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Alles ist einfacher, als man denken kann, zugleich verschränkter, als zu begreifen ist.
Maxim 1209, trans. Stopp, Johann Wolfgang von Goethe

We are only what we know, and I wished to be so much more than I was, sorely.
Cloud Atlas, David Mitchel
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Abstract

Metastatic disease is a lethal stage of cancer progression, characterized by the spread of aberrant
cells from a primary tumor to distant tissues in the body. In recent years, there has been a multi-
disciplinary effort by the scientific community to understand the mechanisms of bone metastasis.
Several treatments are used to deal with bone metastases formation. Unfortunately, they are
mainly palliative as the disease is considered incurable. We devote this Thesis to the mathematical
modeling of bone metastasis with the objective of gaining more insight about this biological process
while exploring the optimization of treatments.

In this Thesis, we first propose a nonlinear differential model to describe the dynamics between
tumor cells and bone cells, osteoclasts and osteoblasts. The model is based on a power law
functional that represents and simplify the paracrine signaling between the BMU cells along with
a logistic growth for cancer cells. This model allows us to explore different metastatic scenarios
and to identify potential factors that may aid cancer cells in the colonization of bone. We then
explore the effects of TGFβ and Wnt on bone dynamics with an extended mathematical model, and
thereby study different disease control strategies. For these models, we present the corresponding
stability analysis, deduce biological implications of these theoretical results, and show numerical
simulations. This allows us to gain biological information regarding the success or failure of the
invasion of bone metastasis, as well as to acknowledge a crucial interplay between TGFβ and Wnt
in the bone remodeling process, both in health and in disease.

As a second step, in this Thesis we present an optimal control approach to explore treatment
strategies for bone diseases with a main focus on bone metastasis. We first focus on denosumab
and radiotherapy treatments through optimal control problems with L2 cost functionals, obtaining
continuous optimal control solutions. We provide proofs of existence and uniqueness of solutions to
the corresponding optimal control problems for each treatment and present numerical simulations
to analyze the effectiveness of both treatments under different metastatic invasion scenarios. We
next focus on employing optimal control for the TGFβ/Wnt model. Clinically, optimal solutions
may be more relevant if they only present ’off’ and ’on’ states, and that is why we propose in this
case a L1 cost functional to potentially obtain piecewise constant solutions. With this approach,
first explore optimal treatments for osteoporosis while considering bisphosphonates, TGFβ andWnt
as treatment strategies, and then we focus on bone metastasis optimal treatments that includes
chemotherapy, TGFβ inhibition and Wnt as main control factors.

Finally, we explore spatial models to describe bone remodeling and bone metastasis. This is
motivated by biological evidence that indicates the importance of spatial distribution of bone cells
and molecular agents on bone remodeling and bone metastasis evolution. We finish this Thesis
with concluding remarks and proposed future research to be pursued.

Keywords: bone remodeling; bone metastasis; mathematical modeling; optimal con-
trol; therapy optimization
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Nomenclature

BMU Basic multicellular unit
OCs Osteoclasts
OBs Osteoblasts
CCs Cancer cells
BM Bone mass
DT Denosumab therapy
RT Radiotherapy
CT Chemotherapy

ODE Ordinary differential equation
PDE Partial differential equation
BCs Boundary conditions
ICs Initial conditions
OCP Optimal control problem
PMP Pontryagin’s Maximum Principle
FBSM Forward-backward sweep method
IPOPT Interior point optimizer

Component Biochemical name Description
RANK Receptor activator of nuclear factor

κB
OC receptor that triggers the acti-
vation signal of bone resorption.

RANKL Receptor activator of nuclear factor
κB ligand

OB produced cytokine that binds
to RANK.

OPG Osteoprotegerin OB produced decoy receptor that
captures RANKL, preventing
RANK-RANKL binding.

TGFβ Transforming growth factor-β Factor with pleiotropic, cellular-
context dependent effects on bone
cells and with promoting effects on
CCs.

PTH Parathyroid hormone Hormone with both anabolic
(bone-forming) and catabolic
(bone-degrading) effects on bone.

PTHrP Parathyroid hormone-related pep-
tide

CC produced peptide that en-
hances bone resorption during bone
metastasis.

ILs Interleukins Type of cytokines (proteins) with
multiple effects on bone cells.
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Introduction

1 Motivation

In this Thesis, we present a mathematical framework to study the bone remodeling pro-
cess, a continuous process of bone formation-destruction required for bone homeostasis,
and bone pathologies such as osteoporosis and metastatic bone disease. Osteoporosis
and osteolytic lesions from bone metastases are diseases that are characterized by fragile
bones. It has been estimated that 30% of women and 20% of men worldwide suffer an
osteoporosis-related fracture (Mitlak et al., 2014). For metastatic bone disease, the esti-
mated annual incidence is nearly half a million individuals (Randall, 2016). In Figure 1,
we present data taken from Lipton (2004) of worldwide cancer patients prevalence, being
breast cancer and prostate cancer presenting the highest number of patients. Under each
label of the aforementioned Figure, we present the probability that the considered patients
developed bone metastases, and we observe that multiple myeloma, although it had the
lowest prevalence, it had the highest probability of developing bone metastases.

Figure 1: 5-year cancer prevalence, bone metastasis incidence and median survival (Lip-
ton, 2004).
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Introduction

These and other skeletal malignancies are of great concern because of the dramatic
decrease in the quality of life of the patients. However, the development of bone diseases
involves a complex network of interactions among a myriad of biochemical agents and
bone cells. There are multiple mechanisms that are still poorly understood. Although
in vitro and in vivo experiments are crucial for bone research, it is still limited research
area. Technical, economic, ethical and adequate animal models are the main factors that
slow down experimental findings on bone remodeling and bone metastasis. We aim to
tackle some relevant questions to better understand bone remodeling and bone metastasis
vicious cycle mechanisms. Also, there is an enormous difficulty in optimizing therapies for
bone diseases. In this Thesis, we also focus on applying theoretical frameworks to simulate
virtual patients and find optimal therapies.

This Thesis presents a mathematical modeling approach to describe bone microen-
vironment dynamics with a multi-scale and multi-dimensional perspective. Concerning
bone pathologies, this Thesis focus on osteoporosis and bone metastatic disease where
treatments are found as solutions of optimal control problems.

2 Bone remodeling and bone metastasis

Bone is a mineralized and a dynamic tissue of the body with mechanical and metabolic
functions. It provides structural support, protection to vital organs, and storage of miner-
als such as calcium and phosphorus. As such, maintenance of bone homeostasis is crucial.
There is a myriad of molecular and cellular players involved in the adequate maintenance of
bone tissue. The key cellular players are osteoclasts and osteoblasts, and the key molecular
players are receptor activator of nuclear factor κB ligand (RANKL) and osteoprotegerin
(OPG). Osteoclasts are bone-eater cells that are activated by RANKL. RANKL is a cy-
tokine that has a decoy receptor called OPG, both produced by osteoblasts. Osteoblasts
are bone-filler cells that have an antagonist role to osteoclasts. Altogether, these and other
important molecules and cells conform a wandering team known as a basic multicellular
unit (BMU).

BMUs are in charge of the bone remodeling process. First, osteoclasts from a BMU
receive a trigger signal and start the resorption phase that dissolves an area of bone

PTH

OPG

RANKL

RANK

aOB

rOB

OBp

OCp

aOCTGF

Bone Formation Bone Resorption

RANKL

OPG

OPG+RANKL

RANK+RANKL

ApOB ApOC(+)

(-)
(+)

Figure 2: Schematic representation of normal bone remodeling. The different cell matu-
ration stages are named as follows: responding osteoblasts (rOB), active osteoblasts (aOB),
osteoblast apoptosis (ApOB), osteoclasts precursors (OCp), active osteoclasts (aOC) and
osteoclast apoptosis (ApOC).
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2. Bone remodeling and bone metastasis

matrix. Then, there is a reversal (or coupling) phase thereby osteoclasts are deactivated
and osteoblasts from the BMU are recruited. Finally, osteoblasts refill the previously
resorbed lacunae with new bone matrix and giving an end to the remodeling process
until the next triggering signal. Osteoclasts and osteoblast activities must be perfectly
balanced. Bone pathologies, such as osteoporosis and bone metastasis colonization, emerge
when bone remodeling gets corrupted.

Osteoporosis is a degradation of the bone. It is caused by higher levels of osteoclas-
tic bone resorption. Several local and systemic factors are implicated as the culprits of
osteoporosis. Two conventional treatments to deal with this pathology are denosumab
bisphosphonates (Burkiewicz et al., 2009). Denosumab is a fully human monoclonal anti-
body that captures RANKL and thereby reduce osteoclast activation (Javed et al., 2018).
Bisphosphonates, on the other hand, promote the apoptosis of osteoclasts (Coelho et al.,
2016).

According to the classical ‘Seed & Soil’ hypothesis (Paget, 1889), bone metastatic
cancer cells are also capable of corrupting homeostasis of bone remodeling through a vicious
cycle. Cancer cells send signaling substances which distort the communication between
the BMU cells. There are two broad recognized bone metastasis dynamical behaviors, see
also Chappard et al. (2011); Lipton (2004); Mundy (2002):

• Osteolytic lesion. This disease is characterized by a significant increase of bone re-
sorption which is likely caused by a release of activating factors of osteoclasts such as
the peptide related to the parathyroid hormone (PTHrP). These factors are secreted
by tumor cells in the bone environment since substances like TGF-β are released in
the bone resorption process which stimulates the tumor growth. Figure 3 also shows
schematically the vicious cycle of an osteolytic lesion.

• Osteoblastic lesion. This injury is caused by the secretion of certain substances by cancer
cells that stimulate the bone formation leading to a loss of synchronization between the
BMU cells. The most known factor is the protein endothelin-1 which activates the
proliferation, differentiation, and activation of osteoblasts.

PTH

OPG

RANKL

RANK

aOB

rOB
OCp

aOC
TGF

Bone Formation Bone Resorption

RANKL

OPG

OPG+RANKL

RANK+RANKL

ApOB ApOC

(-) (+)

PTHrP

CC

(+)

(-)

(+)

Figure 3: Schematic representation of the “vicious cycle” of bone metastasis. The different
cell maturation stages are named as before with the addition of cancer cells (CC).
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Both types of lesions can also appear in a patient for different periods of time which is
known as the mixed metastatic lesion. All these injuries lead to weak bones and when an
osteolytic lesion is present then the bone degeneration occurs at a higher rate. In all these
diseases, the usual treatment is to try to recover a normal regulation of BMU. Thus, to
have a better understanding of bone metastasis could allow the design of more effective
treatments. In this direction with a non-invasive method using mathematical modeling,
one of our goals is to identify which are the significant factors in bone metastasis.

3 Models

3.1 Bone remodeling mathematical models

Although there has been an increasing number of works in the literature that deals with
bone remodeling, the number is still low compared to other biological processes. Reviews
for that discuss bone remodeling models include Pivonka & Komarova (2010a); Buenzli &
Pivonka (2017), while a review for cancer-induced bone disease models is found in Ryser
& Komarova (2017).

In general, mathematical models for bone remodeling can be broadly classified into
two groups: biochemical-detailed and biochemical-simplified. Biochemical-detailed mod-
els include both cellular and molecular players as explicit variables of the system. The
majority of works from the literature follow this approach. On the other hand, biochemical-
simplified models condense molecular effects as exponent parameters in a power law for-
mulation. These models have less number of parameters and their mathematical analysis
is more tractable.

3.1.1 ODE modeling

Classical bone remodeling models include Kroll (2000); Komarova et al. (2003); Lemaire
et al. (2004). These works rely on the ordinary differential equations (ODE) to study
bone cells and relevant molecular agents. In particular, Kroll (2000) presented an ODE
model where the key elements of bone remodeling considered are PTH and IL-6. Later,
Komarova et al. (2003) proposed a biochemical-simplified model that condensed paracrine
and autocrine communication among bone cells through a power law approximation known
as S-Systems, having only an equation for osteoclasts and another for osteoblasts. Finally,
Lemaire et al. (2004) constructed a biochemical-detailed model for bone remodeling where
important molecules such as RANKL, OPG, and TGFβ are considered. These works
confirm the main pillars for mathematical modeling of the bone remodeling process and
the exploration of in sillico therapeutic strategies for bone diseases such as osteoporosis.
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3. Models

Figure 4: Relevant mathematical models based on ODEs and PDEs.

3.1.2 PDE modeling

Spatial distribution plays an important role in the dynamical evolution of biological and
ecological processes. Bone processes are no exceptions. The standard mathematical frame-
work employed to include a spatial variable is partial differential equations (PDE). In
Ryser et al. (2009, 2010) a realistic, biologically relevant model with PDE is presented.
This work is of great relevance since they are the precursors in spatial modeling of the
bone remodeling process. Besides considering osteoclasts and osteoblasts as main model
variables, RANKL and OPG are also regarded as important, explicit variables of the PDE
model.

3.1.3 Other approaches

Bone tissue complexity is an obstacle to clearly understand bone remodeling and bone
metastasis processes. Besides ODE and PDE modeling, in recent years research has been
employing novel mathematical and computational approaches to model bone remodeling.
For instance, in Garzón-Alvarado et al. (2012) a biomechanical model is proposed. This
work is relevant because it is well-documented that mechanical stresses play an impor-
tant role in the bone remodeling process through mechanotransduction bone cells, the
osteocytes. In Jerez et al. (2018), a stochastic model is proposed. This is an important
approach since noise is ubiquitous in biological processes and stochastic models are well-
suited for considering noise effects on the bone remodeling process. On the other hand,
the evolutionary game theory follows a Darwinian perspective in which the encounter of
cells change the fitness of the corresponding populations, and in Ryser & Murgas (2017)
a spatial evolutionary game for bone remodeling is proposed.

3.2 Cancer-induced bone diseases mathematical models

The main mathematical models for bone metastasis can be broadly classified into two
groups: biochemical-detailed models following Lemaire et al. (2004), and biochemical-
simplified models following Komarova et al. (2003).

3.2.1 Biochemical-detailed models

In Wang et al. (2011), multiple myeloma-induced bone disease is studied based on the
bone remodeling model presented in Pivonka et al. (2008). In Farhat et al. (2017), the
authors focus specifically to model bone metastatic prostate cancer while incorporating
coupling factors such as TGFβ and Wnt.
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3.2.2 Biochemical-simplified models

In Ayati et al. (2010), multiple myeloma and the BMU dynamics is studied. In Garzón-
Alvarado (2012), both metastatic bone lesions are studied via a switch term included in
the model. In Ryser et al. (2012), the OPG concentration is proposed as a key param-
eter mediating the bone metastasis. In Coelho et al. (2016), the authors include PTH
concentration effects and a novel way to determine the number of active osteoclasts and
osteoblasts.

3.2.3 Other approaches

In Dingli et al. (2009) and Warman et al. (2018), treatments for multiple myeloma and
prostate cancer-induced bone disease are modeled as evolutionary games. In Neto et al.
(2018), the authors propose to introduce fractional derivatives as to account for local
diffusive characteristics.

4 Objectives

In this Thesis, we address bone metastasis dynamical interactions under the Paget’s Seed &
Soil paradigm. Hence, we employ mainly the ODE modeling framework and in particular
the biochemical-simplified modeling approach. The objective is to gain insight into what
are the key factors that contribute to the failure or success of a bone metastatic invasion.

In a successful colonization case, our aim is to discern different types of cancer cell
invasion with respect to bone cell populations: osteolytic or osteoblastic lesion. To answer
what are the main drivers of bone metastatic progression in the model, we perform a
local stability analysis of biological meaningful equilibria, such as cancer-free and cancer-
invasion steady-states. We also perform a parameter sensitivity analysis to understand
qualitative dynamical behavior changes with respect to model parameters.

