

m∑
k=1

akZuk,vk =
m∑
k=1

n∑
i=1

p∑
j=1

aku
k
i v

k
jwij =

n∑
i=1

p∑
j=1

wijbij,

where bij =
∑m

k=1 aku
k
i v

k
j . This, implies that

∑m
k=1 akZuk,vk is a Gaussian random variable

because (wij) are independent standard Gaussian. Since this holds for arbitrary m and
a1, ..., am, the vector

(Zu1,v1 , ..., Zum,vm)ᵀ

is a Gaussian random vector for any (u1,v1), ..., (um,vm). Therefore, (Zu,v)u,v∈U×V is a
Gaussian process in U × V . To see that it is centered, we just calculate the expectation
directly:

EZu,v = EuᵀWv = uᵀ(EW)v = 0, ∀(u,v) ∈ U × V.

The next two classical theorems are referred as Gaussian comparison inequalities. The
proofs can be consulted in [47, Chapter 7].

Theorem B.1.3 (Sudakov-Fernique inequality). Let (Xt)t∈T and (Yt)t∈T be two centered
Gaussian processes, such that for all t, s ∈ T we have that

E (Xt −Xs)
2 ≤ E (Yt − Ys)2 .

Then,

E sup
t∈T

Xt ≤ E sup
t∈T

Yt.

Theorem B.1.4 (Gordon’s inequality). Let (Xu,t)u∈U,v∈V and (Xu,t)u∈U,v∈V be two centered
Gaussian processes indexed by U × V . Assume that
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1. E(Xu,v −Xu′,v′)
2 ≤ E(Yu,v − Yu′,v′)2 for all v, v′ and u 6= u′;

2. E(Xu,v −Xu,v′)
2 ≤ E(Yu,v − Yu,v′)2 for all u, v, v′.

Then,

E sup
u∈U

inf
v∈V

Xu,v ≤ E sup
u∈U

inf
v∈V

Yu,v.

With this two results we are ready to prove Lemma 3.2.3. Remember that we want to
prove that for X ∼ Nn×p(Σ) with Σ � 0, then

Es1(X) ≤
√
nλ1(
√

Σ) +
√

tr Σ,

and if n ≥ p,

E
[

min
v∈V (R)

‖Xv‖2√
n

]
≥ 1−R

√
tr Σ

n
,

where R = 1/λp(
√

Σ) and V (R) = {v ∈ Rp : ‖
√

Σv‖2 = 1, ‖v‖2 ≤ R}.

Proof of Lemma 3.2.3.

(a) Define the random matrix W ∼ Nn×p(I). Then, X ∼ W
√

Σ. Now, define the two
subsets

U = {u ∈ Rn : ‖u‖2 = 1} and V = {v ∈ Rp : ‖Σ−1/2v‖2 = 1}.

Therefore, by Theorem A.5.4,

s1(X) = sup
‖u‖2=,‖y‖2=1

uᵀXy

∼ sup
‖u‖2=,‖v‖2=1

uᵀW
√

Σy

= sup
u∈U,v∈V

uᵀWv, (v =
√

Σy).

In this way, by Proposition B.1.2, finding an upper bound to Es1(X) is equivalent to
find and upper bound for the maximum of the centered Gaussian process (Zu,v)u,v∈U×V
defined as Zu,v = uᵀWv. To do this, we’ll use the Sudakov-Fernique inequality of
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Theorem B.1.3, by defining another centered Gaussian process (Yu,v)u,v∈U×V which
satisfies that

E (Zu,v − Zû,v̂)2 ≤ E (Yu,v − Yû,v̂)2 , (B.1)

for all (u,v), (û, v̂) ∈ U ×V . First, let us define (Yu,v) in order to prove the inequality
(B.1). For (u,v) ∈ U × V , define

Yu,v = λuᵀg + vᵀh,

where λ = λ1(
√

Σ) and g,h are independent with distribution Nn(0, I) and Np(0, I),
respectively. With the same procedure as in the proof of Proposition B.1.2, one can
show easily that (Yu,v) is a centered Gaussian process. Now, for (u,v), (û, v̂) ∈ U×V ,

E (Yu,v − Yû,v̂)2 = Var (Yu,v − Yû,v̂)
= Cov (λ(u− û)ᵀg + (v − v̂)ᵀh)

= λ(u− û)ᵀ (Covg) (u− û) + (v − v̂)ᵀ (Covh) (v − v̂)

= λ2‖u− û‖2
2 + ‖v − v̂‖2

2.

On the other hand, let us define to elements (u,v) and (û, v̂) from U × V such that,
without loss of generality1, ‖v‖2 ≤ ‖v̂‖2. Then,

E (Zu,v − Zû,v̂)2 = Var (Zu,v − Zû,v̂)
= Var (uᵀWv − ûᵀWv̂)

= Var

(
n∑
i=1

p∑
j=1

(uivj − ûiv̂j)wij

)

=
n∑
i=1

p∑
j=1

(uivj − ûiv̂j)2

=
n∑
i=1

p∑
j=1

(uvᵀ − ûv̂ᵀ)2
ij

= |||uvᵀ − ûv̂ᵀ|||22.

This last element can be decomposed in the following way2,

|||uvᵀ − ûv̂ᵀ|||22 = |||u(v − v̂)ᵀ + (u− û)v̂ᵀ|||22
1If this is not the case, we just use that (Zu,v − Zû,v̂)

2
= (Zû,v̂ − Zu,v)

2
.

2Recall that the inner product of two matrices is defined as 〈A,B〉 = tr (AᵀB), and that |||A|||22 =
〈A,A〉.
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= |||u(v − v̂)ᵀ|||22 + |||(u− û)v̂ᵀ|||22 + 2〈u(v − v̂)ᵀ, (u− û)v̂ᵀ〉
= tr ((v − v̂)uᵀu(v − v̂)ᵀ) + tr (v̂(u− û)ᵀ(u− û)v̂ᵀ)

+ 2tr ((v − v̂)uᵀv̂(u− û)ᵀ)

= ‖u‖2
2‖v − v̂‖2

2 + ‖v̂‖2
2‖u− û‖2

2 + 2
(
‖u‖2

2 − uᵀûᵀ) (vᵀv̂ − ‖v̂‖2
2

)
= ‖v − v̂‖2

2 + ‖v̂‖2
2‖u− û‖2

2 + 2 (1− uᵀû)
(
vᵀv̂ − ‖v̂‖2

2

)
.

By Cauchy-Schwartz and the assumption ‖v‖2 ≤ |||v̂|||2, we have that

uᵀû ≤ ‖u‖2‖û‖2 = 1 and vᵀv̂ ≤ ‖v‖2‖v̂‖2 ≤ ‖v̂‖2
2,

so (‖u‖2
2 − uᵀûᵀ) (vᵀv̂ − ‖v̂‖2

2) ≤ 0, and in consequence

|||uvᵀ − ûv̂ᵀ|||22 ≤ ‖v − v̂‖
2
2 + ‖v̂‖2

2‖u− û‖2
2.

