Por favor, use este identificador para citar o enlazar este ítem: http://cimat.repositorioinstitucional.mx/jspui/handle/1008/1078
Stochastic simulation in multimodal posteriors : UQ in ODEs
Javier Enrique Aguilar Romero
Acceso Abierto
Atribución-NoComercial
PROBABILIDAD Y ESTADÍSTICA
Bayesian inference provides a natural and coherent way to quantify uncertainty and knowledge about a phenomenon. It is no surprise the immersion Bayesian statis- tics and Uncertainty Quantification have had in the last years. Metropolis-Hastings provided Bayesian statistics with a powerful tool to calculate intractable integrals and to simulate stochastically from the posterior distribution. However, the inverse problem in Bayesian Uncertainty Quantification deals with the task of numerical in- tegration at each proposed parameter value, which makes exploration of the posterior surface challenging. Moreover the complexity, non linearity and high dimensionality of the forward map induces multimodal posteriors, a typical scene where Metropolis- Hastings fails. Our work addresses and compares different Metropolis-Hastings methods than can be used to approach the multimodality problem. We classify Metropolis-Hastings chains into two big families: Population based and gradient based methods. We present a variety of real life examples of ODEs that present multimodality when solving the inverse problem and the consequences this has when modeling
01-06-2020
Trabajo de grado, maestría
OTRAS
Versión aceptada
acceptedVersion - Versión aceptada
Aparece en las colecciones: Tesis del CIMAT

Cargar archivos:


Fichero Descripción Tamaño Formato  
TE 781.pdf34.48 MBAdobe PDFVisualizar/Abrir