Another relevant question is related to oscillations in the dynamical system. This is
relevant due to the fact that osteoclasts and osteoblasts couple together in a feedback
fashion, which often results in oscillations. However, biological evidence is not clear about
this question. Through a bifurcation analysis, we tackle this question and explore what
factors may induce the origin or termination of oscillatory bifurcation points known as
Hopf bifurcation.
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5. Outline

Finally, we focus our attention on bone metastasis treatment modeling. As mentioned
earlier in this Introduction, bone metastasis is considered incurable and therefore many
questions arise what may be the optimal way to combine conventional or novel therapeutic
approaches. Baring this in mind, we propose an optimal control approach such that the
objective functional penalizes both the presence of cancer cells and the usage of treatment
control functions.

5 Outline

We finish this Introduction with an outline of the Thesis. The Thesis is divided into two
Parts: PRELIMINARIES and MAIN RESULTS.

PART I. PRELIMINARIES

In this Part, we present the relevant biological and mathematical background of this The-
sis. In Chapter 1.1, we present the base assumptions related to the bone microenvironment
that are translated into a base mathematical model used throughout this Thesis. Then, in
Chapter 1.2 we show the basic elements from Optimal Control Theory that are employed
to model and optimize bone disease treatments.

PART II. MAIN RESULTS

In this Part, we show the main results obtained in this Thesis. It is composed of four
Chapters that we describe in what follows.

Chapter 2. Bone metastasis cellular dynamics model

Chapter 2 is based on Jerez & Camacho (2018). Here, we propose a mathematical model to
describe bone metastasis dynamics. The state variables of the system are the basic multi-
cellular unit (BMU) main cells –osteoclasts and osteoblasts– and also bone metastatic can-
cer cells. To construct the mathematical model, we based on the “vicious cycle” paradigm
in which positive feedback between the BMU and the metastatic tumor is proposed.

Dynamics of osteoclasts and osteoblast is modeled with a power law approach where
exponents simplify paracrine communication. Four significant parameters are introduced
to codify the vicious cycle of bone metastasis. This model presents two biological relevant
steady-states: a cancer-free equilibrium and a cancer-invasion equilibrium. We find criteria
for determining local stability of the aforementioned equilibria.

The obtained theoretical results are used to explore different bone metastasis scenar-
ios classified into two groups depending on failure or accomplishment of cancer cells to
colonize the bone microenvironment. We conclude that contributions from the BMU to
cancer proliferation are important in the cancer colonization of bone, having therapeutic
implications and opportunities to further explore.

Chapter 3. Bone metastasis treatments as optimal control problems

Chapter 3 is based on Camacho & Jerez (2018). Here, we extend the previous model
to incorporate two bone metastasis therapies: denosumab and radiotherapy. Three bone
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metastatic invasions are explored: an aggressive cancer proliferation, a slow cancer pro-
liferation, and an osteoblast-dependent cancer proliferation. We employ optimal control
theory to optimize treatments that minimize the usage of therapies while minimizing the
presence of cancer cells.

Denosumab is an anti-catabolic agent that aids OPG in reducing RANKL levels,
thereby reducing OCs activation. Radiotherapy is a treatment that employs radiation
in order to damage the DNA of fast-proliferating cells such as cancer cells. Using the bone
metastasis model from the previous Chapter, we propose denosumab and radiotherapy
models as optimal control problems. In order to find numerical approximations to the
optimal control solutions, we employ the Maximum Principle (Pontryagin et al., 1962)
and an indirect numerical method known as Forward-Backward Sweep Method (Lenhart
& Workman, 2007). Optimal control solutions point out the importance of timing and
dosing of the therapies depending on the metastatic scenario considered.

Chapter 4. Cellular-molecular bone microenvironment model

Chapter 4 is based on a submitted manuscript. Here, we return to the base bone remodel-
ing model and propose the incorporation of the key coupling factors: TGFβ and Wnt. The
motivation to do this is two-fold: first, these factors confirm an important communication
bridge that links bone resorption with bone formation; second, treatments related to these
factors are transparently modeled if they appear as explicit model variables.

In the vicious cycle paradigm of bone metastasis, TGFβ plays an important role in the
positive feedback between cancer cells and osteoclasts. Thus, the previous model offers
a more transparent framework than the biochemical-simplified model from Chapter 2 to
better describe the vicious cycle and explore therapeutic strategies.

To explore the optimization of osteoporosis and bone metastasis treatments, we propose
optimal control problems where, besides penalizing the presence of cancer cells, it penalizes
different density levels of OCs and OBs. Theoretical and numerical results indicate that
TGFβ has non-trivial therapeutic effects on bone diseases whereas Wnt has great potential
in controlling them.

Chapter 5. Spatial bone microenvironment model

Chapter 5 is devoted to spatial modeling of bone remodeling and bone metastasis. Spatial
modeling is motivated by biological evidence that points out that the spatial configuration
of bone cells is important for the bone remodeling process. The spatial configuration also
plays a key role in tumor progression. We incorporate a novel term that expresses an
advection/convection movement, motivated by the fact the bone cells follow triggering
signals that indicate the direction of the BMU throughout the remodeling process.

Next, we also incorporate cancer cells to model the spatial dynamics of bone metastasis.
As a final step, we incorporate TGFβ as a key molecular player into the spatial model.
Numerical simulations show qualitative differences from the ODE model, suggesting that
the PDE framework may offer relevant answers related to bone diseases and the optimal
therapeutic strategies to control them.
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Conclusions and future work

In the last Chapter of this Thesis, we make concluding remarks of the Main Results and
we point out potential lines of research to be pursued in the future.

9





Part I

PRELIMINARIES

11





Chapter 1

Preliminaries

In this Chapter, we present the biological and mathematical background required in this
Thesis. First, we discuss the base biological assumptions and the base mathematical model
on which the Main Results are based on, mainly Chapters 2 and 3. Then, we present a
brief introduction to Optimal Control Theory that includes the main theoretical results
employed in Chapters 3 and 4.

1.1 Mathematical models for bone remodeling

Bone remodeling is a multi-step process in which a team of cells, called basic multicellular
unit (BMU), resorbs bone and forms new bone consecutively. The steps involved in this
process are initiation, transition and termination (Matsuo & Irie, 2008). At the initiation
phase, osteoclasts are recruited and activated by the BMU, and then proceed to resorb
the bone. The transition phase consists of inhibition and apoptosis of osteoclasts and
recruitment and activation of osteoblasts, which are responsible for new bone formation.
Finally, in the termination phase osteoblasts proceed to make bone formation (deposition
of osteoid) which then mineralizes, and then the BMU goes into quiescence. Some of
these osteoblasts get trapped by the osteoid, which is unmineralized bone. The trapped,
surviving osteoblasts differentiate into osteocytes. Osteocytes are believed to serve as a
mechanostat of the bone, that is, osteocytes form a system that reacts to bone loading
influences (Frost, 1987).

One of the main regulatory mechanisms of bone remodeling is the RANK/RAN-
KL/OPG pathway. Osteoclasts express RANK which binds to the receptor activator
of nuclear factor κB ligand (RANKL) cytokine produced by the osteoblastic lineage. The
RANK-RANKL bindings activate osteoclasts and thereby increase bone resorption activ-
ity. Osteoblasts also produce osteoprotegerin (OPG) which is a decoy receptor for RANKL,
so its expression reduces osteoclast activation by RANK-RANKL bindings. Another bone
remodeling pathway of great importance is the Wnt/β-catenin signaling. Several factors
may disrupt BMU intercellular communication. Cancer is one of these factors. In partic-
ular, multiple myeloma cells and bone metastasis from prostate or breast cancer have an
affinity for developing a vicious cycle with the BMU. In Paget (1889) the basic ‘Seed &
Soil’ Theory is introduced. Bone metastases do not form randomly. There is a preference
for certain tissues like bone, brain, and lungs.

As mentioned in Section 3.1, there are two broad groups of mathematical models:
biochemical-detailed and biochemical-simplified. In the following Sections, we first present
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Diagram

Equations
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= P (t)− k4P
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dt
= k5C3

IL6

K2 + IL6
− k6Z

Y : pre-osteoblasts, X: osteoblasts, Z: osteoclasts, P : PTH

Table 1.1: Kroll (2000) model.

a brief discussion on biochemical-detailed models from the literature and then we present
a classic biochemical-simplified model. Next, we choose relevant biological hypotheses and
proceed to codify the hypotheses into a base mathematical model used across this Thesis.

1.1.1 Biochemical-detailed model

We refer biochemical-detailed models to systems that describe explicitly the chemical
reactions and the binding processes involved in bone remodeling. These are the most
common type of models found in the literature. There are two main works in this line of
research: Kroll (2000) and Lemaire et al. (2004). We discuss these two models in what
follows.

The first of these two works is displayed in Table 1.1. In this model, the objective was
to answer the paradoxical effect of parathyroid hormone (PTH) on bone mass density. The
controversy arises in the sense that continuous application of PTH has catabolic effects
(breakdown) on bone mass but the intermittent application has anabolic effects (construc-
tion). Thus, one of the main variables in the model is PTH. Its effects on bone cells are
explicitly introduced in the model, where pre-osteoblasts, osteoblasts and osteoclasts ap-
pear also as explicit variables. One of the main features of this work is the inclusion of a
time delay to the time reaction from the osteoblast lineage to PTH. This time delay is em-
ployed as a key parameter in a successive sensitivity analysis, finding possible explanations
to the PTH paradox.

Later, the model presented in Table 1.2 was proposed. In this model, the explicit
variables are responding osteoblasts, active osteoblasts, and active osteoclasts. Using
simple biochemical mathematical modeling, non-linear functional forms are deduced in
which parameters relate to molecular factors such as RANKL, OPG, and TGFβ. In this
work, parameters are estimated to model different bone disease scenarios. Using a control
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Equations

dBp
dt

= DR
C + f0C

s

C + Cs
−DB

C + Cs

C + f0Cs
Bp

dB

dt
= DB

C + Cs

C + f0Cs
Bp − kBB

dC

dt
= DC

(
1 +

IL
rL

)
k3K

P
L πPB

k4

(
1 + k3K

k4
+ k1

k2kO

(
KP

O

πP
Bp + IO

)) −DAπCC

Bp: pre-osteoblasts, B: osteoblasts, C: osteoclasts

Table 1.2: Lemaire et al. (2004) model.

theory approach, input functions that reflect treatments such as PTH application are
turned on and off at the steady-states of bone diseases to explore therapeutic options.

Both of these works propose biochemically relevant approaches to study bone remodel-
ing. The number of parameters and the functional form of these models poses difficulties
for further mathematical analysis. In this direction, biochemical-simplified models are
proposed and studied.

1.1.2 Biochemical-simplified models

Another type of mathematical models are the biochemical-simplified ones. The precursor
work is the one presented in Table 1.3. There are only two coupled explicit variables that
describe osteoclast and osteoblast numbers. The biochemical interactions mediated by
RANKL, OPG, etc., are condensed in the exponent parameters gij through a power law
approximation. This approach is known as S-System modeling, which is a generalization
of the law of mass actions; it was proposed in Savageau (1988).

This model has the following hypotheses:

(H1 ) There are not external influence on the osteoclast and osteoblast populations.

(H2 ) Cell apoptosis is considered to be linear.

(H2 ) Cell apoptosis is considered to be linear.

(H3 ) Biochemical interactions are approximated by an S-System, that is, a power law
approximation (Savageau, 1988).

(H4 ) Concentration of molecular factors such as RANKL, OPG, etc., is assumed to depend
on the number of cells.

(H5 ) The parameters gij describe the net effectiveness of biochemical interactions. When
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Diagram

Equations

dx1
dt

= α1x
g11
1 xg212 − β1x1

dx2
dt

= α2x
g12
1 xg222 − β2x2

x1: osteoclasts, x2: osteoblasts

Table 1.3: Komarova et al. (2003) model.

i = j then an autocrine interaction (same-type cells interaction) is considered,
whereas i 6= j refers to paracrine interactions (different-type cells interaction).

This model allows an initial mathematical analysis. The authors in Komarova et al.
(2003) find the steady-state associated with the model and also present a local stability
analysis. Numerical evidence of oscillations was shown but a further mathematical justi-
fication of their existence was missing. In Jerez & Chen (2015) this gap was filled. The
following assumption was introduced to show mathematically the existence of periodic
solutions:

(H6 ) The paracrine signaling between osteoclasts and osteoblasts regulates the growth of
both populations and it is proposed as a power law function.

The base model to be used in this Thesis is the one from Jerez & Chen (2015) which
considers the six (H1 )–(H6 ) assumptions presented before. The equations of the simplified
Komarova model are the following:

dC(t)

dt
= C(t)(α1B(t)γ1 − β1),

dB(t)

dt
= B(t)(α2C(t)γ2 − β2),

(1.1)

where C(t) and B(t) are the number of osteoclasts and osteoblasts, respectively. The
exponents γ’s describe the paracrine signaling between osteoclasts and osteoblasts, and
we regard γ1 < 0 for inhibition from OBs to OCs and γ2 > 0 for promotion from OCs
to OBs. The recruitment and elimination rates of these cell populations are denoted by
α’s and β’s, respectively. For system (2.1) in Jerez & Chen (2015), a theoretical stability
analysis of its equilibria was carried out obtaining the next result:

Theorem 1.1. System (2.1) with positive initial condition and verifying the condition

γ1 < 0 and γ2 > 0, (1.2)
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Coefficient Value Units
α1 0.3 cell−1day−1

α2 0.1 cell−1day−1

β1 0.2 day−1

β2 0.02 day−1

γ1 -0.3 dimensionless
γ2 0.5 dimensionless
k1 0.07 day−1

k2 0.0022 day−1

Table 1.4: BMU parameter values for a healthy person.

has a unique positive periodic solution which oscillates around the equilibrium point

(C∗, B∗) =

((
β2
α2

) 1
γ2

,

(
β1
α1

) 1
γ1

)
. (1.3)

Particularly, γ1 codifies the effects from osteoblasts to osteoclasts, such as the impor-
tant RANKL-OPG pathway. As in the previous works Komarova et al. (2003); Jerez &
Chen (2015), we will keep assuming a constant regulation of osteoclasts from osteoblasts
by assuming γ1 < 0. On the other hand, γ2 is a parameter that measures the effects from
osteoclasts to osteoblasts. The regulation of osteoblasts proliferation due to osteoclasts
is less understood. Among the most relevant identified factors that control this com-
munication are Ephrin2, an osteoclast transmembrane ligand that stimulates osteoblasts
differentiation, Atp6v0d2, which is expressed in osteoclasts and it is believed to inhibit
osteoblasts activity, and Sema4D, which also inhibits bone formation (Chen et al., 2018).

A normal bone remodeling scenario is shown in Figure 1.1. We observe the periodicity
of the population of the BMU cells as Theorem 1.1 states. Notice that there is a shift
between the periodic OC and OB solutions with a reciprocal behavior, that is, when
osteoclasts decrease (bone resorption) then the population of osteoblasts increases (bone
formation) and so on. Quantitative information about the growth and death rates for this
case can be calculated from experimental data (Parfitt, 1994). In particular, we consider
the parameter values βi for i = 1, 2, proposed in Komarova et al. (2003). Coefficients α’s
and γ’s are adjusted according to get a standard number of osteoblasts and osteoclasts
for a healthy person. Such parameter setting is given in Table 1.4. This model and this
scenario are going to serve a the base of this Thesis.

