Por favor, use este identificador para citar o enlazar este ítem: http://cimat.repositorioinstitucional.mx/jspui/handle/1008/614
Restrictive, Split and Unital Quasi-Jordan Algebras
LAZARO RAUL FELIPE PARADA
Acceso Abierto
Atribución-NoComercial
Algebras de Leibniz
It is well known that by means of the right and left products of an as- sociative dialgebra we can build a new product over the same vector space with respect to which it becomes a right version of a Jordan algebra (in fact, this new product is right commutative) called quasi-Jordan algebra. Recently, Bremner and Kolesnikov discovered an interesting property of this new product. As the results of this paper indicate, when said prop- erty is incorporated as an axiom in the de nition of quasi-Jordan algebra then in a natural way one can introduce and study concepts in this new structure such as derivations (in particular inner derivations), quadratic representations, and the structure groups of a quasi-Jordan algebras.
Centro de Investigación en Matemáticas AC
19-11-2009
Reporte
Inglés
Investigadores
ÁLGEBRA DIFERENCIAL
Versión publicada
publishedVersion - Versión publicada
Aparece en las colecciones: Reportes Técnicos - Matemáticas

Cargar archivos:


Fichero Tamaño Formato  
I-09-09.pdf431.97 kBAdobe PDFVisualizar/Abrir