Por favor, use este identificador para citar o enlazar este ítem: http://cimat.repositorioinstitucional.mx/jspui/handle/1008/590
Dendriform algebras and Rota-baxter operators revisited in several directions
Raul Felipe
Acceso Abierto
Atribución-NoComercial
Algebras Dendriform
Algebras de Leibniz
The main purpose of this article is to move the study of dendriform algebras and Rota-Baxter operators to a nonassociative setting beyond the Lie algebras. We show how to associate structures of dendriform type to alternative and exible algebras and characterize the Rota-Baxter op- erators corresponding to them, in order to extend some results that have appeared in the literature for the associative case. These objects are stud- ied in some detail. Also, we show that the usual version of Rota-Baxter operators acts on Leibniz algebras in the same form that they act on Lie algebras and in particular can be used into Leibniz-admissible algebras. As a consequence we arrive to the notion of admissible dendriform al- gebra. Additionally, we propose the concept of generalized dendriform algebra and describe a connection of it with the left-symmetric dialgebras recently introduced by the author.
Centro de Investigación en Matemáticas AC
29-07-2013
Reporte
Inglés
Investigadores
OTRAS
Versión publicada
publishedVersion - Versión publicada
Aparece en las colecciones: Reportes Técnicos - Matemáticas

Cargar archivos:


Fichero Tamaño Formato  
I-13-01.pdf568.82 kBAdobe PDFVisualizar/Abrir