Please use this identifier to cite or link to this item:
http://cimat.repositorioinstitucional.mx/jspui/handle/1008/925
NONEXPLOSION OF A CLASS OF SEMILINEAR EQUATIONS VIA BRANCHING PARTICLE REPRESENTATIONS | |
JOSE ALFREDO LOPEZ MIMBELA | |
Acceso Abierto | |
Atribución-NoComercial-CompartirIgual | |
Procesos de Branching | |
We consider a branching particle system where an individual particle gives birth to a random number of offspring at the place where it dies. The probability distribution of the number of offspring is given by pk, k = 2, 3, . . . . The corresponding branching process is related to the semilinear partial differential equation ∂u/∂t = Au(t, x) + ∞ k=2 pk(x)uk(t, x) for x ∈ Rd , whereAis the infinitesimal generator of a multiplicative semigroup and the pks, k = 2, 3, . . . , are nonnegative functions such that k pk = 1. We obtain sufficient conditions for the existence of global positive solutions to semilinear equations of this form. Our results extend previous work by Nagasawa and Sirao (1969) and others. | |
Cambridge University Press | |
2008 | |
Artículo | |
Inglés | |
Investigadores | |
PROCESOS DE MARKOV | |
Versión publicada | |
publishedVersion - Versión publicada | |
Appears in Collections: | Probababilidad Y Estadística |
Upload archives
File | Size | Format | |
---|---|---|---|
JALMimbela.pdf | 172.53 kB | Adobe PDF | View/Open |