Additionally, by definition of the set V and Rayleigh quotient (Theorem A.2.4),

‖v̂‖2
2 ≤ max

v∈V
‖v‖2

2 = max
‖y‖2=1

‖
√

Σ‖2
2 = max

‖y‖2=1
yᵀΣy = λ2.

Therefore,

E (Zu,v − Zû,v̂)2 ≤ ‖v − v̂‖2
2 + λ2‖u− û‖2

2 = E (Yu,v − Yû,v̂)2 .

Therefore, by Sudakov-Fenique inequality,

Es1(X) = E sup
(u,v)∈U×V

Zu,v ≤ E sup
(u,v)∈U×V

Yu,v

= λ2E sup
u∈U

uᵀg + E sup
v∈V

vᵀh.

Note that uᵀg ≤ ‖g‖2 and vᵀh ≤ yᵀ
√

Σh = ‖y‖2‖
√

Σh‖2, where ‖y‖2 = 1. Then,

Es1(X) ≤ λ2E‖g‖2 + E‖
√

Σh‖2.

Finally, the result follows by Jensen’s inequality:

E‖g‖2 ≤
√
Egᵀg =

√
n

E‖
√

Σh‖2 ≤
√
E(hᵀΣh) =

√
tr Σ.
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(b) Recall that R = 1/λp(
√

Σ) and V (R) = {v ∈ Rp : ‖
√

Σv‖2 = 1, ‖v‖2 ≤ R}. We’ll
proceed like in (a) but instead of using Sudakov-Fernique inequality we’ll use Gordon’s
inequality. The reason for this is that

− min
y∈V (R)

‖Xy‖2 = max
y∈V (R)

(−‖Xy‖2) = max
y∈V (R)

min
‖u‖2=1

uᵀXy.

The last equality follows because, by Cauchy-Schwarz, for any x 6= 0 we have that
uᵀx ≥ −‖x‖2, and by taking u = −x/‖x‖2 the minimum of uᵀx reaches −‖x‖2.

Define the set U as in (a) and the set V ′(R) as

V ′(R) = {v ∈ Rp : ‖v‖2 = 1, ‖Σ−1/2‖2 ≤ R}.

As we argued in (a), for W ∼ Nn×p, X ∼W
√

Σ and

− min
v∈V (R)

‖Xv‖2 ∼ max
v∈V ′(R)

min
u∈U

uᵀWv, (v =
√

Σy).

We define the Gaussian processes (Zu,v)(u,v)∈U×V ′(R) as

Zu,v = uᵀWv.

and (Yu,v)(u,v)∈U×V ′(R) as

Yu,v = uᵀg + vᵀh,

where g ∈ Rn and h ∈ Rp are independent standard Gaussian. Let (u,v) and (û, v̂)
be two elements of U × V ′(R). Then, ‖u‖2 = ‖v‖2 = ‖û‖2 = ‖v̂‖2 = 1, and by the
same procedure of (a),

E (Yu,v − Yû,v̂)2 = ‖u− û‖2 + ‖v − v̂‖2,

and

E (Zu,v − Zû,v̂)2 = |||uvᵀ − ûv̂ᵀ|||22,

so

E (Zu,v − Zû,v̂)2 ≤ E (Yu,v − Yû,v̂)2 ,

and if u = û, then

E (Zu,v − Zû,v̂)2 = ‖u‖2
2‖v − v̂‖2

2 = ‖v − v̂‖2
2 = E (Yu,v − Yû,v̂)2 .
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Therefore, by Gordon’s inequality,

E
[
− min
y∈V (R)

‖Xy‖2

]
≤ E

[
max
v∈V ′(R)

min
u∈U

Yu,v

]
= E

[
max
v∈V ′(R)

min
u∈U

(uᵀg + vᵀh)

]
= Emin

u∈U
uᵀg + E max

v∈V ′(R)
vᵀh

≤ −E‖g‖2 +RE‖
√

Σh‖2,

where the last equality arises from3

|uᵀg| ≤ ‖g‖2 and |vᵀh| = |(Σ−1/2v)ᵀΣ1/2h| ≤ ‖
√

Σh‖2R.

At the same time, we have that

E‖
√

Σh‖2√
tr Σ

≤ E‖h‖2√
p

.

Indeed, since the matrix Σ/tr (Σ) is positive definite and the sum of its eigenvalues
sum to one it can be diagonalized as Σ/tr (Σ) = PDPᵀ, where λj(D) ≥ 0 for each j
and

∑
j λj(D) = 1. Also, since Pᵀh ∼ h,

E‖
√

Σ/tr (Σ)h‖2 = E‖P
√

DPᵀh‖2 = E‖
√

Dh‖2,

and the result follows from Proposition C.6.1 of Appendix C.

Therefore,

E
[
− min
y∈V (R)

‖Xy‖2

]
≤ −E‖g‖2 +R

√
tr Σ

E‖h‖2√
p

= (−E‖g‖2 + E‖h‖2) +

( √
tr Σ

λp(
√

Σ)
√
p
− 1

)
E‖h‖2

≤ −
√
n+
√
p+

( √
tr Σ

λp(
√

Σ)
√
p
− 1

)
√
p

= −
√
n+

√
tr Σ

λp(
√

Σ)
,

where the inequality follows from Proposition C.6.2 and because tr Σ ≥ pλp(Σ). This
ends the proof.

3For the first term we used again that min‖u‖2=1 u
ᵀx = −‖x‖2.
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B.2 Orlicz norms and sub-Gaussian random variables

In this section we define the concept of Orlicz norms, which are convenient quantities when
working with sub-Gaussian and sub-exponential random variables.

Definition B.2.1 (Orlicz norms). A function ψ : [0,∞) → [0,∞) is called Orlicz if ψ is
convex, increasing and satisfies

ψ(0) = 0, ψ(x)→∞, x→∞.

The ψ-Orlicz norm of a real-valued random variable X is defined as

‖X‖ψ = inf {t > 0 : Eψ(|X|/t) ≤ 1} .

It is not difficult to see that ‖·‖ψ is in fact a norm for random variables. The only property
that may seem not obvious is the triangle inequality. To see that it is true assume that
‖X‖ψ, ‖Y ‖ψ <∞ and note that because ψ is increasing and convex, for any t, s > 0,

ψ

(
|X + Y |
t+ s

)
≤ t

t+ s
ψ

(
|X|
t

)
+

s

t+ s
ψ

(
|Y |
s

)
. (B.2)

Now, fix ε > 0 and choose t, s such that t < ‖X‖ψ + ε/2, s < ‖Y ‖ψ + ε/2 and

max {ψ(|X|/t), ψ(|Y |/s)} ≤ 1.

