Por favor, use este identificador para citar o enlazar este ítem: http://cimat.repositorioinstitucional.mx/jspui/handle/1008/1001
DERIVED INVARIANCE OF THE TAMARKIN-TSYGAN CALCULUS OF AN ASSOCIATIVE ALGEBRA
Marco Antonio Armenta Armenta
Acceso Abierto
Atribución-NoComercial
this thesis we prove that the Tamarkin-Tsygan calculus of a finite dimensional associative algebra over a field k is a derived invariant. In other words, the main result of this work goes as follows: a derived equivalence between two finite dimensional associative algebras over a field k induces an isomorphism between Hochschild homology and Hochschild cohomology that respects simultaneously the cup product, the cap product, the Gerstenhaber bracket and the Connes differential, see Theorem 5.2.15
10-09-2019
Tesis de doctorado
OTRAS
Versión aceptada
acceptedVersion - Versión aceptada
Aparece en las colecciones: Tesis del CIMAT

Cargar archivos:


Fichero Descripción Tamaño Formato  
TE 724.pdf831.54 kBAdobe PDFVisualizar/Abrir