Por favor, use este identificador para citar o enlazar este ítem: http://cimat.repositorioinstitucional.mx/jspui/handle/1008/608
Convex Quadratic Programming for Image Segmentation
MARIANO JOSE JUAN RIVERA MERAZ
Acceso Abierto
Atribución-NoComercial
Segmentación de Imágenes
Abstract. A quadratic programming formulation for multiclass image segmentation is investigated. It is proved that, in the con- vex case, the global minima of Quadratic Markov Measure Field (QMMF) models holds the non-negativity constraint. This allows one to design e ffi cient optimization algorithms. We also proposed a (free parameter) inter–pixel a ffi nity measure more related with the classes memberships than with color or gray gradient based standard methods. Moreover, it is introduced a formulation for computing the pixel likelihoods by taking into account local con- text and texture properties. We demonstrate the QMMFs capabil- ities by experiments and numerical comparisons with interactive two-class segmentation as well as in the simultaneous estimation of segmentation and (parametric and non-parametric) generative models.
Centro de Investigación en Matemáticas AC
09-02-2009
Reporte
Inglés
Investigadores
LENGUAJES ALGORÍTMICOS
Versión publicada
publishedVersion - Versión publicada
Aparece en las colecciones: Reportes Técnicos - Ciencias de la Computación

Cargar archivos:


Fichero Tamaño Formato  
I-09-01.pdf1.22 MBAdobe PDFVisualizar/Abrir