Taking expectation in (B.2) we obtain that

Eψ
(
|X + Y |
t+ s

)
≤ 1 for all t, s such that t+ s < ‖X‖ψ + ‖Y ‖ψ + ε.

Taking ε ↓ 0 we get by definition of the Orlicz norm that

‖X + Y ‖ψ ≤ ‖X‖ψ + ‖Y ‖ψ.

The Orlicz function ψ2(x) = ex
2 − 1 defines the sub-Gaussian norm of Chapter 3. Other

Orlicz function is ψ1(x) = ex − 1 which defines the sub-exponential norm

‖X‖ψ1 = inf {t > 0 : E exp(|X|/t) ≤ 2} .

This norm characterizes sub-exponential random variables which are defined as follows.
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Definition B.2.2 (Sub-exponential). A real-valued random variable X with EX = µ is
called sub-exponential if there exists parameters (α, β) such that

logEeθ(X−µ) ≤ α2θ2

2
, ∀|θ| < 1

β
.

The proof of the next Theorem can be found in [47, Chapter 2].

Theorem B.2.3 (Sub-Gaussian and sub-exponential random variables). Let X be a real-
valued random variable. Then,

(a) X is sub-Gaussian if and only if ‖X‖ψ2 <∞.

(b) X is sub-exponential if and only if ‖X‖ψ1 <∞.

(c) X is sub-Gaussian if and only if X2 is sub-exponential.

(d) If ψ ∈ {ψ1, ψ2} and ‖X‖ψ < ∞, then ‖X − EX‖ψ ≤ C‖X‖ψ, where C > 0 is a
constant that depends on ψ.

Theorem B.2.4 (Bernstein inequality). Let X1, ..., Xn be independent random variables
such that EXi = 0 and ‖Xi‖ψ1 <∞ for all i. Then for any t ≥ 0,

P

(∣∣∣ 1
n

n∑
i=1

Xi

∣∣∣ ≥ t

)
≤ 2 exp

(
−cnmin

{
t2

K2
,
t

K

})
,

where K = maxi‖Xi‖ψ1 and c > 0 is an absolute constant that depends on K.

B.3 ε-nets and matrices

Definition B.3.1 (ε-net). Let (T, d) be a metric space and consider K ⊂ T . For ε > 0,
the subset N ⊂ K is called an ε-net of K if

∀x ∈ K, ∃x0 ∈ N : d(x, x0) ≤ ε.

Equivalently, N is an ε-net if an only if K can be covered by balls with centers in N and
radius ε.
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The smallest possible cardinality of an ε-net of K is called the covering number of K and
is denoted N (ε,K, d). Equivalently, N (ε,K, d) is the smallest number of closed balls with
centers in K with radius ε whose union covers K.

Proposition B.3.2. The covering number of the unitary Euclidean sphere Sp−1 in Rp
defined as

Sp−1 = {x ∈ Rn : ‖x‖2 = 1},

satisfies for any ε > 0 that

N (ε, Sp−1, ‖·‖2) ≤
(

2

ε
+ 1

)p
.

For the proof of Proposition B.3.2 we need the following definition: we say that a finite set
M ⊂ Rp is ε-separate if ‖x− x‖2 > ε for any x,y ∈ M . We say that M is maximal if for
any x /∈M , M ∪ {x} is not ε-separate.

Proof. Let M ⊂ Sp−1 be a maximal ε-separate set. Then, for any x ∈ Sp−1, M ∪ {x} is
not ε-separate, which implies that ‖x − x0‖ ≤ ε for some x0 ∈ M , i.e., M is an ε-net of
Sp−1. In the previous argument, if one chooses x ∈ M , then it is obvious that x0 = x.
Then,

N (ε, Sp−1, ‖·‖2) ≤ |M |.

For any x,y ∈M , x 6= y, the balls4 B(x, ε/2) and B(y, ε/2) are disjoint. Indeed, suppose
that z ∈ B(x, ε/2) ∩B(y, ε/2), then

‖x− y‖2 ≤ ‖x− z‖2 + ‖y − z‖2 = ε/2 + ε/2 = ε,

which can’t be possible since M is ε-separate. On the other hand, ∪x∈MB(x, ε/2) is
contained in B(0, 1+ ε/2), since for any y ∈ ∪x∈MB(x, ε/2), there exists some x such that
‖y − x‖2 ≤ ε/2, so

‖y‖2 ≤ ‖y − x‖2 + ‖x‖2 = ε/2 + 1.

Therefore,

|M |
( ε

2

)p
= Vol(∪x∈MB(x, ε/2)) ≤ Vol(B(0, 1 + ε/2)) =

(
1 +

ε

2

)p
.

The later implies that |M | ≤ (1 + ε/2)p. This ends the proof.
4B(x, ε) is a ball with center x and radius ε.
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Proposition B.3.3. For ε ∈ [0, 1/2), let N be a ε-net of Sp−1. Then, for any A ∈ Sp,

|||A||| ≤ 1

1− 2ε
max
x∈N
|〈Ax,x〉|.

Proof. Fix x ∈ Sp−1 such that

|〈Ax,x〉| = |||A|||.

Observe that such x exists by Proposition A.5.11. Let x0 ∈ N be an element such that

‖x− x0‖2 ≤ ε.

Then, because ‖Ay‖2 ≤ |||A|||‖y‖2 for any y ∈ Rp (see the proof of Lemma A.5.8), we
have by triangle inequality and Cauchy-Schwarz that

|〈Ax,x− x0〉+ 〈A(x− x0),x0〉| ≤ |〈Ax,x− x0〉|+ |〈A(x− x0),x0〉|
≤ ‖Ax‖2‖x− x0‖2 + ‖A(x− x0)‖2‖x0‖2

≤ |||A|||‖x‖2ε+ |||A|||‖x− x0‖2

≤ |||A|||ε+ |||A|||ε
= 2ε|||A|||.

Finally, applying again the triangle inequality,

|〈Ax0,x0〉| ≥ |〈Ax,x〉| − |〈Ax,x− x0〉+ 〈A(x− x0),x0〉|
≥ |||A||| − 2ε|||A|||
= (1− 2ε)|||A|||.

The can be obtained for each x0 ∈ N , so we conclude that

sup
x∈N
|〈Ax,x〉| ≥ (1− 2ε)|||A|||.

Now we are ready to prove Theorem 3.3.2 of Chapter 3.

