Por favor, use este identificador para citar o enlazar este ítem:
http://cimat.repositorioinstitucional.mx/jspui/handle/1008/949
On Yamabe constants of Riemannian products | |
JIMMY PETEAN HUMEN | |
Acceso Abierto | |
Atribución-NoComercial-CompartirIgual | |
Variedades Riemanianas | |
For a closed Riemannian manifold (Mm, g) of constant positive scalar curvature and any other closed Riemannian manifold (Nn, h), we show that the limit of the Yamabe constants of the Riemannian products (M × N, g + rh) as r goes to infinity is equal to the Yamabe constant of (Mm × Rn, [g + gE ]) and is strictly less than the Yamabe invariant of Sm+n provided n ≥ 2. We then consider the minimum of the Yamabe functional restricted to functions of the second variable and we compute the limit in terms of the best constants of the Gagliardo–Nirenberg inequalities. | |
International Press | |
2008 | |
Artículo | |
Inglés | |
Investigadores | |
GEOMETRÍA DE RIEMANN | |
Versión publicada | |
publishedVersion - Versión publicada | |
Aparece en las colecciones: | Matemáticas |
Cargar archivos:
Fichero | Tamaño | Formato | |
---|---|---|---|
JPetean.pdf | 506.59 kB | Adobe PDF | Visualizar/Abrir |