Please use this identifier to cite or link to this item: http://cimat.repositorioinstitucional.mx/jspui/handle/1008/1015
La transformada de Gelfand para álgebras de Banach conmutativas
JULIO ALBERTO BARRERA REYES
Acceso Abierto
Atribución-NoComercial
MATEMÁTICAS BÁSICAS
Resumen. Tanto en espacios de Hilbert como en espacios de Banach, el estudiar operadores es algo fundamental, incluyendo ver que se puede decir de su espectro, de su adjunto, etc. El siguiente paso es no sólo estudiar un operador aislado, sino una familia de operadores. El objetivo de este trabajo es presentar la teoría de Gelfand para álgebras de Banach conmutativas con identidad, y como caso particular se considerarán las C*-álgebras. Se presentan algunos resultados importantes de la teoría de Gelfand como lo son: el teorema de Gelfand-Mazur para álgebras de Banach de división con identidad, el teorema de Gelfand para álgebras de Banach conmutativas con identidad y el teorema de Gelfand-Naimark para C*-álgebras conmutativas con identidad. Como resultado del teorema de Gelfand-Naimark se enuncia el teorema espectral para una C*-álgebra generada por un operador normal de un espacio de Hilbert. Una consecuencia importante de la teoría de Gelfand es que da los primeros pasos para el cálculo funcional
16-07-2019
Tesis de maestría
OTRAS
Versión aceptada
acceptedVersion - Versión aceptada
Appears in Collections:Tesis del CIMAT

Upload archives


File Description SizeFormat 
TE 739.pdf557.43 kBAdobe PDFView/Open