Proof of Theorem 3.3.2. By Proposition B.3.2, we can choose a (1/4)-net N of the sphere
Sp−1 with cardinality

|N | ≤
(

2

1/4
+ 1

)p
= 9p.
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Then, by Proposition B.3.3,∥∥∥∥ 1

n
ZᵀZ− I

∥∥∥∥ ≤ 1

1− 2(1/4)
max
x∈N

∣∣∣〈( 1

n
ZᵀZ− I

)
x,x

〉∣∣∣ = 2 max
x∈N

∣∣∣ 1
n
‖Zx‖2 − 1

∣∣∣.
By the previous display, we just need to obtain the desired probability for the event

2 max
x∈N

∣∣∣ 1
n
‖Zx‖2 − 1

∣∣∣ ≤ ε, ε > 0.

To do so, observe that5 for any x ∈ N ,

‖Zx‖2
2 =

n∑
j=1

(Zᵀ
jx)2.

Define the random variables Xj = Zᵀ
jx. Recall that Zj is sub-Gaussian6 with norm

bounded by K = maxj‖Zj‖ψ2 , so

‖Xj‖ψ2 ≤ ‖Zj‖ψ2 ≤ K.

Then, Xj is sub-Gaussian. Even more, EXj = 0 and, since Zj are isotropic,

EX2
j = E[xᵀZjZ

ᵀ
jx] = xᵀE[ZjZ

ᵀ
j ]x = 1.

Therefore, by Theorem B.2.3 the random variables X2
j − 1 are sub-exponential with mean

zero and

‖X2
j − 1‖ψ1 ≤ C ′K2, for some absolute constant C ′ > 0.

Define L = 2C ′ and7 ε = LK2 max{δ, δ2}. With this definition,

min

{( ε

LK2

)2

,
ε

LK2

}
= min

{
max(δ2, δ4),max(δ, δ2)

}
= δ2.

Then, applying Bernstein inequality of Theorem B.2.4 we obtain that8

P
(

2
∣∣∣ 1
n
‖Zx‖2 − 1

∣∣∣ ≥ ε

)
= P

(∣∣∣ 1
n

n∑
j=1

(X2
j − 1)

∣∣∣ ≥ ε

2

)
5Z is the n× p ensemble defined as Zᵀ = (Z1, ...,Zn).
6The sub-Gaussian norm of a random vector X is ‖X‖ψ2

= sup‖x‖2=1‖〈X,x〉‖ψ2
.

7Recall that δ = C

(√
p

n
+

t√
n

)
.

8In this case observe that C ′K2 ≥ maxj‖X2
j − 1‖ψ1 .
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≤ 2 exp

(
−cnmin

{(
ε/2

C ′K2

)2

,
ε/2

C ′K2

})

= 2 exp

(
−cnmin

{( ε

LK2

)2

,
ε

LK2

})
= 2 exp

(
−cnδ2

)
≤ 2 exp

(
−cC2(p+ t2)

)
, ((x+ y)2 ≥ x2 + y2 for all x, y ≥ 0).

Here, c > 0 is an absolute constant that depends on LK2. Finally, by the union bound,

P
(

2 max
x∈N

∣∣∣ 1
n
‖Zx‖2 − 1

∣∣∣ ≥ ε

)
= P

(⋃
x∈N

∣∣∣ 1
n
‖Zx‖2 − 1

∣∣∣ ≥ ε

2

)

≤
∑
x∈N

P
(∣∣∣ 1
n
‖Zx‖2 − 1

∣∣∣ ≥ ε

2

)
≤
∑
x∈N

2 exp
(
−cC2(p+ t2)

)
= 9p2 exp

(
−cC2(p+ t2)

)
.

If we choose the constant C such that9

C2 = sup
t≥0

p log(9) + t2

ct2 + cp
=

log(9)

p
,

then we have that for any t ≥ 0

−cC2(p+ t2) + p log(9) ≤ −t2 and 9p exp
(
−cC2(p+ t2)

)
.

Therefore, the final bound is

P
(

2 max
x∈N

∣∣∣ 1
n
‖Zx‖2 − 1

∣∣∣ ≥ LK2 max{δ, δ2}
)
≤ 2e−t

2

.

Since ,[∥∥∥∥ 1

n
ZᵀZ− I

∥∥∥∥ ≥ LK2 max{δ, δ2}
]
⊂
[
2 max
x∈N

∣∣∣ 1
n
‖Zx‖2 − 1

∣∣∣ ≥ LK2 max{δ, δ2}
]
,

the proof is done.

9The function t 7→ (n log(9) + t2)/(ct2 + cn) has negative derivative in [0,∞) given by t 7→ (1 −
log(9))t/(ct2 + cn)2, so it is decreasing and bounded by (n log(9) + 02)/(c02 + cn) = log(9)/c.
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Appendix C

Miscellaneous results

The following results do not aim at a specific topic. Instead, they are presented to com-
plement the development of the chapters of this thesis.

C.1 Integral Representation of the Logarithm

Proposition C.1.1. For any x > 0,

log x =

∫ ∞
0

(
1

1 + y
− 1

x+ y

)
dy.

Proof. First, for a ≥ 0,∫ a

0

(
1

1 + y
− 1

x+ y

)
dy = log(1)− log(1 + a)− log(x) + log(x+ a) = log(x) + log

(
1 + a

x+ a

)
.

Taking the limit when a→∞ yields the result.

Corollary C.1.2. For any A � 0,

log A =

∫ ∞
0

(
(1 + y)−1I− (A + yI)−1

)
dy,

where the integral is taking entry-wise.

Proof. Is immediate from Proposition C.1.1, Definition 2.1.1 and Example 2.1.3.
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C.2 Measurability of eigenvalues

An equivalent definition of random matrix is the next one: if (Ω,F ,P) is a probability
space, a random matrix is a measurable map Z : Ω → Mp,q, i.e., every pre-image1 Z−B
falls in F , where B ∈ B(Mp,q) and B(Mp,q) is the σ-álgebra generated by open sets2 of
Mp,q. One can find more details in [40, Chapter 1]. Therefore, if f : Mp,q → R is a
continuous function, we can conclude that f(Z) is measurable whenever Z is measurable.

Theorem C.2.1. Let X ∈ Sp be a random matrix. Then λj(X), j = 1, ..., p is measurable.

Proof. Since the application of a continuous function to a measurable function preserves
the measurability, we just need to prove that, for each j, λj : Sp → R is indeed continuous.
Observe that from Corollary A.2.6 of Weyl’s inequalities we get that, for any A,H ∈ Sp,

λp(A−H) ≤ λj(A−H + H)− λj(H) ≤ λ1(A−H).

Also, λ1(A−H) ≤ |||A−H||| and λp(A−H) ≥ −|||A−H|||, so

|λj(A)− λj(H)| ≤ |||A−H|||.

Then λj is Lipschitz (see definition 3.1.3 in Chapter 3) and in consequence continuous.
This ends the proof.