Also in Figure 1.1, we present the percentage of bone mass associated to the OC-OB
system using the following bone mass equation based on the contributions of the resorption
and formation processes:

z′ = −k1
√

max{C − C∗, 0}+ k2
√

max{B −B∗, 0}, (1.4)

where z is total bone mass, u∗ and v∗ are given in (1.3) and k1 and k2 are the normal-
ized activities of bone resorption and formation which are estimated to obtain the same
periodicity of the osteoclast and osteoblast populations (Ayati et al., 2010; Jerez & Chen,
2015). Equation (1.4) is a modified version of the bone mass equation given in previous
works (Komarova et al., 2003; Ayati et al., 2010; Jerez & Chen, 2015) in order to reduce
the changes of bone mass.
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Figure 1.1: Normal behavior of OC-OB system by using (1.1) and (1.4) with initial
condition (u0, v0, z0) = (10, 5, 95).

1.2 Introduction to Optimal Control Theory

In this Section, we present some basic elements and results from Optimal Control Theory
that are used in subsequent Chapters. This Section is based on Lenhart & Workman
(2007) and Berkovitz (2013).

1.2.1 General optimal control problem

Let t ∈ R, x = (x1,, . . . , xn) ∈ Rn and z = (z1, . . . zm) ∈ Rm, where t is the time variable,
x is the state variable and z is the control variable. We call region an open connected
set. Let R and U be regions in the spaces (t, x) and z, respectively. Let G = R× U and
f i : G→ R, i = 0, 1, . . . , n, and let us denote f = (f1, . . . , fn) and f̂ = (f0, f1, . . . , fn).
Let B be a set of points (t0, x0, t1, x1) in R2n+2 with t1 > t0. We say that B is the extremal
set. Let Ω be a function that maps (t, x) ∈ R to a subset Ω(t, x) of the region U in the
space z. Function Ω defines the control constraints. Observe that if Ω(t, x) = U for each
(t, x) then there are no constraints because at (t, x) control z can attain any value of the
domain U .

Let us consider the following ODE:

dx

dt
= f (t, x, u(t)) . (1.5)

A measurable function u : [t0, t1]→ R is a control on [t0, t1] if there exists an absolutely
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continuous function ϕ : [t0, t1]→ Rn such that:

1. (t, ϕ(t)) ∈ R for each t ∈ [t0, t1],

2. ϕ′(t) = f(t, ϕ(t), u(t)) almost everywhere on [t0, t1].

Function ϕ is known as a trajectory associated to u. Points (t0, ϕ(t0)) and (t1, ϕ(t1))
are the initial and terminal points of the trajectory, and point (t0, ϕ(t0), t1, ϕ(t1)) is an
end point of the trajectory. Control u is admissible if it has associated a trajectory ϕ such
that:

1. Function t 7→ f0(t, ϕ(t), u(t)) is L1[t0, t1],

2. u(t) ∈ Ω(t, ϕ(t)) almost everywhere on [t0, t1],

3. (t0, ϕ(t0), t1, ϕ(t1)) ∈ B.

If u is an admissible control and ϕ a trajectory associated to it then (ϕ, u) is known
as an admissible pair. Let A be the set of every admissible pair (ϕ, u). Assume that A is
not empty. Let J be the cost functional

J(ϕ, u) = g (t0, ϕ(t0), t1, ϕ(t1)) +

∫ t1

t0

f0 (t, ϕ(t), u(t)) dt, (1.6)

where g : B → R. Let A1 be a non-empty subset of A. The General Optimal Control
Problem can be written as follows:

GOC PROBLEM. Find a pair (ϕ∗, u∗) ∈ A1 that minimizes (1.6) on A1.
A pair (ϕ∗, u∗) that solves GOC PROBLEM is called an optimal pair, where ϕ∗ is

an optimal trajectory and u is an optimal control.
GOC PROBLEM is commonly known as Bolza problem. There are two special cases

to the Bolza problem:

1. Mayer problem. When f0 ≡ 0,

2. Lagrange problem. When g ≡ 0.

Bolza problem is equivalent to these two problems.

1.2.2 Maximum Principle

The Maximum Principle (Pontryagin et al., 1962) is one of the most important results in
Optimal Control Theory. It gives a characterization of optimal controls in terms of the
state variable and an additional variable called adjoint variable.

Let us consider again the GOC PROBLEM and let us assume that g ≡ 0 (Lagrange
problem). For the Maximum Principle, we need to consider the following assumptions:

Assumption. Region R has the form J0×X0, where J0 is an open interval in R and
X0 is an open rectangle in Rn.

Assumption. Region U is an open rectangle in Rm.
Assumption. Function f̂ = (f0, f) = (f0, f1, . . . , fn) is of class C1(X0) for each

(t, z) ∈ J0 × U , and is Borel-measurable on J0 × U for each x ∈ X0.
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Assumption. For each compact interval X ⊂ X0 and for each admissible control u,
there exists a function

µ = µ(·,X , u)

defined on Ju = [t0, t1], the interval fo definition of u, such that µ ∈ L1(Ju) and

|f̂ (t, x, u(t)) | ≤ µ(t),

|f̂x (t, x, u(t)) | ≤ µ(t),

for almost every t ∈ Ju and every x ∈ X .
Assumption. Function Ω is independent with respect to x. That is, Ω : t→ Ω(t).
Assumption. Set B is a q-manifold of class C1, with 0 ≤ q ≤ 2n+ 1.
Assumption. Set B can be represented as the image of an open rectangle

∑
in Rq

under

t0 = T0(σ), x0 = X0(σ),

t1 = T1(σ), x1 = X1(σ),

where Ti and Xi are of class C1(
∑

) (i = 0, 1), and the Jacobian matrix

(T0σ X0σ T1σ X1σ)

has rank q at each point of
∑

.
Assumption. Let H be a real function defined on R×Rn×Rm×R×Rn (n is related

to state variable and m to control variable) as

H(t, x, z, p0, p) = p0f0(t, x, z) + p · f(t, x, z) =

n∑
i=0

pif i(t, x, z).

If p̂ = (p0, p) we can rewrite H as

H(t, x, z, p̂) = p̂ · f(t, x, z).

Under these Assumptions, the Maximum Principle states the following:

Theorem 1.2 (Maximum Principle). Consider the Lagrange problem under the afore-
mentioned Assumptions. Let (φ, u) be an optimal pair defined on [t0, t1]. Then, there exist
a constant λ0 ≤ 0 and a absolutely continuous vector function λ = (λ1, . . . , λn) defined on
[t0, t1] such that:

1. Vector λ̂(t) = (λ0, λ(t)) never vanishes on [t0, t1].

2. For almost every t ∈ [t0, t1]:

φ′(t) = Hp

(
t, φ(t), u(t), λ̂(t)

)
,

λ′(t) = −Hx

(
t, φ(t), u(t), λ̂(t)

)
.
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3. For any admissible control v defined on [t0, t1]:∫ t1

t0

H(t, φ(t), u(t)λ̂(t))dt ≥
∫ t1

t0

H(t, φ(t), v(t), λ̂(t))dt. (1.7)

4. If function t→ f̂ (t, φ(t), u(t)) is continuous at t = t0 and t = t1, then the vector

(H(π(t0)),−λ(t0),−H(π(t1)), λ(t1))

is orthogonal to set B at point (t0, φ(t0), t1, φ(t1)), where

π(ti) = (ti, φ(ti), u(ti), λ̂(ti)), i = 0, 1.

Theorem 1.3. Maximum Principle] If Ω(t) = C for every t, where C is a fixed set, and if
f̂ is continuous on R× U then:

H
(
t, φ(t), u(t), λ̂(t)

)
≥ H

(
t, φ(t), z, λ̂(t)

)
, (1.8)

for almost every t ∈ [t0, t1] and for every z ∈ C.
Observe that the Maximum Principle gives necessary but not sufficient conditions for

optimal controls. For more details see Berkovitz (2013). In the next Sections, we apply the
Maximum Principle to simple ODE families to illustrate its application in mathematical
modeling.

1.2.3 One-dimensional problems

Let us consider the simplest Lagrange optimal control problem:

max
u admissible

∫ t1

t0

f (t, x(t), u(t)) dt

subject to: x′(t) = g (t, x(t), u(t)) ,

x(t0) = x0,

x(t1) free,

Using the Maximum Principle we obtain the necessary conditions for optimal pairs
(x∗, u∗):

(Hamiltonian) H(t, x, u, λ) = f(t, x, u) + λ · g(t, x, u)

(Adjoint system) λ′ = −∂H
∂x

⇒ λ′ = −(fx + λgx)

(Transversality condition) λ(t1) = 0

(Optimality condition)
∂H

∂u

∣∣∣∣
u=u∗

= 0 ⇒ fu + λgu = 0

The general approach to find optimal pairs (x∗, u∗) in simple optimal control problems
is the following:

1. Conpute Hamiltonian H.
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2. Obtain equations from Maximum Principle in terms of u∗, x∗ y λ∗.

3. Find u∗ from optimality condition in terms of x∗ and λ∗.

4. Solve forward ODE with initial condition for x∗ and then backward ODE with
transversality condition for λ∗, substituting u∗ from previous step.

5. Solve for u∗.

Henceforth, the discussion will focus on the one-dimensional problem, and then we
briefly translate it to higher dimensional problems.

1.2.4 Existence of optimal pairs

There are some existence results depending on the structure of the optimal control prob-
lem. The most common ones ask for convexity and Lipschitz properties. The following is
a classical existence theorem for Lagrange problems:

Theorem 1.4 (Existence, one-dimensional case). Let

J(u) =

∫ t1

t0

f(t, x(t), u(t))dt

subject to

x′ = g(t, x, u), x(t0) = x0.

Assume that the set of admissible controls for the Lagrange problem is a set of Lebesgue
integrable functions on [t0, t1]. Assume that f(t, x, u) is a convex functions with respect u.
Furthermore, assume that there exist constants c1, c2, c3 > 0, c4 y β > 1 such that:

g(t, x, u) = α1(t, x) + α2(t, x)u,

|g(t, x, u)| ≤ c1(1 + |x|+|u|),
|g(t1, x1, u)− g(t, x, u)| ≤ c2|x1 − x|(1 + |u|),

f(t, x, u) ≥ c3|u|β−c4,

for every t ∈ [t0, t1], x, x1, u ∈ R. Then there exists an optimal control u∗ that finitely
maximizes J(u).

1.2.5 Bounded controls

Consider the following Lagrange problem:

max
u admissible

∫ t1

t0

f(t, x(t), u(t))dt

subject to: x′(t) = g(t, x(t), u(t))

x(t0) = x0

a ≤ u(t) ≤ b.
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The Maximum Principle applied to this problem results in the same conditions as
before except for the optimality condition. Now, optimal control u∗ will be determined
also by the sign of Hu:

u∗(t) =


a, Hu < 0
MP, Hu = 0
b, Hu > 0

(1.9)

where MP is obtained from the Maximum Principle without bounds.

1.2.6 Linear problems

Linear optimal control problems are frequently used in modeling problems. In particular
for biological problems, this is because the cost functional with a linear control has a more
clear interpretation than non-linear controls. The general, one-dimensional linear optimal
control problem can be written as:

max
u admissible

∫ t1

t0

f1(t, x) + u(t)f2(t, x)dt

subject to: x′(t) = g1(t, x) + u(t)g2(t, x),

x(t0) = x0,

a ≤ u(t) ≤ b.

The Hamiltonian is:
H(t, x, u, λ) = (f1λg1) + u(f2 + λg2).

The optimality condition is:

Hu = 0 ⇒ f2 + λg2 = 0.

Note that the information about u is lost in this case. The characterization of optimal
control u∗ is given by the sign of the switching function ψ(t):

ψ(t) = Hu = f2(t, x(t)) + λ(t)g2(t, x(t)),

u∗(t) =


a, ψ(t) < 0
? , ψ(t) = 0
b, ψ(t) > 0

If optimal control u∗ satisfies ψ = 0 on many finite points we say that the optimal
control is a bang-bang control. Otherwise, we say that u∗ is a singular control. The
characterization of singular controls is obtained by successively deriving H with respect
to time t and u. This is known as the Legendre-Clebsh condition (Schättler & Ledzewicz,
2015) and is of the form:

∂

∂u

d2

dt2
∂H

∂u
6= 0 ⇒ using = −〈λ, [f1, [f1, f2]](x)〉

〈λ, [f2, [f1, f2]](x)〉 , (1.10)

where it is assumed that the model function f(x, u) can be written as f(x, u) = f1(x) +
f2(x)u. The bracket notation in (1.10) refers to the Lie bracket which in this case it is
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defined as:
[f, g](x) = f · dg

dx
− g · df

dx
. (1.11)

1.2.7 Higher dimensional problems

Results presented previously can be extended to multi-variate optimal control problems.
For instance, consider the following multi-dimensional Lagrange problem:

max
u admissible

∫ t1

t0

f(t,−→x (t),−→u (t))dt

sujeto a −→x ′(t) = −→g (t,−→x ,−→u )
−→x (t0) = −→x0

with f(·) ∈ R, −→x (·),−→g (·),−→x0 ∈ Rn y −→u ∈ Rm.

Hamiltonian is now expressed through the dot product:

H(t,−→x ,−→u ,−→λ ) = f(t,−→x ,−→u ) +
−→
λ (t) · −→g (t,−→x ,−→u ) = f(t,−→x ,−→u ) +

n∑
i=1

λi(t)gi(t,
−→x ,−→u )

with λ = (λ1, . . . , λn) y g = (g1, . . . , gn).
Maximum Principle in vectorial form gives the adjoint system and its corresponding

transversality conditions:

λ′j(t) = −∂H
∂xj

, λ(tj) = 0 ∀i = 1, . . . , n

Optimality conditions are:

∂H

∂uk

∣∣∣∣
uk=u

∗
k

= 0 ∀k = 1, . . . ,m

A simple example

Consider the Lagrange problem:

min
u admisible

∫ 1

0
x2(t) + u(t)2dt

sujeto a x′1(t) = x2

x1(0) = 0

x1(1) = 1

x′2(t) = u

x2(0) = 0

It is straightforward to see that conditions from the existence theorem are satisfied.
Hamiltonian is:

H = x2 + u2 + λ1x2 + λ2u
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Adjoint system is given by:

λ′1 = −∂H
∂x1

= 0, λ′2 = −∂H
∂x2

= 0, λ2(1) = 0

Solving for λ we obtain:

λ1(t) = C, λ2(t) = −(C + 1)(t− 1)

Now, using optimality condition we obtain:

0 =
∂H

∂u
= 2u+ λ2 ⇒ u∗ = −λ2

2
=

(C + 1)(t− 1)

2

Then, returning to forward ODE and solving for x:

x′2 = u ⇒ x2(t) =
C + 1

2

(
t2

2
− t
)
, x2(0) = 0

x′1 = x2 ⇒ x1(t) =
C + 1

2

(
t3

6
− t2

2

)
, x1(0) = 0, x1(1) = 1

From the algebraic equations we obtain C = −7. Thus, optimal pair (x∗, u∗) is given
by:

u∗(t) = 3− 3t, x∗1(t) =
3

2
t2 − 1

2
t3, x∗2(t) = 3y − 3

2
t2

1.3 Monotone Method

In Chapter 5, we present spatial models for bone metastasis. In particular, the models
presented are linear parabolic boundary-value problems. For this class of PDE problems,
there exists a theory that guarantees existence and uniqueness of solutions through finding
suitable upper and lower solutions. In this Section, we present the basic results of the
Monotone Method based on Pao (1993).

1.3.1 Linear parabolic problem

In this Section, we present a formulation of the scalar linear parabolic equation.
Let Ω ⊂ Rn be a bounded and open domain, and let T ∈ R be positive. Here,

Ω represents the spatial domain while the semi-open interval (0, T ] represents the time
domain with final time T . We define the set DT as DT = (0, T ] × Ω. Also, we define
the set ST as ST = (0, T ] × ∂Ω. The set DT represents the whole domain for the PDE
problem, and ST represents the boundary with respect to the space variable of DT .

