Por favor, use este identificador para citar o enlazar este ítem: http://cimat.repositorioinstitucional.mx/jspui/handle/1008/665
Quasi-Jordan Algebras
LAZARO RAUL FELIPE PARADA
Acceso Abierto
Atribución-NoComercial
Algebras de Jordan
In this paper we introduce a new algebraic structure of a Jordan type and we show several examples. This new structure called quasi-Jordan algebras appear in the study of the product, where x, y are elements in a dialgrebra ( D, a , ` ). The quasi-Jordan alge- bras are a generalization of the Jordan algebras for which the commutative law is changed by a quasi-commutative identity and a special form of the Jordan identity is retained. The quasi-Jordan algebras are not contained in the generalizations of Jordan algebras, in particular with respect to noncommutative Jordan algebras. We show a few results about the re- lationship between Jordan algebras and quasi-Jordan algebras. Also, we compare quasi-Jordan algebras with some structures. In particular, we found a special relation with the Leibniz algebras. We attach a quasi- Jordan algebra L x to any ad-nilpotent element x with an index of nilpo- tence at most 3 in a Leibniz algebra L . In this part we extended the results of Kostrikin and Benkart-Isaacs about nilpotent elements to Leibniz alge- bras and we show that L x is nondegenerated if L is nondegenerated
Centro de Investigación en Matemáticas AC
28-09-2006
Reporte
Inglés
Investigadores
ÁLGEBRAS NO ASOCIATIVAS
Versión publicada
publishedVersion - Versión publicada
Aparece en las colecciones: Reportes Técnicos - Matemáticas

Cargar archivos:


Fichero Tamaño Formato  
I-06-14.pdf276.76 kBAdobe PDFVisualizar/Abrir