Por favor, use este identificador para citar o enlazar este ítem:
http://cimat.repositorioinstitucional.mx/jspui/handle/1008/1051
Mejora de Desempeño de Algorítmos Evolutivos Multi-Objetivo con Esquemas de Diversidad en las Variables de Decisión | |
JOEL CHACON CASTILLO | |
Acceso Abierto | |
Atribución-NoComercial | |
Matemáticas Industriales | |
Los Algoritmos Evolutivos (EAs) son uno de los esquemas más populares para lidiar con problemas de optimización complejos. A pesar de su popularidad, aún existen algunos inconvenientes que pueden degradar su rendimiento, por lo que es un campo en que aún hay que investigar mucho. Entre estos inconvenientes, en el caso mono-objetivo se ha observado una debilidad muy importante, siendo ésta la pérdida de diversidad, llevando a lo que se conoce como convergencia prematura. Sin embargo, se ha observado que considerar mecanismos para administrar la diversidad en el espacio de las variables de forma explícita permite reducir el impacto de este inconveniente. En el área de optimización multi-objetivo la utilización de Algoritmos Evolutivos Multi-objetivo (MOEAs) es cada más popular. Sin embargo, en esta área, la mayor parte de los algoritmos actuales no considera de forma explícita el tratamientodeladiversidadenelespaciodelasvariables,sinoquelamayoríasecentranexclusivamente en el espacio objetivo. En esta tesis se analiza si los problemas que surgen para el caso mono-objetivo están surgiendo también para el caso multi-objetivo y en base a eso se diseñan nuevos algoritmos que administran de forma explícita y simultánea la diversidad en el espacio de las variables y en el espacio objetivo. | |
Centro de Investigación en Matemáticas AC | |
04-12-2017 | |
Tesis de maestría | |
Español | |
Estudiantes Investigadores | |
OTRAS | |
Versión publicada | |
publishedVersion - Versión publicada | |
Aparece en las colecciones: | Tesis del CIMAT |
Cargar archivos:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
TE 737.pdf | 15.17 MB | Adobe PDF | Visualizar/Abrir |