The notation Cm(Ω) for m a positive integer represents the set of all continuous func-
tions with continuous partial derivatives of kth order for k = 1, . . . ,m. The notation Ω is
used to denote the closure of Ω with respect to the standard topology of Rn.

Now, let u : DT → R and let us consider the linear parabolic problem given by:

∂u

∂t
− Lu+ c(t, x)u = f(t, x), (t, x) ∈ DT , (1.12)
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with boundary conditions (BCs)

α0(t, x)
∂u

∂ν
+ β0(t, x)u = h(t, x), (t, x) ∈ ST (1.13)

where ∂u/∂ν is the directional derivative of u in the direction of a normal vector ν pointing
outward from x ∈ ∂Ω, and initial conditions (ICs)

u(0, x) = u0(x), x ∈ Ω. (1.14)

Here, the operator L is the advection-diffusion operator given by

L =
n∑

i,j=1

aij(t, x)
∂2

∂xi∂xj
+

n∑
j=1

bj(t, x)
∂

∂xj
. (1.15)

We ask the advection-diffusion operator (1.15) to be elliptic: the matrix A = (aij(t, x))
is positive definite in DT . We also ask the functions c(t, x), f(t, x), h(t, x) and u0(x) in
(1.12)–(1.14) to be Hölder continuous in their respective domains.

1.3.2 Monotone Method for semilinear parabolic problems

For the scalar linear parabolic problem (1.12)–(1.14), classical results of existence are avail-
able. However, in many mathematical models, the reaction functions display a nonlinear
dependence on the state variables. In this Section, we focus our attention to another
class of parabolic problems: the scalar semilinear parabolic problem. The objective of
the monotone method is to use suitable functions that “bound” the semilinear parabolic
problem (1.12)–(1.14) in order to guarantee existence and uniqueness of continuous solu-
tions u. These suitable functions are the so-called upper and lower solutions of the linear
parabolic problem.

Let us consider a similar problem to (1.12)–(1.14) called the semilinear parabolic equa-
tion:

ut − Lu = f(t, x, u), (t, x) ∈ DT , (1.16)

α0(t, x)
∂u

∂ν
+ β0(t, x)u = h(t, x), (t, x) ∈ ST , (1.17)

u(0, x) = u0(x), x ∈ Ω. (1.18)

We loss some linearity with respect to problem (1.12)–(1.14) in the sense that f(t, x, u)
may be a uniformly Hölder nonlinear functions with respect to u. Let ũ ∈ C(DT ) ∩
C1,2(DT ). We say that ũ is an upper solution of the semilinear problem (1.16)–(1.18) if:

ũt − Lũ ≥ f(t, x, ũ), (t, x) ∈ DT , (1.19)

α0(t, x)
∂ũ

∂ν
+ β0(t, x)ũ ≥ h(t, x), (t, x) ∈ ST , (1.20)

ũ(0, x) = u0(x), x ∈ Ω. (1.21)

On the other hand, a function û ∈ C(DT )∩C1,2(DT ) is a lower solutions if satisfies (1.19)–
(1.21) with reversed inequalities. We also say that the pair (ũ, û) is ordered if ũ ≥ û for
every (t, x) ∈ DT . The Monotone Method is enclosed in the following theorem (Pao, 1993,
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Chapter 2, Theorem 4.1):

Theorem 1.5 (Monotone Method). Let (ũ, û) be an ordered pair of upper and lower
solutions of (1.16)–(1.18), respectively. Assume that f satisfies the condition

−c(u1 − u2) ≤ f(t, x, u1)− f(t, x, u2) ≤ c(u1 − u2)

for some bounded functions c(t, x) and c(t, x), and for every û ≤ u2 ≤ u1 ≤ ũ with
(t, x) ∈ DT . Then there exist sequences {u(k)} and {u(k)} that converge monotonically to
a unique solution u of (1.16)–(1.18) such that

û ≤ u(1) ≤ u(2) ≤ · · · ≤ u ≤ · · · ≤ u(2) ≤ u(1) ≤ ũ, (t, x) ∈ DT .

The previous discussion concerns problems with only one unknown function. In many
applications, we usually encounter mathematical models with a coupled relationship be-
tween unknown functions rather than decoupled systems as previously discussed. Coupled
systems are the next and last object of study.

1.3.3 Coupled systems

A general representation of parabolic partial differential equation systems is given by:

(ui)t − Liui = fi(t, x, ui, [u]ai , [u]bi), in DT , (1.22)
Biui = hi(t, x), on ST , (1.23)

ui(0, x) = ui,0(x), in Ω, (1.24)

for i = 1, · · · , N , where u = (ui, [uai ], [ubi ]) such that ai + bi = N − 1, and L and B are
the operators composed of

Li = αi(t, x)
∂2

∂x2
+ βi(t, x)

∂

∂x
, Bi = αi,0(x)

∂

∂ν
+ βi,0(x)

with αi(t, x) > 0.
We assume that f is a quasimonotone function: it satisfies that fi(·, ui, [uai ], [ubi ]) is

monotone nondecreasing in [u]ai and is monotone nonincreasing in [u]bi .
In the context of coupled systems (1.22), we have a similar definition for upper and

lower solutions. For system (1.22), functions ũ and û in C(D) ∩ C1,2(D) are said to be
coupled upper and lower solutions of the system if:

ũ ≥ û, in DT , (1.25)
(ũi)t − Liũi ≥ fi(t, x, ũi, [ũ]ai , [û]bi), (1.26)
(ûi)t − Liûi ≤ fi(t, x, ûi, [û]ai , [ũ]bi), (1.27)

Biũi ≥ hi(t, x) ≥ Biûi, (1.28)
ũi(0, x) ≥ ui,0(x) ≥ ûi(0, x). (1.29)

A sector defined by coupled upper and lower solutions ũ and û is given by:

{û, ũ} = {u ∈ C(DT ) | û ≤ u ≤ ũ} (1.30)
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The monotone method for coupled systems is as follows (Pao, 1993, Chapter 8, Theo-
rem 8.1)

Theorem 1.6 (Monotone Method for Coupled Systems). Let ũ and û be coupled up-
per and lower solutions of (1.22), respectively. Assume that function f is Lipschitz and
quasimonotone in {û, ũ}. Also, assume that for each i = 1, . . . , N there exist functions
ci ∈ C(DT ) such that

fi(t, x, ui, [u]ai , [u]bi)− fi(t, x, vi, [u]ai , [u]bi) ≥ −ci(ui − vi)

for every ûi ≤ vi ≤ ui ≤ ũi with (t, x) ∈ DT . Then there exist a unique solution u∗ to
(1.22) with u∗.
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Chapter 2

Mathematical modeling for bone
metastasis∗

Cancer cells are characterized by uncontrolled cell growth and by their propensity to spread
to other body parts from the primary site (Alberts et al., 2002; Hanahan & Weinberg,
2011), this phenomenon is known as metastasis. Bone metastasis occurs when the tumor-
cell invasion reaches the skeleton. According to the American Cancer Society (2015),
prostate (Keller & Brown, 2004), breast (Chen et al., 2010) and lung cancers are the
most likely cancers to spread to the bone. Moreover, it is worth mentioning that in 2014
worldwide mortality by cancer was 14.6% and a 90% of these deaths were due to metastasis
(Stewart & Wild, 2014).

As mentioned in the Introduction, some of the mechanisms of bone metastasis have
been identified. One of the most important findings is that the osteoclast and osteoblast
cells are implicated in the tumor-cell proliferation. Osteoclasts and osteoblasts are known
as the basic multicellular unit (BMU) cells and they are responsible for the bone remodeling
process. Bone remodeling is a complex process that consists in a particular mechanism
of regulation between osteoclasts and osteoblasts via autocrine and paracrine signaling
mostly controlled by the agents: RANK, RANKL, OPG and TGF-β, see Eriksen (2010);
Phan et al. (2004); Raggatt & Partridge (2010). Cancer cells interfere with the osteoclast-
osteoblast communication in order to obtain important growth factors which are released
during bone resorption (Lipton, 2004; Mundy, 2002). This distortion in the communication
between osteoclasts and osteoblasts may compromise seriously bone by excessive bone
elimination of excessive bone formation.

Although the usual way to study a biological process is by experimentation, it may
have certain limitations. An optional route is by mathematical modeling which is a non-
invasive tool and it is usually proposed in order to get alternative information that may
not be obtained experimentally.

∗This Chapter is based on Jerez, S., Camacho, A. (2018). Bone metastasis modeling based on the
interactions between the BMU and tumor cells. Journal of Computational and Applied Mathematics, 330,
866–876.
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Chapter 2. Mathematical modeling for bone metastasis

In the Introduction, we presented briefly the main mathematical models concerning
bone remodeling and bone metastasis. Here, we further the discussion to make our moti-
vation clearer. Recently, some works have been focused on modeling the role of the BMU
cells in cancer-induced bone diseases, especially in the case of multiple myeloma: Ayati
et al. (2010) based on a Komarova type model included a new equation for the cancer
cells with a Gompertz growth function, Wang et al. (2011) extended the linear differential
system proposed in Pivonka et al. (2008) by introducing a logistic equation by cancer cells,
and Ji et al. (2014) modified the previous model by using Hill functions to represent the
osteoclasts and osteoblasts interactions. In all these works, a numerical simulation of the
behavior of the solution and a discussion of these results were carried out. Also, steady
states were usually obtained but an equilibrium dynamical analysis was missed. Such
analysis is particularly difficult to perform for nonlinear differential equations, although it
usually provides significant information about model parameters. Therefore, this Chap-
ter is a contribution in such direction and we are interested in modeling bone metastasis
disease.

In this Chapter, we extend the nonlinear model proposed in Section 1.1.2 for the BMU
process in order to describe the dynamics between the tumor, osteoclast and osteoblast
cells on a site of bone remodeling. The osteoclasts and osteoblasts equations are of Ko-
marova type. The cancer growth is defined by a logistic function and the interactions
terms between the three populations are proposed according to biological information.
Via a stability analysis of equilibria, we obtain knowledge about the significant factors in
the success or failure of bone metastasis. Moreover, we present numerical simulations that
show diverse dynamical interactions of the osteoclast-osteoblast-cancer cells. The results
obtained by our model are contrasted with the known behaviors of bone mass when bone
metastasis occurs. A better understanding of the interactions between the tumor and
BMU cells could help to improve treatments or even to develop treatments in order to
eradicate bone metastasis.

The Chapter is organized as follows: In Section 2.1, first we describe a normal cycle
of the BMU cells and later we display how the cancer cells distort the osteoclasts and
osteoblasts communication causing serious bone diseases. In Section 2.2, we construct
a nonlinear differential system that describes the osteoclast-osteoblast-cancer interactions
based on a simplified Komarova model along with a cancer logistic equation. An equilibria
analysis of the two steady states –cancer-free and cancer-invasion– of the proposed system
is carried out and their stability conditions are obtained in Section 2.3. In Section 2.4,
numerical simulations are performed to show the different behaviors of the solution as
well as to carry out a sensitivity analysis of certain significant parameters. We finish this
Chapter with a summary of the results.

2.1 Bone metastasis: the role of BMU in tumor expansion

As we mentioned before, in their eagerness to proliferate cancer cells send signaling sub-
stances which distort the communication between the BMU cells. This interference in
the interplay between osteoclasts and osteoblasts leads to serious bone diseases in cancer
patients (Phan et al., 2004): osteoporosis, osteopetrosis, Paget’s disease, osteoarthritis, pe-
riodontal disease, osteogenesis imperfecta, etc. In all these diseases, the usual treatment
is to try to recover a normal regulation of BMU. For example, experimental studies show
that neutralizing antibodies that act against PTHrP or using agents that specifically de-
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2.2. OC-OB-CC model

crease expression PTHrP or treatment of OPG can prevent high bone destruction. Thus,
to have a better understanding of bone metastasis could allow the design of more effective
treatments. In this direction with a non-invasive method using mathematical modeling,
one of our goals is to identify which are the significant factors in bone metastasis. Using
the biological considerations displayed in Chapter 1.1, in the next Section we will construct
a model to describe bone metastasis dynamics based on the interaction between the BMU
and cancer cells.

2.2 OC-OB-CC model

We focus on the Komarova biochemical-simplified model presented in Section 1.1.2:{
C ′ = C(α1B

γ1 − β1),
B′ = B(α2C

γ2 − β2), (2.1)

where C = C(t), B = B(t) are the number of osteoclasts and osteoblasts, respectively,
and the symbol ′ denotes the derivative of C or B with respect to time. Recall that α
and β parameters are positive, whereas γ1 < 0 and γ2 > 0. For discussion on the model
parameters, please refer to Section 1.1.2.

In the following, we extend this model in order to include a new equation for cancer
cells and incorporate new terms of the interactions between the three cell populations:
osteoclasts (OCs), osteoblasts (OBs) and cancer cells (CCs). Taking into account the
mechanisms of the bone metastasis dynamics exposed in the previous Section, and also
the base hypotheses (H1 )–(H6 ) from 1.1.2, we assume the following hypotheses related to
cancer dynamics in constructing our model:

(H1’ ) There are not external influence on the osteoclast, osteoblast and cancer populations,
that is, the OC-OB-CC system is isolated.

(H2’ ) CCs have a logistic growth which is a natural behavior when there are limited re-
sources.

(H3’ ) CCs and OBs can have a mutualism or competitive relationship depending on the
bone lesion considered.

(H4’ ) CCs and OCs have a mutualism relationship.

(H5’ ) The death of CCs is due to inherent factors in the bone microenvironment and it is
assumed to be proportional to the population of cancer cells.

Based on the previous hypotheses, we propose the following OC-OB-CC model:
C ′ = α1CB

γ1 − β1C + σ1CT,
B′ = α2C

γ2B − β2B + σ2BT,

T ′ = α3

(
1− T

K

)
T + (σ3C

γ2 + σ4v
γ1)T − β3T,

(2.2)

where T = T (t) is the number of cancer cells; the cell production and apoptosis rates of the
three cell populations are denoted by αi and βi for i = 1 (OCs), 2 (OBs), 3 (CCs); the pos-
itive coefficient K is the carrying capacity of tumor cells in the bone environment. Finally,
the constants σ’s represent the mutualism and competence between all cell populations.
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For the mutualism case between two populations, the coefficient σj , for j = 1, . . . , 3,
is positive, otherwise a negative σ is associated to a competitive relationship. In the case
σ4 > 0 osteoblasts have a negative effect on the growth of cancer cells due to the negative
exponent γ1; the opposite effect is achieved if σ4 < 0. Thus, taking into account hypotheses
(H3’ )-(H5’ ) based on experimental observations, σ1 and σ3 are considered positive and σ2
and σ4 can be positive or negative, both cases will be analyzed. The term σ3C

γ2 + σ4v
γ1

that appears in the third equation of system (2.2) describes the OC-OB-contribution to
the tumor growth. Notice that it is regulated by the paracrine signaling of the osteoclast
and osteoblast populations which is an approximation to facilitate the posterior analysis
of the system. However, a more general functional form can be considered as we will show
in Section 2.4.

In order to simplify the formulation of system (2.2), we define the following dimen-
sionless variables:

C̄ =
(α3

α2

)− 1
γ2C, B̄ =

(α3

α1

)− 1
γ1B, T̄ =

T

K
; t̄ = α3t.