C.3 Jensen’s inequality

Lemma C.3.1 (Jensen’s inequality for matrices). For any random matrix Z ∈ Mp,q and
any real values function h defined on Mp,q we have that

Eh(Z) ≤ h(EZ) if h is concave,

Eh(Z) ≥ h(EZ) if h is convex.

Proof. We’ll just prove it for the convex case, since the concave case can be obtained by
change of symbol. From the section of subdifferential calculus of Section C.10, we know
that the subdifferential of h is defined as

∂h(B) = {G : h(F) ≥ h(B) + 〈G,F−B〉, ∀F ∈Mp,q} ,
1The notation Z−B in this context indicates the set of ω′s such that Z(ω) ∈ B.
2We work with the metric space (Mp,q, ||| · |||) so we can define open sets.
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where 〈B1,B2〉 = tr (Bᵀ
1B2). Then, for any G ∈ ∂h(EZ) we have that

h(Z) ≥ h(EZ) + 〈G,Z− EZ〉.

Taking expectations and noting that E〈G,Z − EZ〉 = tr (E[Gᵀ(Z− EZ)]) = 0 ends the
proof.

C.4 Properties of covariance matrix estimator

Proposition C.4.1. Let X1, ...,Xn be iid copies of the random vector X ∈ Rp with
EX = µ and CovX = Σ. Define the random matrix

Σ̂ =
1

n

n∑
j=1

(Xj − X̄)(Xj − X̄)ᵀ.

Then, n
n−1

Σ̂ is an unbiased estimator of Σ, i.e., Σ̂ is asymptotically unbiased.

Proof. First note that

(Xj − µ)(Xj − µ)ᵀ = XjX
ᵀ
j −Xjµ

ᵀ − µXᵀ
j + µµᵀ.

Then for every j = 1, ..., n

EXjX
ᵀ
j = Σ + µµᵀ.

Also, CovX̄ = 1
n
Σ. This is true because

(X̄ − µ)(X̄ − µ)ᵀ =

 (X̄1 − µ1)2 · · · (X̄1 − µ1)(X̄p − µp)
...

. . .
...

(X̄1 − µ1)(X̄p − µp) · · · (X̄p − µp)2

 ,

E(X̄1 − µ1)2 = σ2
1/n and for i 6= j,

E(X̄i − µi)(X̄j − µj) =
1

n2
Cov

(
n∑
k=1

Xki,
n∑
k=1

Xkj

)
=

1

n2
nCov(Xi, Xj) =

1

n
Cov(Xi, Xj).
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Therefore,

EΣ̂ =
1

n
E

n∑
j=1

[
XjX

ᵀ
j −XjX̄

ᵀ − X̄Xᵀ
j + X̄X̄

ᵀ]
=

1

n

n∑
j=1

EXjX
ᵀ
j − EX̄X̄

ᵀ

=
1

n

n∑
j=1

[Σ + µµᵀ]− 1

n
Σ− µµᵀ

=
n− 1

n
Σ.

This ends the proof.

In the case µ = 0 the estimator

Σ̂ =
1

n

n∑
j=1

XjX
ᵀ
j

is indeed unbiased because EXjX
ᵀ
j = Σ + 00ᵀ = Σ.

Proposition C.4.2. Let X1, ...,Xn be iid copies of the random vector X ∈ Rp with
EX = µ and CovX = Σ. Then, for any i = 1, ..., n,

E
[
(X i − X̄)(X i − X̄)ᵀ

]
=
n− 1

n
Σ.

Proof. Since E[X iX
ᵀ
i ] = Σ+µµᵀ and E[X̄X̄

ᵀ
] = 1

n
Σ+µµᵀ (see the proof of the previous

proposition) we get that

E
[
(Xi − X̄)(Xi − X̄)ᵀ

]
= E

[
X iX

ᵀ
i − X̄X̄

ᵀ −X iX̄
ᵀ − X̄Xᵀ

i

]
=
n+ 1

n
Σ + 2µµᵀ − E[X̄X̄

ᵀ
]− E[X iX̄

ᵀ − X̄Xᵀ
i ].

On the other hand, for ` = 1, ..., n and k = 1, ..., p,

E[Xi`X̄k] =
1

n

(
E[Xi`Xik] +

∑
j 6=i

E[Xi`Xjk]

)
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=
1

n
(σ`k + nµ`µk) .

So, E[X iX̄
ᵀ
] = E[X̄X i] = 1

n
Σ + µµᵀ. Therefore,

E
[
(X i − X̄)(X i − X̄)ᵀ

]
=
n+ 1

n
Σ + 2µµᵀ − 2

1

n
Σ + 2µµᵀ =

n− 1

n
Σ.

C.5 Convergence in probability

We say that a sequence X0, X1, ... of random variables converges in probability to a random
variable X if for every t > 0

P(|Xn −X| ≥ t) −→ 0, n→∞,

and we write Xn
P−→ X.

Proposition C.5.1. Let (Xn)n≥0 be a sequence of non-negative random variables. Define
the sequence of functions εn : (0,∞)→ (0,∞) such that εn(δ) ↓ f(δ) when n→∞, where
f is a increasing function. If there exists a sequence of reals (bn) such that bn ↓ 0 and

P (Xn ≥ εn(δ)) ≤ bn, ∀n ≥ 0 δ > 0,

then Xn
P−→ 0.

Proof. For any t > 0, there exist δt > 0 such that t/2 > f(δt). Since εn(δt) − f(δt) ↓ 0
when n→∞, for n sufficiently large

εn(δt)− f(δt) ≤
t

2
and εn(δt) ≤ t.

Therefore, for any t > 0,

P(Xn ≥ t) ≤ P(Xn ≥ εn(δt)) ≤ bn −→ 0, n→∞.

Then, by definition, Xn
P−→ 0.
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C.6 Two unseful inequalities for Gaussian vectors

Proposition C.6.1. Let Y ∼ Np(0, I). Define D as the set of all p × p positive definite
and diagonal matrices such that

∑p
j=1 λj(D) = 1 for all D ∈ D. Let F : D → [0,∞) be

defined as

F (D) = E‖
√

DY ‖2.

Then, for any D ∈ D we have that

F (D) ≤ 1
√
p
E‖Y ‖2.

Proof. Define the probability simplex Λ as

Λ =

{
λ = (λ1, ...λp)

ᵀ ∈ Rp : λj ≥ 0 for all j ,

p∑
j=1

λj = 1

}
.

We can express F as a function from Λ to [0,∞), namely,

F (λ1, ..., λp) = E

√√√√ p∑
j=1

Y 2
j λj.

It is clear that F is continuous and permutation invariant, i.e., F (λπ(1), ..., λπ(p)) = F (λ1, ..., λp)
for each permutation π of the set {1, 2, ..., p}. Also F is concave since it is the expected
value of a concave function3. Additionally, the probability simplex Λ defined is a compact
set. Therefore, the function F reaches its maximum on Λ.

