Por favor, use este identificador para citar o enlazar este ítem: http://cimat.repositorioinstitucional.mx/jspui/handle/1008/949
On Yamabe constants of Riemannian products
JIMMY PETEAN HUMEN
Acceso Abierto
Atribución-NoComercial-CompartirIgual
Variedades Riemanianas
For a closed Riemannian manifold (Mm, g) of constant positive scalar curvature and any other closed Riemannian manifold (Nn, h), we show that the limit of the Yamabe constants of the Riemannian products (M × N, g + rh) as r goes to infinity is equal to the Yamabe constant of (Mm × Rn, [g + gE ]) and is strictly less than the Yamabe invariant of Sm+n provided n ≥ 2. We then consider the minimum of the Yamabe functional restricted to functions of the second variable and we compute the limit in terms of the best constants of the Gagliardo–Nirenberg inequalities.
International Press
2008
Artículo
Inglés
Investigadores
GEOMETRÍA DE RIEMANN
Versión publicada
publishedVersion - Versión publicada
Aparece en las colecciones: Matemáticas

Cargar archivos:


Fichero Tamaño Formato  
JPetean.pdf506.59 kBAdobe PDFVisualizar/Abrir