Substituting them into the OC-OB-CC model we obtain the equivalent dimensionless
system: 

C̄ ′ = C̄
(
B̄γ1 + a1T̄ − b1

)
,

B̄′ = B̄
(
C̄γ2 + a2T̄ − b2

)
,

T̄ ′ = T̄
(

1− T̄ + a3C̄
γ2 + a4B̄

γ1 − b3
)
,

(2.3)

where
a1 =

Kσ1
α3

, a2 =
Kσ2
α3

, a3 =
σ3
α2
, a4 =

σ4
α1
, bi =

βi
α3
,

for i = 1, 2, 3. Taking into account the signs of the original coefficients, we know that
a1, a3 > 0, bi > 0 and coefficients a2 and a4 can be positive or negative.

Let us define the set Ω3
+ = {(x, y, z) : x, y > 0, z ≥ 0} ⊂ R3

+. Observe that the
functions on the right side of system (2.3) are locally Lipschitz continuous with respect to
(C̄, B̄, T̄ ) on Ω3

+. Thus for any initial condition (C̄0, B̄0, T̄0) ∈ Ω3
+ there exists a unique

solution in Ω3
+. Analogously, the previous statement is also satisfied for system (2.2).

In the next Section, we will give the stationary solutions of system (2.2). The equilibria
of this system consist of two equilibrium points: one free of cancer in the bone site and
the other with an invasion of cancer cells. In order to know the significant factors in the
success of bone metastasis, a stability analysis of equilibria will be carried out using the
dimensionless system.

2.3 Equilibria and stability analysis

System (2.3) has two steady states, so using the equivalence between the systems (2.2)
and (2.3), the stationary points in the original variables are given by the following:

• Cancer-free equilibrium.

C∗F =

(
β2
α2

) 1
γ2

, B∗F =

(
β1
α1

) 1
γ1

, T ∗F = 0. (2.4)
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2.3. Equilibria and stability analysis

Notice that the T ∗F is zero since it represents the number of the cancer cells in the bone
system.

• Cancer-invasion equilibrium.

C∗I =

(
α1(rβ2 + β3σ2 − α3σ2)− σ4(β1σ2 − β2σ1)

d

) 1
γ2

,

B∗I =

(
α2(rβ1 + β3σ1 − α3σ1)− σ3(β1σ2 − β2σ1)

d

) 1
γ1

,

T ∗I =
α1α2α3 − α1α2β3 + α1σ3β2 + α2σ4β1

d
,

(2.5)

where r =
α3

K
and d = α1α2r + α1σ2σ3 + α2σ1σ4. This state describes when the

maximum population of cancer cells is reached due to the limit of the bone system
resources.

Next, we obtain sufficient conditions for the stability of each stationary solution. To
study the stability of the above states, we use the standard analysis that consists of:
linearizing the OC-OB-CC system (2.3) around equilibrium solutions by calculating the
Jacobian matrix of the system and to get the characteristic polynomial associated to the
Jacobian matrix, PJ(s) where s := (C∗, B∗, T ∗). As a matter of fact, the stability of the
equilibrium depends on the signs of the real part of the roots of the PJ . In the case that
their roots cannot be obtained explicitly a useful tool is given by the Routh-Hurwitz (R-H)
criterion, see Appendix A.

2.3.1 Cancer-free equilibrium

The characteristic polynomial associated to the cancer-free equilibrium (2.4) of system
(2.3) is

PJ(s) =
(
−b1b2γ1γ2 + s2

)
(−b1a4 − b2a3 + b3 + s− 1) .

The roots of this polynomial are

sF1 = +i
√
−b1b2γ1γ2, sF2 = −i

√
−b1b2γ1γ2, sF3 = 1 + b1a4 + b2a3 − b3. (2.6)

Since sF1 and sF2 do not have real part, the stability of (C∗F , B
∗
F , T

∗
F ) is given by the

third root. For sF3 positive, this steady state is unstable but if it is negative then a linear
analysis is not conclusive. However, when the cancer-free equilibrium is attained then
system (2.2) is a particular case of the OC-OB system (2.1). So, taking into account
Theorem 1.1, we state the following result:

Theorem 2.1. The OC-OB-CC system with any initial condition (C0, B0, T0) ∈ Ω3
+

and verifying condition (1.2) has a locally stable cancer-free equilibrium solution, EF :=
(C∗F , B

∗
F , T

∗
F ), defined in (2.4) if

β2σ3
α2

+
β1σ4
α1

< β3 − α3. (2.7)
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Moreover, OC-OB-CC system has a unique periodic solution which oscillates around((
β2
α2

) 1
γ2

,

(
β1
α1

) 1
γ1

, 0

)
.

If inequality (2.7) is not fulfilled then EF is unstable.

Proof. Inequality (2.7) is obtained forcing to satisfy sF3 < 0 and substituting into
this inequality the original coefficients of model (2.2). The periodicity of the solution is
straightforward of Theorem 1.1.

Inequality (2.7) provides the conditions for which cancer cells can be removed from the
bone system. Analyzing the biological sense of this inequality we conclude that in order to
eliminate the tumor some of the following behaviors between the osteoclasts, osteoblasts
and cancer cells have to be given:

• If σ4 > 0 then a slow growth of the cancer cells along with a fast death of them (α3 ↓↓
versus β3 ↑↑).

• If σ4 < 0 then a fast growth of osteoblasts and a poor support of the osteoclasts to the
cancer cells (α2 ↑↑ versus σ3 ↓↓).
Both cases will be shown in Section 2.4

2.3.2 Cancer-invasion equilibrium

In this case, it is difficult to find the roots of the characteristic polynomial associated to
the Jacobian matrix on (C̄∗I , B̄

∗
I , T̄

∗
I ). So for simplicity we consider σ4 = 0. Biologically, it

means that the population of osteoblast cells only affects indirectly the growth of cancer
cells by activating the population of osteoclast cells. Assuming that, we have:

PJ(s) =

s3 +
{
b3 − b2a3 − 1 +

(
a2a3 + 2

)
T̄ ∗I

}
s2

+γ2

{
− b1b2γ1 +

(
b1a2γ1 − b2a1a3 + b2a1γ1

)
T̄ ∗I +

(
a1a2a3 − a1a2γ1

)
(T̄ ∗I )2

}
s

+γ1γ2

{
b1b2(b2a3 − b3 + 1) +

(
b1a2(b3 − 1)− b1b2(3a2a3 − 2)− b2a1(b2a3 − b3 + 1)

)
T̄ ∗I

+
(

2b1a3a
2
2 + 2b1a2 + a1a2(3b2a3 − b3 + 1) + 2b2a1

)
(T̄ ∗I )2 − 2a1a2

(
a2a3 + 1

)
(T̄ ∗I )3

}
,

(2.8)
where T̄ ∗I = (1 + a3b2 − b3)/(1 + a2a3) is the third component of the steady state of the
dimensionless system when a4 = 0. Given that the coefficient a2, from σ2 of model (2.2),
can be positive (a mutualism relationship between OBs and CCs) or negative (competi-
tive relationship between OBs and CCs), we distinguish both cases in our analysis. The
following theorem summarize the results obtained.

Theorem 2.2. The OC-OB-CC system with any initial condition (C0, B0, T0) ∈ Ω3
+ and

verifying condition (1.2) has a locally asymptotically stable cancer-invasion equilibrium
solution, EI := (C∗I , B

∗
I , T

∗
I ), defined in (2.5), if σ2 < 0, σ4 = 0 and these three inequalities

(i)
β3 − α3

σ3
<
β2
α2
, (ii)

|σ2|
α2

<
α3

σ3
, (iii) T ∗I

(
1− α3

|σ2|γ1

)
<
β1
σ1
,

are verified. If σ2 > 0 then EI is unstable.
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Proof. Condition (i) is imposed so that the cancer-free equilibrium, EF , is unstable
and taking into account that σ4 = 0. Now, in order to get that all the roots of the
polynomial (2.8) have negative real part, we impose the Routh-Hurwitz conditions, see
Appendix A. If σ2 < 0 then a2 < 0 and we get the following inequalities:

0 < T̄ ∗I ; T̄ ∗I

(
1 +

1

a2γ1

)
<
b1
a1

; −a2 <
1

a3
.

The first inequality is always satisfied and the other two give conditions (ii) and (iii)
when the dimensionless coefficients are replaced by the original one. However, if σ2 > 0
then a2 > 0 and the condition (C2) in the R-H criterion is never satisfied then under these
conditions the cancer-invasion equilibrium is always unstable.

Analogously to the equilibrium EF , we analyze the biological sense of inequalities (i)-
(iii) and conclude that for a successful cancer invasion in the bone microenvironment then
several of the following conditions should occur:

• Cancer cells have to have fast growth (α3 ↑↑).

• Cancer should not stimulate the growth of osteoclasts too much (σ1 ↓↓).

• A strong competition by the resources, like TGF-β and IGF-I, between osteoblasts and
the cancer cells (σ2 ↑↑) or more control of osteoblasts on osteoclasts (|γ1|↑↑).

Next, we shall show numerical simulations of the different behaviors of the solution of
the OC-OB-CC system (2.2) in order to illustrate the qualitative results proved in this
Section. Unfortunately, we do not have experimental data of the populations of osteoblasts
and osteoclasts in presence of cancer cells, but there is “known” information about their
qualitative behavior given by the diseases associated with a bone tumor. So, we shall
validate our OC-OB-CC model based on the metastatic lesions disclosed in Section 2.1.

2.4 Simulations and discussion

Here we illustrate the different behaviors of the solution of the OC-OB-CC system proposed
previously in order to describe the diverse scenarios of the bone metastasis evolution. We
are also interested in the changes in bone mass associated with the distinct behaviors of
the three populations so the percentage of bone mass is also shown.

Numerical simulations of system (2.2) are calculated by using the values of the pa-
rameters in Table 1.4 (baseline parameters) and Table 2.1 (cancer-associated dynamics),
where a carrying capacity of tumor cells of K = 300 is considered. We did not have access
to quantitative data, from the literature or from a laboratory, to perform a parameter
estimation from experiments. Thus, we estimated the values so that the number of OCs
was at least 1 order of magnitude smaller than the number of OBs (Komarova et al., 2003)
and such that simulations did not present blow-up of solutions. We briefly describe each
scenario considered here:
• Periodicity 1. This is a cancer-free scenario in which the initial CC population goes

extinct and where there is no contribution from OBs to CCs (σ4 = 0).

• Periodicity 2. Here, we explore a hypothetical inhibited elimination of CCs due to OB
factors (σ4 < 0, γ1 < 0).
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Parameter Cancer-Free Cancer-Invasion
(units) Periodicity 1 Periodicity 2 Mixed Lesion Osteolytic Lesion

α3 (day−1) 0.045 0.055 0.055 0.055
β3 (day−1) 0.05 0.05 0.05 0.05

σ1 (cell−1day−1) 0.001 0.001 0.001 0.0005
σ2 (cell−1day−1) -0.00005 -0.00005 -0.005 -0.009
σ3 (cell−1day−1) 0.005 0.005 0.001 0.001
σ4 (cell−1day−1) 0.0 -0.015 0.0 0.0
k1 (cell−1day−1) 0.07 0.07 0.02 0.02
k2 (cell−1day−1) 0.0022 0.0022 0.003 0.003

Table 2.1: Parameter values for system (2.2) and bone mass equation (1.4). Additionally,
K = 300 is considered for the four cases.
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Figure 2.1: Cancer-free behavior of OC-OB-CC system (2.2) and bone mass (1.4) for a
patient with bone metastasis with initial condition (C0, B0, T0, z0) = (10, 5, 20, 95) using
parameters of the Periodicity 1 column.

• Mixed Lesion. In this scenario, tumor invades bone such that OCs and OBs increase
considerably. Bone mass increases abnormally and then decreases due to inhibition of
OBs.

• Osteolytic Lesion. Here, a persistent number of OCs and CCs co-exist at considerable
levels while the number of OBs decreases. Bone mass is reduced rapidly.
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Periodicity 2
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Figure 2.2: Cancer-free behavior of OC-OB-CC system (2.2) and bone mass (1.4) for a
patient with bone metastasis with initial condition (C0, B0, T0, z0) = (10, 5, 20, 95) using
parameters of the Periodicity 2 column.
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Figure 2.3: Cancer-invasion behavior of OC-OB-CC system (2.2) and bone mass (1.4)
for a patient with bone metastasis with initial condition (C0, B0, T0, z0) = (10, 5, 1, 95)
using parameters of the Mixed Lesion column.
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Osteolytic Lesion
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Figure 2.4: Cancer-invasion behavior of OC-OB-CC system (2.2) and bone mass (1.4)
for a patient with bone metastasis with initial condition (C0, B0, T0, z0) = (10, 5, 1, 95)
using parameters of theOsteolytic Lesion column.

For the cancer-free equilibrium, if the death rate of cancer cells is greater than its
growth rate then, there is a fast decline of the tumor and a normal periodicity of osteoclasts
and osteoblasts is recovered, see Figure 2.1. However, when α3 > β3 it is necessary that
σ4 < 0 in order to get a stable cancer-free stationary state. An example of the behavior of
the solution for this case is also shown in Figure 2.2. Notice that the periodicity of the OC,
OB and bone mass solutions is recovered as time increases. In both periodicity cases, the
parameter setting from Table 2.1 satisfies the stability conditions from Theorem 2.1. In
Figures 2.3 and 2.4, we show the behaviors of the solution curves for system (2.2) and bone
mass equation (1.4) when cancer does not disappear but reaches its maximum population
limit. For such cancer-invasion case, the ravages of cancer on the bone matrix structure
are reflected in the percentage of bone mass. In Figure 2.3, a mixed metastatic lesion is
shown; initially, a high bone formation is presented followed by strong bone resorption.
On the other hand, in Figure 2.4, we also show a lesion of the osteolytic type on the right
graphs. In both cases, notice that there is an abnormal increase in the values of osteoclasts
and osteoblasts which triggers a malfunction of the BMU cells. Observe that the type of
lesions is directly linked to the values of the coefficients σ1 and σ2, which give information
about how cancer affects the osteoclast and osteoblast populations.

A bifurcation analysis provides interesting results since changes of the sign of the
coefficient σ4 leads to different stationary states of the solution. We chose to explore this
parameter because the role of osteoblasts on the growth of the tumor is still under research.
Thus, we consider σ4 as a bifurcation parameter. Varying it, we obtain the diagram given
in Figure 2.5 where we show the stability and instability of the two equilibrium solutions
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Figure 2.5: Bifurcation diagrams with respect to σ4 using Periodicity 2 column in Table
2.1. Solid lines: Stable. Dashed lines: Unstable. Dashed-dot lines: Oscillations.

for the population of cancer cells. Notice the small parameter regime where the cancer
cells can not survive. Also, along the branch of cancer-invasion, periodic solutions can be
found. Therefore, showing a potential coexistence between all type of cells. In summary,
there are three regions where different behavior is found:

• Region A: In this region, CCs go extinct and the BMU returns to a periodic, cancer-free
oscillatory behavior.

• Region B: In this region, the cancer-invasion steady-state appears as a stable equilib-
rium, showing a transient co-existence of OCs, OBs and CCs.

• Region C: In this region, a Hopf bifurcation H appears, and the dynamical system
oscillates unstably around the cancer-invasion steady-state.

