Por favor, use este identificador para citar o enlazar este ítem:
http://cimat.repositorioinstitucional.mx/jspui/handle/1008/1078
Stochastic simulation in multimodal posteriors : UQ in ODEs | |
Javier Enrique Aguilar Romero | |
Acceso Abierto | |
Atribución-NoComercial | |
PROBABILIDAD Y ESTADÍSTICA | |
Bayesian inference provides a natural and coherent way to quantify uncertainty and knowledge about a phenomenon. It is no surprise the immersion Bayesian statis- tics and Uncertainty Quantification have had in the last years. Metropolis-Hastings provided Bayesian statistics with a powerful tool to calculate intractable integrals and to simulate stochastically from the posterior distribution. However, the inverse problem in Bayesian Uncertainty Quantification deals with the task of numerical in- tegration at each proposed parameter value, which makes exploration of the posterior surface challenging. Moreover the complexity, non linearity and high dimensionality of the forward map induces multimodal posteriors, a typical scene where Metropolis- Hastings fails. Our work addresses and compares different Metropolis-Hastings methods than can be used to approach the multimodality problem. We classify Metropolis-Hastings chains into two big families: Population based and gradient based methods. We present a variety of real life examples of ODEs that present multimodality when solving the inverse problem and the consequences this has when modeling | |
01-06-2020 | |
Trabajo de grado, maestría | |
OTRAS | |
Versión aceptada | |
acceptedVersion - Versión aceptada | |
Aparece en las colecciones: | Tesis del CIMAT |
Cargar archivos:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
TE 781.pdf | 34.48 MB | Adobe PDF | Visualizar/Abrir |