Por favor, use este identificador para citar o enlazar este ítem: http://cimat.repositorioinstitucional.mx/jspui/handle/1008/1010
On F-pure thresholds: computations and relations to others invariants
Delio Jaramillo Velez
Acceso Abierto
Atribución-NoComercial
F-pure thresholds
The main object in this thesis is the F-pure threshold associated to a polynomial f. This threshold is a rational number in [0,1], with smaller values that suggest worse singularities for the hypersurface defined by the equation f = 0. First, we will present in a general way the relation between the main concept with Log-canonical threshold, and Bernstein-Sato polynomials. Then, we are going to show several examples of these relations. Particularly, we are going to compute the F-pure threshold of a Thom-Sebastiani-type sum, and the F-pure threshold of a determinantal ideal of maximal size. Finally, we will use the Fpure threshold to find and compare roots of Bernstein-Sato polynomials.
15-07-2019
Tesis de maestría
OTRAS
Versión aceptada
acceptedVersion - Versión aceptada
Aparece en las colecciones: Tesis del CIMAT

Cargar archivos:


Fichero Descripción Tamaño Formato  
TE 734.pdf4.5 MBAdobe PDFVisualizar/Abrir