2.4.1 A generalized term

As we mentioned previously, here we propose a more general functional form for the term
that describes the contribution of osteoclasts and osteoblasts to the tumor growth. So,
we replace the third equation of the OC-OB-CC model (2.2) for the following generalized
cancer equation:

T ′ = α3

(
1− T

K

)
T + (σ3C

γ3 + σ4v
γ4)T − β3T, (2.9)

and we refer to the new system as the generalized OC-OB-CC model.
In the following, we analyze numerically the generalized system varying the value of

the exponents γ3 and γ4. According to the relationships between the three populations,
we assume that γ3 > 0, however, it is not clear how is the OB-CC paracrine-signaling
which is represented by γ4. Thus, we first consider σ4 = 0 and vary γ3 between 0 and
1 and then we study the more general case fixing γ3 and varying the values of σ4 and
γ4. As expected, the changes in the value of γ3 affect the magnitude of the populations
and the time period of the BMU cycles but the profile of the OC-OB-CC equilibrium
solution is conserved, see Figure 2.6. Now we consider the parameters values proposed in
the Periodicity 2 column of Table 2.1, fix γ3 = 0.5 and give three different values of the
exponent γ4 (positive and negative). We obtain three different solutions which are shown
in Figure 2.7 on the left graphs. Analogously, considering σ4 = 0.001 and the parameter
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setting given in mixed lesion column in Table 2.1 we present in the same figure on the
right graphs the profile of the solutions associated to the same three values of γ4. We can
observe that the equilibrium solution does not change although γ4 is modified. Thus, we
can conclude that the inclusion of the equation (2.9) in the OC-OB-CC model does not
change the qualitative behavior of the OC-OB-CC solution.

Periodicity 1

0 500 1000 1500 2000
Time t (days)

0

10

20

30

O
st

eo
cl

as
tC

(c
el

ls
)

0 500 1000 1500 2000
Time t (days)

0

2000

4000

6000

8000

10000

O
st

eo
bl

as
tB

(c
el

ls
)

γ3 = 0.95
γ3 = 0.5
γ3 = 0.1

0 500 1000 1500 2000
Time t (days)

0

20

40

60

80

C
an

ce
rc

el
ls

T
(c

el
ls

)

0 500 1000 1500 2000
Time t (days)

90

100

110

120

130

140
B

on
e

m
as

s
z

(d
en

si
ty

)

Mixed Lesion

0 500 1000 1500 2000
Time t (days)

0

20

40

60

O
st

eo
cl

as
tC

(c
el

ls
)

0 500 1000 1500 2000
Time t (days)

0

1000

2000

3000

4000

5000

6000

O
st

eo
bl

as
tB

(c
el

ls
)

γ3 = 0.95
γ3 = 0.5
γ3 = 0.1

0 500 1000 1500 2000
Time t (days)

0

10

20

30

40

50

C
an

ce
rc

el
ls

T
(c

el
ls

)

0 500 1000 1500 2000
Time t (days)

60

80

100

120

B
on

e
m

as
s

z
(d

en
si

ty
)

Figure 2.6: Sensitivity analysis for (2.9) with respect to γ3 considering parameters of
Periodicity 1 column with initial condition (C0, B0, T0, z0) = (10, 5, 50, 95) (left) and
Mixed Lesion column with (C0, B0, T0) = (5, 5, 1) (right).
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Figure 2.7: Sensitivity analysis for (2.9) with respect to γ4 considering parameters of
Periodicity 2 column with initial condition (C0, B0, T0) = (10, 5, 20) (left) and Mixed
Lesion column with (C0, B0, T0) = (5, 5, 1) (right).
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Chapter 2. Mathematical modeling for bone metastasis

Discussions

In this Chapter, we constructed a model that describes the evolution of bone metastasis
disease based on the interactions between the osteoclast, osteoblast and cancer cells. Such
a model was derived according to the experimental knowledge of the osteoclast-osteoblast
relationship and the ’vicious cycle’ hypothesis for bone metastasis. The model fills a gap
in the literature since we couple cancer dynamics with the BMU dynamics, a feature not
considered in Ayati et al. (2010).

In our model, there are two equilibrium solutions: one cancer-free and another cancer-
invasion. What are the key elements that could dictate that cancer cells sometimes colonize
bone and sometimes they do not? A stability analysis could answer partially this questions.
Stability conditions for model parameters were obtained for both steady states, which were
useful to deduce the most significant coefficients in the success or failure of bone metastasis.
We found that the colonization of cancer cells depends on convoluted relationships between
BMU parameters (that is, OCs-OBs system without cancer) and cancer dynamics. Here,
mathematical and biological knowledge must face each other. The stability conditions may
pose experimental settings to corroborate or refute the mathematical conditions for failure
or success of a bone metastatic invasion. This is an essential feedback loop in Applied
Mathematics, and we hope to find interested colleagues in performing experiments that
may be suggested by our mathematical model.

In order to give support to the analytical results, we also performed numerical simula-
tions. We found different behaviors of the solution of the OC-OB-CC model. Parameter
setting for simulations was given according to qualitative experimental data. As mentioned
earlier, further quantitative experiments may serve to perform a more accurate parameter
fitting. A novel bone mass equation was proposed, based on the comparison of the number
of osteoclasts and osteoblasts with an OC-OB reference value for a healthy person. Via
simulations, we realized that our model is able to describe the different three types of
bone diseases caused by bone metastasis: osteolytic lesion, osteoblastic lesion, and mixed
lesion. Numerical results validated and illustrated the cancer-free and cancer-invasion
equilibrium solutions. We discovered, with a numerical bifurcation analysis, that there is
a key coefficient for the change of stability of the equilibria and also for the existence of
bifurcation points. In particular, we recovered an oscillatory regime for cancer-invasion
dynamics that resembles the one of the OCs-OBs system from Komarova et al. (2003).

In the next Chapter, we focus on using optimal control tools in order to describe the
effects of different treatments for bone metastasis disease.
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Chapter 3

Conventional bone metastasis
treatments as optimal control
problems∗

As mentioned in the previous Chapter, several factors may disrupt the cross-talk between
osteoclasts and osteoblasts, thereby causing bone diseases such as osteoporosis or osteopet-
rosis. In particular, the presence of metastatic cancer cells at the bone microenvironment
is one of these factors (Florencio-Silva et al., 2015). Metastasis occurs when cancer cells
spread from an initial body part, -like breast or prostate cancer-, to distant tissues, -like
brain, lungs or bone-. The ‘Seed & Soil’ theory (Paget, 1889) explains that cancer cells
(the seeds) have preference to certain microenvironments (the soil) to metastasize. Breast
and prostate cancers are the most common cancers that have high potential to form bone
metastases; the former is known to cause osteolytic lesions, while the latter usually ex-
hibits osteoblastic lesions. There is multiple evidence that supports the idea that there are
many complex biochemical interactions between metastatic cells and the bone microenvi-
ronment, bringing up the hypothesis of the development of a vicious cycle that the BMU
cells support cancer cells proliferation (Mundy, 2002; Theriault & Theriault, 2012).

Considering that one of the main causes of death in cancer patients is metastases for-
mation (Massagué & Obenauf, 2016), this disease has received much attention in the last
years so to understand its mechanisms. It is known the difficulty and limitations of in
vivo and in vitro bone metastasis experiments (Kwakwa et al., 2017), thus mathematical
modeling may be another approach to obtain insights about the disease and try to vali-
date some posed biological hypotheses. The number of this kind of works is considerably
reduced. Lemaire extensions that model these phenomena include: Wang et al. (2011)
in which multiple myeloma-induced bone disease is studied based on the bone remod-
eling model presented in Pivonka et al. (2008), and Farhat et al. (2017) which focuses
specifically to model bone metastatic prostate cancer. Biochemical-simplified models that
consider BMU-disregulation due to cancer are: Ayati et al. (2010) which focus on multiple
myeloma and the BMU dynamics; Garzón-Alvarado (2012) where both metastatic bone
lesions are studied via a switch term included in the model; in Ryser et al. (2012) the OPG
concentration is proposed as a key parameter mediating the bone metastasis; Coelho et al.

∗This Chapter is based on Camacho, A., Jerez, S. (2019). Bone metastasis treatment modeling via
optimal control. Journal of Mathematical Biology, 78(1–2), 497–526.
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Chapter 3. Conventional bone metastasis treatments as optimal control problems

(2016) include parathyroid hormone concentration effects and a novel way to determine
the number of active osteoclasts and osteoblasts; and Chapter 2 where a logistic cancer
equation is coupled to a Komarova bone remodeling model for describing the bone metas-
tasis vicious cycle. From a new approach, in Dingli et al. (2009) and Warman et al. (2018)
treatments for multiple myeloma and prostate cancer-induced bone disease are modeled
as evolutionary games.

Despite important advances in understanding bone metastasis mechanisms, this dis-
ease is still considered incurable (Juárez et al., 2017). Palliative treatments for bone
metastases are used to reduce pain and to prevent adverse consequences such as bone
fractures and spinal cord compression. In this Chapter, we focus on two bone metastasis
palliative treatments: denosumab and radiotherapy. Denosumab is a fully human mono-
clonal antibody to RANKL that acts similarly as OPG and its effectiveness in delaying
the appearance of skeletal-related events has been proved (Theriault & Theriault, 2012).
Some of the side-effects of denosumab are urinary tract infection, upper respiratory infec-
tion, hypocalcemia, and osteonecrosis of the jaw (Lipton et al., 2016). On the other hand,
radiotherapy is a treatment that consists of using radiation beams in localized areas of the
body to kill cancer cells by damaging their DNA (Lutz et al., 2017). It is estimated that
around 50% of cancer patients receive this treatment (Barker et al., 2015). Bone loss is
one of the side-effects related to radiotherapy (Zhang et al., 2018). The search for optimal
schedules and doses for these bone metastasis treatments continues (Chow et al., 2014;
Lipton et al., 2016; Ganesh et al., 2017).

As we mentioned before, it is difficult to make in vivo or in vitro experiments to
study the precise effects of bone metastasis treatments, so mathematical modeling can be
an alternative approach. A way to model treatments for some disease is via an optimal
control problem associated with the differential model that describes the disease. This
framework is based on the idea of minimizing an expression that involves the cost of using
a treatment while reducing the hazardous effects by the presence of the disease over time
(Lenhart & Workman, 2007). This mathematical tool was used by Lemos et al. (2016) to
model treatments for multiple myeloma but has also been employed to study treatments in
other biomedical models (Swan, 1990; Fister et al., 1998; Pillis & Radunskaya, 2003). Here,
we are interested to find optimal treatments for the denosumab and radiation therapies
since significant information about effects on BMU and collateral damage is known for
both treatments. The latter is essential for the mathematical modeling process and model
validation. It is important to remark that there are other novel treatments with intrinsic
relevance; unfortunately, we do not have enough information about them. It is our hope
that this Chapter can be used to motivate the generalization of our results for different
therapies.

In the present Chapter, we propose two optimal control models: one for denosumab
treatment, and another for radiotherapy. Both of them are based on the bone metastasis
biochemical-simplified model proposed in Chapter 2, that describes the dynamics between
cancer cells and the main BMU cells. We consider this model as a starting point since
it is possible to obtain explicitly the steady-states associated with the cancer-free and
cancer-invasion scenarios. Furthermore, we have conditions for the local stability of these
equilibria. We also prove the existence and uniqueness of solutions for both optimal
control models mentioned previously. Such mathematical achievement is of paramount
importance for the numerical analysis of the models. The simulations that we obtain
agree qualitatively with clinical observations about the evolution of metastatic tumors on

46



3.1. Bone metastasis base model
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Figure 3.1: Diagrams representing simplified interaction networks in an osteolytic le-
sion (left) and in an osteoblastic or mixed lesion (right). Dashed lines represent inhibi-
tion/degradation (negative) effects, and solid lines represent promotion/formation (posi-
tive) effects.

in silico experiments and on animal models. Moreover, we explore cancer-BMU dynamics
for each treatment under different cancer-invasion scenarios.

The Chapter is organized as follows. In Section 3.1, the bone metastasis base model
is presented and discussed. Next, in Section 3.2 we propose mathematical models for two
bone metastasis treatments (denosumab and radiotherapy) as optimal control problems.
In Sections 3.3 and 3.4, an optimal control framework is utilized to show existence and
uniqueness of solutions, and also to pose the corresponding optimality systems. Finally,
in Section 3.5 qualitative effects of treatment regimes are obtained computationally. Nu-
merical simulations and discussions are presented.

3.1 Bone metastasis base model

The base model can be found in Section 1.1.2 and in the previous Chapter. Here, we recall
the main biological assumptions:

• There are autocrine and paracrine communications between osteoclasts (hereafter OCs)
and osteoblasts (hereafter OBs) which modifies the recruitment and inhibition rates of
the cells (Florencio-Silva et al., 2015). This cross-talk is approximated as a power-law
(Komarova et al., 2003). See also Chapter 1.1.

• Bone metastatic cells (hereafter CCs) express a number of biochemical factors that
modify bone homeostasis, such as parathyroid hormone-related peptide (PTHrP) and
interleukins (ILs) (Mundy, 2002; Ottewell, 2016). For instance, PTHrP enhances OBs
expression of RANKL, thereby increasing the number of active OCs; also, OCs resorb
bone which causes the release of growth factors such as TGF-β than increase the pro-
duction of PTHrP (Mundy, 2002). Thus, we assume that the communication between
OCs and CCs have positive effects on both populations (mutualism).

• The OBs–CCs communication loop is not completely known (Ottewell, 2016). In the
case of an osteolytic lesion, the presence of OBs may not directly impact the prolifer-
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Chapter 3. Conventional bone metastasis treatments as optimal control problems

ation of CCs and vice versa. On the other hand, for an osteoblastic lesion, the OBs
population may increase due to osteoblast-promoting factors produced by CCs such as
IL-6. Therefore, we assume that the communication between OBs, and CCs may have
positive, negative or null effects on these populations.

• Finally, we also assume that CCs population satisfies a logistic equation which is pe-
nalized by a linear elimination rate that reflects the adaptability of CCs to the bone
microenvironment (Farhat et al., 2017).

For a schematic representation of the assumptions see Fig. 3.1.

Let us denote by C(t), B(t) and T (t) the population of OCs, OBs and CCs at a certain
time t, respectively. Thus, the base model is as follows:

dC(t)

dt
= α1C(t)B(t)g1︸ ︷︷ ︸

OCs inhibition by OBs

−β1C(t) + σ1C(t)T (t),︸ ︷︷ ︸
OCs promotion by CCs

(3.1a)

dB(t)

dt
= α2C(t)g2B(t)︸ ︷︷ ︸

OBs promotion by OCs

−β2B(t) + σ2B(t)T (t),︸ ︷︷ ︸
CCs net effect on OBs

(3.1b)

dT (t)

dt
= α3T (t)

(
1− T (t)

m

)
− β3T (t) + σ3C(t)g2T (t)︸ ︷︷ ︸

CCs promotion by OCs

+ σ4B(t)g1T (t)︸ ︷︷ ︸
OBs net effect on CCs

. (3.1c)

For a discussion of the model parameters, we refer the reader to Section 1.1.2.

3.1.1 Cancer-free and cancer-invasion equilibria

In Chapter 2, the existence of cancer-free and cancer-invasion steady-states of the model
(3.1) is assured and explicit expressions for them are found. Here, we recall those results.
The cancer-free equilibrium is given by:( (

β2
α2

) 1
g2

,

(
β1
α1

) 1
g1

, 0

)
,

which is locally stable if g1g2 < 0 and β2σ3
α2

+ β1σ4
α1

< β3 − α3. On the other hand, the
cancer-invasion equilibrium, denoted by EI = (CI , BI , TI), can be expressed as:

CI =

(
α1(rβ2 + β3σ2 − α3σ2)− σ4(β1σ2 − β2σ1)

α1α2r + α1σ2σ3 + α2σ1σ4

) 1
g2

,

BI =

(
α2(rβ1 + β3σ1 − α3σ1)− σ3(β1σ2 − β2σ1)

α1α2r + α1σ2σ3 + α2σ1σ4

) 1
g1

, (3.2)

TI =
α1α2α3 − α1α2β3 + α1σ3β2 + α2σ4β1

α1α2r + α1σ2σ3 + α2σ1σ4
,

where r = α3/m. If σ2 < 0 and σ4 = 0, then the cancer-invasion steady-state EI is locally
stable if these three inequalities hold:

β3 − α3

σ3
<
β2
α2
,
|σ2|
α2

<
α3

σ3
, and CI

(
1− α3

|σ2|g1

)
<
β1
σ1
. (3.3)
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3.2. Bone metastasis treatment models

Figure 3.2: Diagrams representing simplified interaction networks in an osteolytic le-
sion (left) and in an osteoblastic or mixed lesion (right). Dashed lines represent inhibi-
tion/degradation (negative) effects, and solid lines represent promotion/formation (posi-
tive) effects.