Let λ∗ ∈ Λ be the maximum of F and take and arbitrary λ in the convex hull of Π(λ∗),
the set of all permutations of the entries of λ∗. Then, since F is concave and permutation
invariant, for some α1, α2, ... ≥ 0 such that

∑
i αi = 1 we get that

F (λ) = F

 ∑
xi∈Π(λ∗)

αixi


≥

∑
xi∈Π(λ∗)

αiF (xi)

3It is not difficult to see that the hessian of λ 7→
√∑p

j=1 λjY
2
j is negative definite.
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= F (λ∗)
∑

xi∈Π(λ∗)

αi

= F (λ∗).

Therefore, F (λ) = F (λ∗) for any λ in the convex hull of Π(λ∗). Since the entries of λ∗

sum up to one, it is easy to verify that the vector (1/p, ..., 1/p)ᵀ belongs to the convex hull
of Π(λ∗)4. Therefore, for each D ∈ D,

1
√
p
E‖Y ‖2 = F (1/p, ..., 1/p) ≥ F (λ1(D), ..., λp(D)) = F (D).

Proposition C.6.2. Let X ∼ Nn(0, I) and Y ∼ Nm(0, I) where n ≥ m and X and Y
are independent. Then,

−E‖X‖2 + E‖Y ‖2 ≤ −
√
n+
√
m.

Proof. It will be sufficient to prove it for n = m+1 since the general case follows inductively.
Let W1,W2, ... be a sequence of iid standard Gaussian random variables and define Z =∑m

j=1 W
2
j .

It’s easy to see that the two functions

x 7→
√
c+ x2, c ≥ 0, and x 7→

√
x+ 1−

√
x

are convex in [0,∞)5. Therefore, by Jensen’s inequality and the independence of the
variables W1,W2, ...,

E‖X‖2 − E‖Y ‖2 = E
√
Z +W 2

m+1 − E
√
Z

= E
[
E
[√

Z +W 2
m+1

∣∣∣Z]]− E√Z
≥ E

[√
Z + E[W 2

m+1|Z]

]
− E
√
Z

= E
[√

Z + 1
]
− E
√
Z

= E
[√

Z + 1−
√
Z
]

≥
√
EZ + 1−

√
EZ =

√
m+ 1−

√
m.

This ends the proof.
4Take αi = 1/p for exactly p indexes and αi = 0 for the rest.
5The second derivatives are (c+ x2)−1/2

(
−x2

x2+c + 1
)
≥ 0 and − 1

4 (x+ 1)−3/2 + 1
4x
−3/2 ≥ 0.

166



C.7 Catoni’s influence function

Proposition C.7.1. The functions x 7→ log(1 + x + x2/2) and x 7→ − log(1 − x + x2/2)
are well defined and

− log(1− x+ x2/2) ≤ log(1 + x+ x2/2), ∀x ∈ R.

Proof. Note that the function x 7→ 1+x+x2/2 is positive for all x ∈ R because it is positive
at least for x = 0 and it has no real roots. The same reasoning works for x 7→ 1−x+x2/2.
In consequence the functions x 7→ log(1 + x+ x2/2) and x 7→ − log(1− x+ x2/2) are well
defined for all x ∈ R. Also x4/4 ≥ 0 for all x ∈ R and

1 ≤ 1 + (x− x) + (x2/2 + x2/2− x2) + (x3/2− x3/2) + x4/4

= (1 + x+ x2/2)(1− x+ x2/2),

so 1 + x + x2/2 ≥ (1 − x + x2/2)−1 and log(1 + x + x2/2) ≥ − log(1 − x + x2/2) for all
x ∈ R.

Proposition C.7.2. The truncation operator ψ1(x) = (|x|∧1)sign(x) satisfies the inequal-
ity

− log
(
1− x+ x2

)
≤ ψ1(x) ≤ log

(
1 + x+ x2

)
.

Proof. For |x| ≤ 1 we want to prove that

ex ≤ 1 + x+ x2, x ≥ 0

e−x ≥ 1

1− x+ x2
, x < 0.

The second inequality can be stated as ex ≤ 1− x+ x2. Since ex ≤ e−x for x < 0 and e−x

is an alternating sequence that converges we have that

ex ≤ e−x ≤ 1− x+
x2

2
≤ 1− x+ x2.

The first inequality is proved in the following way: for x ≥ 0,

ex = 1 + x+ x2

∞∑
k=2

xk−2

k!
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≤ 1 + x+ x2

∞∑
k=2

1

k!

= 1 + x+ x2(e− 2)

≤ 1 + x+ x2.

Whenever |x| > 1 we have that 1 + |x|+ x2 ≥ e which proves that − log(1− x+ x2) ≤ −1
for x < −1 and log(1 + x+ x2) ≥ 1 for x > 1. This ends the proof.

C.8 Uniqueness of solution for equation (5.17)

Following the procedure of [49], we develop a sufficient condition to ensure that there exist
a unique τ > 0 such that equality (5.17) is true. This is a generalization of the procedure
in [49], but we make some extra assumptions to get an straightforward result. Let X ∈ Sp
be a rank one random matrix with spectral decomposition

X = λvvᵀ = λV,

Where V = vvᵀ and ‖v‖2 = 1. We make the following two assumptions.

1. λ is a continuous random variable and v is a random vector with continuous coordi-
nates.

2. For any τ ∈ (0,∞), P(|λ| > τ) < 1.

The first assumption imply that P(|λ| > 0) = 1, and for any non-zero vector x ∈ Rp we
have P(xᵀVx = 0) = P((xᵀv)2 = 0) = 0.

For ease of development, lets define the next matrices:

G(τ) = E [1(|λ| > τ)V]

P(τ) = E
[
λ21(|λ| ≤ τ)V

]
Q(τ) = E

[
ψ2
τ (X)

]
= E

[
(|λ| ∧ τ)2V

]
.

One property of P(τ) that will be useful is the following.

Lemma C.8.1. The matrix P(τ) is positive definite for any τ ∈ (0,∞).
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Proof. Suppose that there exist a τ0 ∈ (0,∞) such that xᵀP(τ0)x = 0 for some non-zero
vector x ∈ Rp. Then,

E
[
xᵀλ21(|λ| ≤ τ0)Vx

]
= 0.

Since λ21(|λ| ≤ τ0)V � 0, we conclude that λ21(|λ| ≤ τ0)xᵀVx = 0 almost surely. Since
P(|λ| = 0) = P(xᵀVx = 0) = 0,

1 = P
(
λ21(|λ| ≤ τ0)xᵀVx = 0

)
= P(|λ| > τ0)

This contradicts assumption 2, so we conclude that such τ0 can not exist.

