Por favor, use este identificador para citar o enlazar este ítem:
http://cimat.repositorioinstitucional.mx/jspui/handle/1008/614
Restrictive, Split and Unital Quasi-Jordan Algebras | |
LAZARO RAUL FELIPE PARADA | |
Acceso Abierto | |
Atribución-NoComercial | |
Algebras de Leibniz | |
It is well known that by means of the right and left products of an as- sociative dialgebra we can build a new product over the same vector space with respect to which it becomes a right version of a Jordan algebra (in fact, this new product is right commutative) called quasi-Jordan algebra. Recently, Bremner and Kolesnikov discovered an interesting property of this new product. As the results of this paper indicate, when said prop- erty is incorporated as an axiom in the de nition of quasi-Jordan algebra then in a natural way one can introduce and study concepts in this new structure such as derivations (in particular inner derivations), quadratic representations, and the structure groups of a quasi-Jordan algebras. | |
Centro de Investigación en Matemáticas AC | |
19-11-2009 | |
Reporte | |
Inglés | |
Investigadores | |
ÁLGEBRA DIFERENCIAL | |
Versión publicada | |
publishedVersion - Versión publicada | |
Aparece en las colecciones: | Reportes Técnicos - Matemáticas |
Cargar archivos:
Fichero | Tamaño | Formato | |
---|---|---|---|
I-09-09.pdf | 431.97 kB | Adobe PDF | Visualizar/Abrir |