Note that if we let σ2 > 0 and σ4 = 0 then EI is unstable. Also, note that these are
sufficient conditions for EI to be locally stable but not necessary conditions.

Up until now, we have not presented new results. The objective of this Chapter is to
explore control strategies for bone metastasis. As such, we predict the local behavior of the
solutions around the corresponding steady-states, being the cancer-invasion equilibrium
of great importance. If the cancer-invasion equilibrium is locally stable, then CCs may
colonize the bone tissue if there are enough of these cells; if this equilibrium is unstable,
then an erratic invasion (increasing oscillations) or an elimination of CCs may occur. This
information is be used on Section 3.5 for the numerical simulations results.

3.2 Bone metastasis treatment models

In this Section, we present two mathematical models for bone metastasis treatments:
denosumab and radiotherapy treatments. These two treatments modify the cellular be-
havior of OCs, OBs and CCs. Since these three cellular populations are intertwined in an
intricate communication network mediated mainly by biochemical factors, it is difficult to
predict the overall dynamics of the BMU under treatments. Our goal is to understand the
CCs-BMU dynamics and to address the question about the best way to dose those two
treatments. For that matter, we use the optimal control framework where a cost function
that includes an input (the treatment) and also undesirable variables (bone metastases)
is minimized (Lenhart & Workman, 2007). Such optimal control cost includes abstractly
an economic cost and the side-effects of the treatment.

3.2.1 Denosumab treatment model

Denosumab affects the main bone remodeling signaling pathway RANK/RANKL/OPG
(Florencio-Silva et al., 2015). The main biological mechanisms that we consider and their
corresponding mathematical assumptions are:

• When OBs produce RANKL and this molecule binds to RANK then OCs are activated.
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Chapter 3. Conventional bone metastasis treatments as optimal control problems

Denosumab neutralizes RANKL and it is used to treat bone metastasis to slow down
excessive bone resorption caused by the vicious cycle CCs → OBs → OCs (Mundy,
2002; Lipton et al., 2016). For the model, we propose that denosumab alters the cell
activity of OCs in a proportional way.

• Denosumab has various side-effects on the patient, such as osteonecrosis of the jaw (The-
riault & Theriault, 2012). We propose to combine these side-effects and the economical
cost of this treatment in a function that measures both components.

Let us denote by uD(t) the effect of denosumab on the activity of OCs. Considering
the previous assumptions, we propose the following denosumab model:

min
uD

J (uD(t)) where J (uD(t)) =

∫ tf

0
wDuD(t)2︸ ︷︷ ︸

DT cost and side-effects

+ T (t)2dt (3.4a)

subject to:

dC(t)

dt
= α1 (1− uD(t))︸ ︷︷ ︸

DT effects on OCs

C(t)B(t)g1 − β1C(t) + σ1C(t)T (t), (3.4b)

dB(t)

dt
= α2C(t)g2B(t)− β2B(t) + σ2B(t)T (t), (3.4c)

dT (t)

dt
= α3T (t)

(
1− T (t)

m

)
− β3T (t) + σ3C(t)g2T (t) + σ4B(t)g1T (t), (3.4d)

C(0), B(0), T (0) > 0 given, (3.4e)
0 ≤ uD(t) ≤ umax

D < 1 for all 0 ≤ t ≤ tf , (3.4f)

where DT stands for denosumab therapy, uD ≡ 0 means that no denosumab is applied
and uD ≡ umax

D reflects the maximum effectivity of denosumab in nullifying the activity
of OCs. The cost functional J (uD(t)) measures the economical cost and side-effects of
using denosumab and stores the net side-effects due to the presence of CCs. To construct
the cost functional, we follow the standard notion of non-linear cost functionals (Lenhart
& Workman, 2007). In particular, the cost per unit of time of the presence of CCs is
measured by T (t)2, while the use of denosumab produces a cost per unit of time in term of
its effectivity uD(t)2. Note that uD(t) and T (t) have significant differences in their orders
of magnitude. Thus, in the cost functional (3.4a), the parameter wD is a weight control
parameter that represents the normalized cost of using denosumab. The normalization is
done with respect to the order of magnitude of T (t)2. We assume a fixed time window
from a starting day 0 to a final day denoted by tf .

3.2.2 Radiotherapy treatment model

Another treatment option for patients with bone metastasis is radiotherapy. In Zhang
et al. (2018) the authors offer a landscape of what is known about the effects of radiation
on the bone cells, particularly on OCs and OBs. We now mention the key biological
aspects of radiotherapy and the associated mathematical assumptions:

• The main action of radiotherapy is to disrupt CCs proliferation by damaging their
DNA; however, it also affects non-cancerous cells of the body like OCs and OBs (Vakaet
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3.3. Optimal solution for the denosumab model

& Boterberg, 2004; Brenner, 2008; Zhang et al., 2018). Therefore, we propose that
radiation increases the elimination rates of OCs, OBs, and CCs.

• Radiation may cause hematological toxicity, nausea and vomiting (Chow et al., 2014).
Taking into account this fact, we include the use of radiation with a function that
measures these effects along with the economic cost of the treatment.

• It has been observed that irradiation may impair bone remodeling in the long run (Oest
et al., 2015; Zhang et al., 2018). We propose that the effects of a radiation dose decay
exponentially rather than instantly on the BMU.

Let us denote by uR(t) the cell-killing rate due to radiation on the BMU. Considering
the mentioned assumptions, we propose the following radiotherapy model:

min
uR

J (uR(t)) where J (uR(t)) =

∫ tf

0
wRuR(t)2︸ ︷︷ ︸

RT cost and side-effects

+ T (t)2dt, (3.5a)

subject to:

dC(t)

dt
= α1C(t)B(t)g1 − (β1 + ψ1uR(t))︸ ︷︷ ︸

RT effects on OCs

C(t) + σ1C(t)T (t), (3.5b)

dB(t)

dt
= α2C(t)g2B(t)− (β2 + ψ2uR(t))︸ ︷︷ ︸

RT effects on OBs

B(t) + σ2B(t)T (t), (3.5c)

dT (t)

dt
= α3T (t)

(
1− T (t)

m

)
− (β3 + uR(t))︸ ︷︷ ︸

RT effects on CCs

T (t) + σ3C(t)g2T (t) + σ4B(t)g1T (t),

(3.5d)

C(0), B(0), T (0) > 0 given, (3.5e)
0 ≤ uR(t) ≤ umax

R for all 0 ≤ t ≤ tf . (3.5f)

where RT stands for radiotherapy, the parameters umax
R and wR are the analogues of

umax
D and wD as in the denosumab case. Here, we propose to increase linearly the CCs

elimination rate β3 by uR(t). To account for adverse effects on the proliferation of OCs
and OBs, we assume that their respective elimination rates are also affected by radiation
as well. For that reason, we introduce the coefficients ψ1 and ψ2 that act as rescaling
parameters of the radiation effect uR(t) on OCs and OBs, respectively.

3.3 Optimal solution for the denosumab model

In order to explore these bone metastasis treatment models, it is important to guarantee
the existence of optimal solutions, uD(t) and uR(t), that satisfy the corresponding prob-
lems (3.4) and (3.5). In this Section, we prove the existence and also the uniqueness of
an optimal control solution to the denosumab treatment model (3.4), and we discuss how
the radiotherapy model (3.5) has analogous results.
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Chapter 3. Conventional bone metastasis treatments as optimal control problems

3.3.1 Existence of optimal solutions

We are interested in studying the effects of bone metastasis treatments on the BMU when
the tumor has the potential to establish or has already established a successful invasion. To
accomplish this, we assume two possible scenarios related to the boundness and positivity
of the solutions for the non-treatment model (3.1):

Assumption A The cancer-invasion equilibrium is locally stable and the initial condi-
tions are located nearby.

Assumption B The cancer-invasion equilibrium is locally unstable, then we assume a
priori that the state variables remain inside a compact subset.

Assumption A is valid if the steady-state (3.2) satisfies conditions (3.3). Assumption
B is a reasonable assumption that has been proposed in other optimal control problems,
see for instance (Bara et al., 2017). In either case, these assumptions lead us to consider
a compact subset near the cancer-invasion equilibrium from which the solutions stay in
that subset for every positive time t > 0.

Now, let us denote the state variables as x(t) = (C(t), B(t), T (t)). Also, let Ω be a com-
pact subset of the natural domain of model (3.1) defined by Ω+ = {(C(t), B(t), T (t)) | xi >
0, i = 1, 2, 3}. In this subset, the state variables (C(t), B(t), T (t)) are uniformly bounded
because Ω is a compact subset of Ω+. This means that, for all t ∈ [0, tf ], we have

C(t) ≤ Cmax and B(t) ≥ Bmin.

To prove the existence of an optimal control we employ Theorem 4.1 from Fleming
& Rishel (1975). Such result states that the the following conditions are sufficient to
guarantee the existence of an optimal control solution for (3.4):

(H1′′) The right-hand side of the model (3.4b)–(3.4d) is composed of continuous functions,
and for each one of these functions fi there exist positive constants C1, C2 such that
|fi(t, x, uD)|≤ C1(1 + |x|+|uD|) and |fi(t, x̄, uD)− fi(t, x, uD)|≤ C2|x̄− x|(1 + |uD|)
for all 0 ≤ t ≤ T and i = 1, 2, 3.

(H2′′) There exists at least one pair (x(t), uD(t)) satisfying both (3.4b)–(3.4d) and (3.4f).

(H3′′) The set of admissible controls is closed and convex.

(H4′′) The right-hand side of the model is bounded above by a sum of the states and the
control, and it can be written as a linear function with respect the control.

(H5′′) The integrand of cost functional is convex with respect the control and it is bounded
above by C3|uD|n−C4 for some fixed C3 > 0, C4 ∈ R and n > 1.

We proceed to show such conditions.

Lemma 1. The model (3.4) satisfies (H1′′).

Proof It is straightforward since the model functions are of class C2 in Ω.

Lemma 2. There exists at least one pair (x(t), uD(t)) with uD ∈ U such that equation
(3.4b)-(3.4d) is satisfied.
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3.3. Optimal solution for the denosumab model

Proof The condition (H2′′) is satisfied by the Carathéodory’s existence theorem (see
Theorem 9.2.1 from (Lukes, 1982)), which guarantees the existence of solutions for Cauchy
problems.

Lemma 3. The set of admissible controls is closed and convex.

Proof Since 0 ≤ uD(t) ≤ umax
D then the lemma requirements are satisfied.

Lemma 4. The right-hand side of (3.4b)-(3.4d) is continuous, also it is bounded from
above by a sum of the states and the control, and it can be written as a linear function of
the control.

Proof Let f(t, x, uD) be the vector function defined by the right-hand side of (3.4b)-
(3.4d). As mentioned above, f is continuous on Ω. Now we have to find suitable bounds
for the states. Since 0 < C(t) ≤ Cmax, Bmin ≤ B(t) and 0 < T (t) ≤ Cmax, where the
constants Cmax, Bmin and Cmax come from the definition of the domain Ω, then:

dC(t)

dt
= α1C(t)B(t)g1(1− uD)− β1C(t) + σ1C(t)T (t)

≤ α1C(t)B(t)g1 − β1C(t) + σ1C(t)T (t)

≤ α1C(t)m1 − β1C(t) + σ1C(t)T (t) (g1 < 0 and m1 := (Bmin)g1)

≤ α1C(t)m1 + σ1C(t)T (t)

= C(t)(α1m1 + σ1C
max), (3.6)

so dC(t)/dt is bounded from above by the linear equation (3.6). Similarly,

dB(t)

dt
≤ B(t)(α2m2 + σ2C

max),

where m2 := (Cmax)g2 . Taking into account that: σ2 ≥ 0 or σ2 < 0, then

dB(t)

dt
≤
{
B(t)(α2m2 + σ2C

max) if σ2 ≥ 0
B(t)α2m2 if σ2 < 0.

(3.7)

Hence, B(t) is also bounded from above by a linear equation. Analogous to C(t) and B(t)
and considering that σ4 ≤ 0, we have

dT (t)

dt
≤ T (t) (α3 − β3 + σ3m2) . (3.8)

From inequalities (3.6)-(3.8), we know that the model is bounded from above by a
linear system. Thus, the solutions are bounded for a finite final time. Observe that
there are two cases given by the sign of σ2. These inequalities, together with the triangle
inequality, also give:

|f(t, x, uD)|

=

∣∣∣∣(dCdt , dBdt , dTdt
)ᵀ∣∣∣∣

=

∣∣∣∣∣∣
α1m1 + σ1C

max 0 0
0 α2m2 + σ2C

max 0
0 0 α3 − β3 + σ3m2

CB
T

∣∣∣∣∣∣+

∣∣∣∣∣∣
α1C

maxm2

0
0

uD

∣∣∣∣∣∣
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Chapter 3. Conventional bone metastasis treatments as optimal control problems

≤ C1(|x|+|uD|), (3.9)

where C1 depends on the model parameters and the bounds of its solutions. The case for
σ2 < 0 is analogous.

Lemma 5. The integrand from (3.4a) is convex in the control, and it is bounded from
above by C3|uD|n−C4 with C3 > 0 and n > 1.

Proof The integrand L(t, x, uD) = T (t)2 + wDu
2
D is convex respect uD, and also

L(t, x, uD) = T (t)2 + wDu
2
D ≥ wDu2D = C3|uD|n, (3.10)

with C3 = wD > 0 and n = 2 > 1.

The above discussion allows us to state the following result:

Theorem 3.1. The denosumab treatment model (3.4), considering the domain Ω, has an
optimal control u∗D.

3.3.2 Optimality system

Under Assumption A or Assumption B, we have proved the existence of at least one optimal
control. Here, we use Pontryagin’s Maximum Principle (Pontryagin et al., 1962; Lenhart
& Workman, 2007) to derive necessary conditions that every optimal control satisfies. Let
H be the Hamiltonian defined by

H = (α1C(t)B(t)g1 (1− uD(t))− β1C(t) + σ1C(t)T (t))λ1(t)

+ (α2C(t)g2B(t)− β2B(t) + σ2B(t)T (t))λ2(t)

+

(
α3T (t)

(
1− T (t)

m

)
− β3T (t) + σ3C(t)g2T (t)

)
λ3(t)

+ T (t)2 + wDuD(t)2. (3.11)

From (3.11) we get the following adjoint system for denosumab model (3.4):

dλ1
dt

= −λ1 (α1B
g1 (1− uD)− β1 + σ1T )− λ2

(
α2g2C

g2−1B
)
− λ3

(
σ3g2C

g2−1T
)
, (3.12a)

dλ2
dt

= −λ1
(
α1g1CB

g1−1 (1− uD)
)
− λ2 (α2C

g2 − β2 + σ2T ) , (3.12b)

dλ3
dt

= −λ1σ1C − λ2σ2B − λ3
(
α3

(
1− 2T

m

)
− β3 + σ3C

g2

)
− 2T, (3.12c)

λ1(tf ) = λ2(tf ) = λ3(tf ) = 0. (3.12d)

The optimality condition for (3.4), obtained also by means of the Pontryagin’s Maximum
Principle, is the following:

u∗D(t) = max

{
0,min

{
1,
α1C(t)B(t)g1λ1(t)

2wD

}}
, (3.13)

which is the characterization of every optimal solution u∗D for (3.4) in terms of the state
variables, the adjoint variables and the parameters of the model. A direct use of the
Maximum Principle gives us:
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Theorem 3.2. Let u∗D be an optimal control for the denosumab model (3.4) and x =
(C,B, T ) its associated state-variable. Then there exist functions λ1(t), λ2(t) and λ3(t)
that satisfy the adjoint system (3.12). Also, the optimal control u∗D satisfies the optimality
condition (3.13).