Additionally, we define the matrices

p(τ) = τ−2P(τ) and q(τ) = τ−2Q(τ),

By the previous lemma we get that p(τ) � 0 for every τ ∈ (0,∞).

For the moment, we just point out that we are interest in finding τ such that

|||q(τ)||| = z, for some z > 0.

The next lemma gives conditions to ensure that the previous problem has a unique solution.

Lemma C.8.2.

(a) For any τ > 0,

Q(τ) = 2

∫ τ

0

yG(y) dy,
d

dτ
q(τ) = −2τ−1p(τ)

where the integral and derivative is taken entry-wise, and

q(τ) = EV − 2

∫ τ

0

y−1p(y) dy.

(b) For any 0 < r < s, q(s) ≺ q(r) and |||q(s)||| < |||q(r)|||, and in consequence |||q(τ)||| = z,
z > 0, has a unique solution whenever |||z−1EV||| > 1.
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Proof. We can re express (|λ| ∧ τ)2 in the following way:

(|λ| ∧ τ)2 = 2

∫ τ

0

1(|λ| > τ)y dy + 2

∫ |λ|
0

1(|λ| ≤ τ)y dy

= 2

∫ τ

0

1(|λ| > τ)y dy + 2

∫ τ

0

1(|λ| > y)1(|λ| ≤ τ)y dy

= 2

∫ τ

0

1(|λ| > y)y dy.

Therefore,

(|λ| ∧ τ)2V = 2

∫ τ

0

1(|λ| > y)yV dy,

and by Fubini’s theorem, taking expectation on both sides, Q(τ) = 2
∫ τ

0
yG(y) dy. From

this relation it is clear that d
dτ

Q(τ) = 2τG(τ). Now, note that

Q(τ) = E
[
(|λ| ∧ τ)2V (1(|λ| > τ) + 1(|λ| ≤ τ))

]
= τ 2G(τ) + P(τ),

which also implies that

q(τ) = τ−2Q(τ) = τ−2P(τ) + G(τ) = p(τ) + G(τ).

And by definition of q(τ) we have that d
dτ

q(τ) = −2τ−3Q(τ) + τ−2 d
dτ

Q(τ). Substituting
Q(τ) of the previous equality we get that

2τq(τ) + τ 2 d

dτ
q(τ) = 2τG(τ) = 2τ(q(τ)− p(τ)),

so d
dτ

q(τ) = −2τ−1p(τ).

To end part (a), observe that q(s) = q(r)− 2
∫ s
r

p(y)y−1 dy. Since

0 <
(|λ| ∧ r)2

r2
≤ 1,

(|λ| ∧ r)2

r2
−→ 1, r → 0,

by dominated convergence theorem6,

q(r) = E
[

(|λ| ∧ r)2

r2
V

]
−→ EV, r → 0.

6Here the limit is taken entry-wise.
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Then, by taking r → 0 we get q(s) = EV − 2
∫ s

0
p(y)y−1 dy.

For part (b) observe that for every x ∈ Rp and s > r > 0,

xᵀ

∫ r

0

y−1p(y) dyx =

∫ r

0

xᵀp(y)y−1x dy <

∫ s

0

xᵀp(y)y−1x dy = xᵀ

∫ s

0

y−1p(y) dyx,

so
∫ r

0
y−1p(y) dy ≺

∫ s
0
y−1p(y) dy. Since p(τ) � 0, we get that q(s) ≺ q(r) and that

|||q(s)||| < |||q(r)||| for s > r > 0. By the continuity of the norm and the integral represen-
tation of q(τ), the function |||q(τ)||| is continuous. Also,

0 <
(|λ| ∧ τ)2

τ 2
≤ 1,

(|λ| ∧ τ)2

τ 2
−→ 0, τ →∞,

and applying again dominated convergence theorem an the continuity of the norm, we get
that |||q(τ)||| → 0 as τ → ∞. Therefore, the function |||q(τ)||| is continuous, monotone
decreasing and |||q(0)||| = |||EV|||. Then, the equation |||q(τ)||| = z, z > 0, has a unique
solution whenever z < |||EV|||.

Proof of Theorem 5.3.2. Under the assumptions of the theorem, the matrices Y iY
ᵀ
i /2 sat-

isfies the hypothesis of Lemma C.8.2. Define the random measure7 Pn =
1

N

∑N
i=1 δ(Y iY

ᵀ
i /2).

From Lemma C.8.2, taking expectation with respect to Pn, we can deduce that the equal-
ity8 ∣∣∣∣∣∣∣∣∣∣∣∣E [ψ2

τ (Y Y
ᵀ/2)]

τ 2

∣∣∣∣∣∣∣∣∣∣∣∣ = z, z > 0,

is satisfied for a unique τ > 0 as long as∣∣∣∣∣∣∣∣∣∣∣∣E [Y Y ᵀ

‖Y ‖2
2

]∣∣∣∣∣∣∣∣∣∣∣∣ > z.

Taking z = (log(2p) + t)/m and observing that

E [ψ2
τ (Y Y

ᵀ/2)]

τ 2
=

1

τ 2N

N∑
i=1

ψ2
τ (YiY

ᵀ
i /2),

and

E
[
Y Y ᵀ

‖Y ‖2
2

]
=

1

N

N∑
i=1

Y iY
ᵀ
i

‖Y i‖2
2

ends the proof.
7Here δ(A) assigns the value 1 to the matrix A, i.e., is the Dirac measure in A.
8Y Y ᵀ/2 is distributed according to Pn.
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C.9 Covariance as minimization problem

Proposition C.9.1. Let C ∈ Mp be a fixed matrix. The function S 7→ |||S−H|||22 is
strictly convex in Sp.

Proof. Take S,R ∈ Sp with S 6= R and t ∈ (0, 1), and define the inner product 〈A,B〉 =
tr (AᵀB). Then,

t|||C− S|||22 + (1− t)|||C−R|||22 − |||C− tS− (1− t)R|||22
= t
(
|||C|||22 + |||S|||22 − 2〈C,S〉

)
+ (1− t)

(
|||C|||22 + |||R|||22 − 2〈C,R〉

)
−
(
|||C|||22 + t2|||S|||22 + (1− t)2|||R|||22 − 2t〈C,S〉 − 2(1− t)〈C,R〉+ 2t(1− t)〈R,S〉

)
= t(1− t)

(
|||S|||22 + |||R|||22 − 2〈S,R〉

)
= t(1− t)|||S−R|||22
> 0.

This ends the proof.

Proof of Theorem 5.3.3. By the previous proposition, the function A 7→ E‖ZZᵀ − S‖2
2 is

strictly convex, so it has a unique minimum. Now, observe that

|||ZZᵀ − S|||22 = tr (S2)− 2tr (SZZᵀ) +ZᵀZtr (ZZᵀ).

