Por favor, use este identificador para citar o enlazar este ítem: http://cimat.repositorioinstitucional.mx/jspui/handle/1008/755
APLICACIÓN DE APRENDIZAJE AUTOMÁTICO PARA LA PREDICCIÓN DE CLIENTES POTENCIALES EN PROCESOS DE MERCADOTECNIA
PABLO MAR CASTILLO CASTAÑEDA
Acceso Abierto
Atribución-NoComercial
APRENDIZAJE AUTOMÁTICO
MERCADOTÉCNIA DIRECTA
En la última década, la inversión en publicidad y mercadotecnia ha incrementado considerablemente en México, siendo Mercadotecnia Directa la técnica con mayor incremento utilizada por empresas. Mediante la identificación de clientes potenciales para responder a una campaña de mercadotecnia, se pueden minimizar el costo de las campañas y maximizar el retorno de inversión enviando anuncios publicitarios específicos de acuerdo con los intereses de los clientes. Para lograrlo, grandes cantidades de datos deben ser analizados con la finalidad de determinar el canal más efectivo de Mercadotecnia Directa para alcanzar al cliente. Por otro lado, debido a que la cantidad de respuestas positivas de los clientes es muy baja como resultado de este tipo de campañas, el conjunto de datos obtenidos generalmente se encuentra desbalanceado dificultando la predicción de clientes potenciales. El objetivo de la investigación es identificar una técnica de aprendizaje automático que ofrezca el mejor rendimiento en la predicción de qué clientes tienen mayor probabilidad de comprar un producto o servicio como resultado de Mercadotecnia Directa. El conjunto de datos utilizado en esta investigación contiene información demográfica y socioeconómica de los clientes de una empresa en particular. La predicción de clientes potenciales ha sido formulada como una tarea de clasificación y regresión, utilizando los algoritmos de aprendizaje automático: (1) Random Forest, (2) Gradient Boosting y (3) eXtreme Gradient Boosting. Los resultados obtenidos muestran que el modelo eXtreme Gradient Boosting tiene un mejor desempeño frente a los otros modelos en este contexto. Así mismo, los resultados encontrados en la aplicación de este modelo ayudarán a los analistas de mercadotecnia a desarrollar mejores campañas.
09-11-2017
Trabajo de grado, maestría
INSTRUCCIONES ARITMÉTICAS Y DE MÁQUINA
Versión aceptada
acceptedVersion - Versión aceptada
Aparece en las colecciones: Tesis del CIMAT

Cargar archivos:


Fichero Tamaño Formato  
ZAC TE 61.pdf1.73 MBAdobe PDFVisualizar/Abrir