Por favor, use este identificador para citar o enlazar este ítem:
http://cimat.repositorioinstitucional.mx/jspui/handle/1008/950
ARITHMETICITY OF TOTALLY GEODESIC LIE FOLIATIONS WITH LOCALLY SYMMETRIC LEAVES | |
RAUL QUIROGA BARRANCO | |
Acceso Abierto | |
Atribución-NoComercial-CompartirIgual | |
Foliaciones | |
Zimmer [9] proved that, on a compact manifold, a foliation with a dense leaf, a suitable leafwise Riemannian symmetric metric and a transverse Lie structure has arithmetic holonomy group. In this work we improve such result for totally geodesic foliations by showing that the manifold itself is arithmetic. This also gives a positive answer, for some special cases, to a conjecture of E. Ghys [5]. | |
International Press | |
2008 | |
Artículo | |
Inglés | |
Investigadores | |
GEOMETRÍA DIFERENCIAL | |
Versión publicada | |
publishedVersion - Versión publicada | |
Aparece en las colecciones: | Matemáticas |
Cargar archivos:
Fichero | Tamaño | Formato | |
---|---|---|---|
RQuiroga1.pdf | 176.98 kB | Adobe PDF | Visualizar/Abrir |