Por favor, use este identificador para citar o enlazar este ítem: http://cimat.repositorioinstitucional.mx/jspui/handle/1008/951
Commutative C∗-Algebras of Toeplitz Operators on the Unit Ball, II. Geometry of the Level Sets of Symbols
RAUL QUIROGA BARRANCO
Acceso Abierto
Atribución-NoComercial-CompartirIgual
Operador Toeplitz
In the first part [16] of this work, we described the commutative C∗- algebras generated by Toeplitz operators on the unit ball Bn whose symbols are invariant under the action of certain Abelian groups of biholomorphisms of Bn. Now we study the geometric properties of these symbols. This allows us to prove that the behavior observed in the case of the unit disk (see [3]) admits a natural generalization to the unit ball Bn. Furthermore we give a classification result for commutative Toeplitz operator C∗-algebras in terms of geometric and “dynamic” properties of the level sets of generating symbols.
Birkhauser
2008
Artículo
Inglés
Investigadores
OTRAS
Versión publicada
publishedVersion - Versión publicada
Aparece en las colecciones: Matemáticas

Cargar archivos:


Fichero Tamaño Formato  
RQuiroga2.pdf444.69 kBAdobe PDFVisualizar/Abrir