Therefore,

E|||ZZᵀ − S|||22 = tr (S2)− 2tr (SΣ).

From matrix derivation techniques presented in [36] one can prove that

∂

∂S
E|||ZZᵀ − S|||22 = 4S− 2diag(S)− 4Σ + 2diag(Σ),

so E|||ZZᵀ − S|||22 is minimized when S = Σ.

C.10 Subdifferential calculus

Throughout this section X is a vector space with inner product 〈·, ·〉. A function F : X → R
is called convex if F (tx + (1 − t)) ≤ tF (x) + (1 + t)F (y) for all x,y ∈ X and t ∈ [0, 1].
We call it strictly convex if F (tx + (1 − t)) < tF (x) + (1 + t)F (y) for all x,y ∈ X and
t ∈ (0, 1). An example of such function is given in the following theorem.
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Theorem C.10.1. The function Fτ :Mn,p → R defined as

Fτ (A) = |||A−X|||22 + τ |||A|||1,

where X ∈Mn,p and τ > 0, is strictly convex.

The proof is similar to the one from Promosition C.9.1 with the additional observation
that the sum of a convex and strictly convex function is strictly convex.

We define the subdifferential of a convex function in the following way.

Definition C.10.2 (Subdifferential). Let F : X → R be a convex function. The subdiffer-
ential of F at x ∈ X is the set

∂F (x) = {w ∈ X : F (y) ≥ F (x) + 〈w,y − x〉 for all y ∈ X} .

In [15, Appendix D] it is proved that a function F : X → R is convex if and only if the
set ∂F (x) is non-empty for all x ∈ X . One property that we are interested in is the
monotonicity of the subdifferential.

Proposition C.10.3 (Monotonicity). If F : X → R is convex then

〈u− v,x− y〉 ≥ 0

for all x,y ∈ X and u ∈ ∂F (x), v ∈ ∂F (y).

Proof. By definition of subdifferential,

F (y) ≥ F (x) + 〈u,y − x〉 and F (x) ≥ F (y) + 〈v,x− y〉.

Adding the two previous inequalities gives the desired result.

An intuitive fact about subdifferentials is that for F1, F2 : X → R convex functions,

∂(F1 + F2)(x) = ∂F1(x) + ∂F2(x), ∀x. (C.1)

The inclusion ⊃ is immediate, but the other is more involved. One can see a proof of this
fact in [46, Chapter 2].

Let C ⊂ X be a convex set and define the indicator function IC : X → R as

IC(x) =

{
0, x ∈ C,
∞, x /∈ C.
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Restricted to the set C9 we have that ∂IC(x) = NC(x), where NC(x) is the normal cone of
C at x, i.e.,

NC(x) = {w ∈ X : 〈z,x− y〉 ≥ 0 for any y ∈ C} .

This follows immediately since IC(x) = IC(y) = 0 for any x,y ∈ C.
The reason why we want this fact is that we can rewrite the restricted minimization problem

min
x∈C

F (x)

as the unrestricted problem

min
x∈X
{F (x) + IC(x)} .

The usefulness of this representation is shown in the following proposition.

Proposition C.10.4. Let F : X → R be a convex function and C ⊂ X as convex set.
Then,

(a)

x∗ ∈ min
x∈C

F (x)⇐⇒ 0 ∈ ∂F (x∗);

(b)

0 ∈ ∂ (F (x) + IC(x)) =⇒ there exists w ∈ ∂F (x) such that 〈w,y − x〉 ≥ 0 ∀y ∈ C.

Proof. The proof of (a) is immediate since F (y) ≥ F (x∗) for all y ∈ C if and only if
F (y) ≥ F (x∗) + 〈0,y − x∗〉.
To prove (b) note that from (C.1), 0 ∈ ∂ (F (x) + IC(x)) imply that there exists a w ∈ X
such that w ∈ ∂F (x) and −w ∈ ∂IC(x) = NC(x). Then, 〈−w,x − y〉 ≥ 0 for all y ∈ C,
i.e., 〈w,y − x〉 ≥ 0.

In Chapter 6 we work with functions defined on a set of matrices and we want to optimize
the Frobenius norm penalized with the nuclear norm. The next Theorem proved, for
example, in [27] gives the form of the subdiferential of the function Fτ defined in Theorem
C.10.1.

9i.e., x,y ∈ C in the subdifferential.
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Theorem C.10.5. For A ∈Mn,p of rank r, the subdifferential of |||A|||1 is the set

∂|||A|||1 =

{
r∑
j=1

uj(A)vj(A)ᵀ + PS⊥1
WPS⊥2

: |||W||| ≤ 1

}
,

where PS⊥1
= I − PS1 and PS⊥2

= I − PS2 with PS1 y PS2 the orthogonal projectors in
S1 = span{u1(A), ...,ur(A)} and S2 = span{v1(A), ...,vr(A)}, respectively. The pair
(S1, S2) is called the support of A. Even more, the subdifferential of Fτ (A) defined in
Theorem C.10.1 is the set

∂Fτ (A) =

{
2(X−A) + τ

(
r∑
j=1

uj(A)vj(A)ᵀ + P⊥uWP⊥v

)
: |||W||| ≤ 1

}
.

C.11 Minimization of Frobenius norm

For two matrices A,B ∈ Mn,m define the Hadmard or entry-wise product A ◦ B as the
matrix with entries (A ◦B)ij = aijbij.

Proposition C.11.1. For fixed B ∈ Mn, the function A 7→ |||A−B|||22 with A ∈ Sn has
a unique minimum in Sn given by

A =

(
1

2
J +

1

2
I

)
◦ (B + Bᵀ + B ◦ I) ,

where J is the n× n matrix of ones, i.e., (J)ij = 1 for all i, j.

Proof. Up to a constant factor we have that

|||A−B|||22 = tr (A2)− 2tr (AᵀB),

where

tr (A2) =
n∑
i=1

n∑
j=1

a2
ij and tr (AᵀB) =

n∑
i=1

n∑
j=1

ajibji.

Therefore, recalling that A ∈ Sn is straightforward to get that

∂

∂A
tr (A2) = 4A− 2A ◦ I,
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and

∂

∂A
tr (A2) = B + Bᵀ −B ◦ I.

With the same procedure of Proposition C.9.1 one can see that A 7→ |||A−B|||22 is strictly
convex, so the minimum is obtained by the equality

0 =
∂

∂A
|||A−B|||22 = 4A− 2A ◦ I− 2 (B + Bᵀ −B ◦ I) .

Finally, by definition of Hadamard product we have that X ◦ C = D is solved by X =
(C)− ◦D where (C)− = (1/cij)ij. This ends the proof.
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