3.3.3 Uniqueness of optimal solutions

In order to prove the uniqueness of an optimal control problem, we follow the steps pro-
posed in Fister et al. (1998) and state the next theorem:

Theorem 3.3. There exists a final time tf such that the model (3.4) has a unique optimal
control solution.

Proof See Appendix B.

3.4 Optimal solution for the radiotherapy model

Besides the denosumab treatment, we also explore the radiotherapy effects on the dynamics
of the bone metastasis model. In this Section, we give the optimality system and discuss
the existence and uniqueness of the optimal control for the radiotherapy model (3.5).

3.4.1 Existence of optimal solutions

The five lemmas for the existence of solutions of the denosumab model are proved in the
same way for the radiotherapy treatment model since they have a similar structure: an
a priori bounded domain, a bounded control uR, and the model is linear respect to uR.
Thus, similar algebraic manipulations give the existence of solutions for the radiotherapy
model.

3.4.2 Optimality system

Analogously as in the denosumab model, using the Maximum Principle we obtain the
following optimality system for the radiotherapy model (3.5):

dC

dt
= α1CB

g1 − (β1 + ψ1u
∗
R)C + σ1CT, (3.14a)

dB

dt
= α2C

g2B − (β2 + ψ2u
∗
R)B + σ2BT, (3.14b)

dT

dt
= α3T

(
1− T

m

)
− (β3 + u∗R)T + σ3C

g2T + σ4B
g1T, (3.14c)

dλ1
dt

= −α2g2λ2C
g2−1B − σ3g2λ3Cg2−1T − (α1B

g1 + σ1T − β1 − ψ1u
∗
R)λ1, (3.14d)

dλ2
dt

= −α1g1λ1CB
g1−1 − σ4g1λ3Bg1−1T − (α2C

g2 + σ2T − β2 − ψ2u
∗
R)λ2, (3.14e)

dλ3
dt

= −σ1λ1C − σ2λ2B −
(
σ3C(t)g2 + σ4B

g1 − α3

(
T

m
− 1

)
−β3 − u∗R −

α3T

m

)
λ3 − 2T,

C(0), B(0), T (0) given, (3.14f)
λ1(tf ) = λ2(tf ) = λ3(tf ) = 0, (3.14g)
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u∗R(t) = max

{
0,min

{
1,
ψ1C(t)λ1(t) + ψ2B(t)λ2(t) + T (t)λ3(t)

2wR

}}
. (3.14h)

3.4.3 Uniqueness of optimal solutions

The uniqueness of optimal solutions for the radiotherapy model is analogous to the deno-
sumab case since changes in the model (ODEs, cost functional or control restrictions)
produce a similar effect in the optimality system (adjoint system and optimality condi-
tion).

3.5 Numerical results and discussion

The existence and uniqueness of solutions guarantee that a convergent numerical method
will get the approximation to the unique optimal solution. Taking advantage of that, here
we use the forward-backward sweep method (FBSM) (Lenhart & Workman, 2007). This
numerical scheme is based upon the iterative use of the Maximum Principle. Considering
the optimal control problem for the denosumab model (3.4) together with its adjoint
system (3.12) and the optimality condition (3.13), the steps involved in the FBSM are the
following:

Forward-Backward Sweep Method

1. Propose an initial control u0D(t).

2. Solve forward in time the state variable system (3.4).

3. Solve backward in time the adjoint system (3.12).

4. Use the Maximum Principle to get a new control update ukD for step k. Here,
we consider (Lenhart & Workman, 2007):

ukD(t)←↩ µukD(t) + (1− µ)uk−1D (t).

If a convergence criteria is met, e.g., the control update is close to previous
control, then STOP; else, return to STEP 2.

For solving the forward and backward ODEs, we used a fourth order Runge-Kutta
scheme with a variable time step. Let us point out that the problem about the convergence
of the FBSM is discussed in (McAsey et al., 2012). In that work, the authors prove results
about the convergence of the FBSM, and the main hypotheses required to guarantee such
convergence are Lipschitz conditions, an appropriate length for the integration interval
and boundedness of the adjoint system. Some of these conditions, in particular the last
one, are difficult to satisfy a priori because of the non-linearities of the treatment models.

To achieve convergence, here we set the maximum value of the control uD to umax
D = 0.6

instead of using umax
D = 1. From a modeling perspective, this means that we assume that

the treatment does not have a complete effectiveness. An example of this approach, used
in a different problem, can be found in (Stephenson et al., 2017). Also, we initialized the
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3.5. Numerical results and discussion

control u0 for the FBSM as u0 ≡ umax
D . We have convergence of the simulations when µ

takes values within the interval 0.15 ≤ µ ≤ 0.6.

3.5.1 Parameters for numerical simulations

After exploring numerous combinations for the parameter values, and in an effort to agree
with experimental data (Komarova et al., 2003; Farhat et al., 2017; Araujo et al., 2014),
we considered a fixed set of values for certain parameters depicted in Table 3.1 for models
(3.4) and (3.5). Next, we discuss their selection:

• Initial condition (C(0), B(0), T (0)): We chose the initial conditions C(0) = 4 × 10−6,
B(0) = 4 and T (0) = 1000 according with Section 1.1.2. In particular, these initial
conditions allow the system to begin close to the periodic solution.

• The net effectiveness parameters g1 and g2: We preserved OBs-induced inhibition on
OCs by taking g1 = −0.3 as in Section 1.1.2. However, in this Chapter we increased g2
from 0.5 (Chapter 2) to 0.7 in order to have a more active remodeling process, that is,
larger amplitudes and shorter periods for the OCs and OBs solutions without cancer.

• The cell activity parameters α1 and α2: By fixing values of g1 and g2 we estimated
through trial and error these parameters to obtain standard numbers of OCs and OBs
with and without cancer.

• The elimination rates β1 and β2: They are proposed as in Komarova et al. (2003).

• Coefficients for CCs: The elimination rate β3 is considered zero since we include its
effect in α3, having a net production rate for CCs. For the production rate of CCs,
α3, we take a realistic interval based on Ayati et al. (2010); Farhat et al. (2017). We
estimated a normal carrying capacity for the CCs, m, using Farhat et al. (2017) .

• Rates of the OCs–CCs and OBs–CCs interactions σi (i = 1, ..., 4): They are difficult to
estimate a priori since we do not have experimental data. So, a trial and error parameter
space exploration was made. Election criteria for their values took into consideration
the cancer-invasion equilibrium value (3.2) together with its stability conditions (3.3),

Parameter Value Description Reference
g1 (dimensionless) −0.3 net paracrine effectiveness on OCs Chapter 2
g2 (dimensionless) 0.7 net paracrine effectiveness on OBs Assumed
α1 (cell−1day−1) 0.5 activity on OCs production Assumed
α2 (cell−1day−1) 0.05 activity on OBs production Assumed

β1 (day−1) 0.2 OCs removal rate Komarova et al. (2003)
β2 (day−1) 0.02 OBs removal rate Komarova et al. (2003)
β3 (day−1) 0 elimination rate of CCs Assumed

σ2 (cell−1day−1) 0 rate of OBs production by cancer Assumed
m (cell) 104 CCs carrying capacity Farhat et al. (2017)

ψ1, ψ2 (dimensionless) 1 effect of radiation on OCs and OBs Assumed
umax
D (dimensionless) 0.6 Denosumab max. effectivity Assumed

umax
R (day−1) 0.05 Radiotherapy max. elimination rate Assumed

Table 3.1: Fixed global parameter values, see Subsection 3.5.1 for discussion.
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Parameter Scenario 1 Scenario 2 Scenario 3
α3 (day−1) 1.5× 10−2 1× 10−4 1× 10−4

σ1 (cell−1day−1) 1× 10−6 1× 10−6 0.0
σ3 (cell−1day−1) 1× 10−3 1× 10−3 1× 10−8

σ4 (cell−1day−1) 0.0 0.0 −1× 10−4

Table 3.2: Parameters for three different scenarios of the metastatic invasion.

see Fig. 3.4. Values for these parameters were discarded when erratic numbers of OCs
or OBs were presented.

• The radiotherapy control parameters ψj (j = 1, 2): They are equal to 1 as a first
approach. This selection arises from the observation that other values do not change
the qualitative behavior of the optimal solutions in our parameter space exploration.

To complement these fixed parameters, we varied the values for α3, σ1, σ3 and σ4 and
obtained three metastatic invasion scenarios; their values are condensed in Table 3.2.
These three scenarios are of biological relevance because they are associated with different
dynamics of invasion which may be presented in different physiological settings (Mundy,
2002; Ottewell, 2016).

3.5.2 Denosumab treatment

As mentioned before, the function of denosumab is to inhibit osteoclasts activation through
RANK-RANKL bindings. Since it is only a palliative treatment, it is expected that
only osteoclasts-dependent bone metastatic invasions are heavily affected by means of
denosumab administration. This is a palliative treatment because it is intended to slow
down bone metastatic progression by reducing RANKL-induced fueling on the vicious
cycle.

Scenario 1: Aggressive metastasis

In this case, the proliferation of CCs is rapid and so this scenario represents an aggressive
type of bone metastasis tumor. It may be noted that we are considering in this case that
OBs do not affect directly the CCs dynamics (σ4 = 0). Recall that uD affects parameter α1,
which is the activity on OCs production rate, or the recruitment/differentiation rate. In
Fig. 3.4, we show that the cancer-invasion steady-state is unstable for all relevant values
of constant treatment effectivity uD. Also, it can be noted that the cancer-coordinate
does not change its value in this range. That means that the steady-state is not changed
in this coordinate albeit a treatment is applied. Because of the oscillations, it is not
straightforward to predict the evolution of the cellular dynamics under treatment.

In Fig. 3.5, it can be noted that the optimal treatment obtained is an aggressive
one: the maximum amount of effectivity (umax) is maintained during almost all the time
range, and then is suspended abruptly. Also, we observe that OCs waves appear at the
same time but they present lower amplitudes when the effectivity increases. Due to the
cross-regulation between bone cell populations, this will also cause the same effect on the
OBs wave. However, CCs are indifferent to the decrease of OCs and OBs. We assume
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3.5. Numerical results and discussion

Scenario 1: Aggressive metastasis
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Scenario 2: Osteoclast-dependent metastasis
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Scenario 3: Slow-growing BMU-dependent metastasis
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Figure 3.3: Baseline uncontrolled scenarios considered in this Chapter.

that the proliferation α3 is high enough to pull the dynamics of CCs away from the bone
resorption contribution σ1. Thus, this scenario presents a metastatic tumor that does not
rely completely on the BMU dynamics. As such, the treatment shows to be ineffective,
which is clinically observed on advanced aggressive bone metastatic patients (Coelho et al.,
2016).

Scenario 2: Osteoclasts-dependent metastasis

In this case, the metastatic tumor has a noticeable change when the OCs waves are reduced.
In Fig. 3.4 there is a similar bifurcation diagram as in scenario 1: stability and value of
the cancer coordinate do not change with variations of uD as a constant parameter.

It can be noted in Fig. 3.6, that the optimal solution obtained has a maximum am-
plitude (having a value around 0.6) almost the half of the value of umax; also, its shape
is similar to the one of the OCs wave. The treatment applied causes the OCs wave to
diminish in amplitude but preserves its appearance in time. The effect of this is also a
smaller amplitude on the OBs wave. By contrast from the first case, the CCs population
has a visible effect (reduction of 5% compared with the non-treatment case). This is a
metastatic invasion that depends more on the BMU dynamics than the previous scenario.
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The parameters election for this scenario suggests that the tumor depends on the OCs
dynamics rather than on the OBs evolution (σ3 > 0 and σ4 = 0). In this case, treat-
ment regimes show to be more effective than the previous scenario; this is due to the
OCs-activity dependence of the CCs proliferation.

Scenario 3: Slow, BMU-dependent metastasis

In Fig. 3.4 a different bifurcation diagram is present for scenario 3. The steady-state
branch now goes to zero when the parameter uD increases. This suggests that a strong
inhibition over the OCs activation would lead the CCs population to be eradicated.

In Fig. 3.7, however, the optimal solution obtained is to apply the treatment almost to
the lowest levels. The amplitudes of the OCs and OBs waves decrease by a small amount
and the CCs burden maintains nearly to the same quantity. This simulation suggests that,
in this scenario, the optimal strategy is to not apply treatment for the weight parameters
chosen. In other words, in terms of the cost functional J , the number of CCs prevented by
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Figure 3.4: Bifurcation diagrams corresponding to Scenarios 1–3. Dash-dot linestyle
represents oscillations. Left. Denosumab treatment model with bifurcation parameter
uD. Right. Radiotherapy model with bifurcation parameter uR.
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Scenario 1 - Denosumab
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Figure 3.5: Scenario 1 for denosumab treatment model for three different cost weight
values. Note that the control is normalized with respect to its possible maximum value
umax
D = 0.6.

Scenario 2 - Denosumab
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Figure 3.6: Scenario 2 for denosumab treatment model. Note that the control is nor-
malized with respect to its possible maximum value umax

D = 0.6.
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Scenario 3 - Denosumab
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Figure 3.7: Scenario 3 for denosumab treatment model. Note that the control is nor-
malized with respect to its possible maximum value umax

D = 0.6.
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Figure 3.8: Scenario 3 for denosumab treatment. The cost parameter is changed to
wD = 1× 104. Note that the control is normalized with respect to its possible maximum
value umax

D = 0.6.
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the treatment does not compensate with the cost of the treatment: it is more expensive the
treatment than the desired result. Note that, however, it is predicted from the optimality
system that if the value of wD is lowered then the optimal solution would take into account
a stronger inhibition on OCs.

We tested such hypothesis by changing the value of wD to 1 × 104. The results of
the simulation are shown in Fig. 3.8. The inhibition of OCs activation lasts longer and
the metastatic burden decreases more than with the previous values of wD. Yet, the OCs
wave appearance delays considerably due to the inhibition applied by the treatment and
so the amplitude of the OCs wave increases considerably (3-fold the usual). Thus, the
OBs wave also increases to drastic levels compared to the untreated case. Both abnormal
waves have a positive effect on the metastatic tumor at the end of the treatment. Here,
we note that it may be interesting to study how the secondary effects of a treatment may
impact the appearance and the amplitude of the OCs and OBs waves.

3.5.3 Radiotherapy treatment

We adapted the FBSM to find approximations of optimal solutions also for the radiother-
apy model (3.14a). For this model convergence of the method was less sensitive than the
denosumab treatment model. In Figs. 3.9-3.11 are shown the same three scenarios given
by Tables 3.1 and 3.2 but using the radiotherapy treatment model (3.14a).

Scenario 1: Aggressive metastasis

In the first scenario, in Fig. 3.9), there are two optimal solutions that are aggressive
(maximum radiation effectivity present). The effects on the OCs and OBs populations are
similar under the three treatment regimes. The CCs population decreases its proliferation
rate considerably but maintains a prevalent level. It can be noticed that during the OCs
wave activation there is a slight increase in the CCs population.

Scenario 2: Osteoclasts-dependent metastasis

In the second scenario, Fig. 3.10, only one treatment regimen reaches the maximum value
umax
R = 0.05. The difference in the effects of applying the treatment is more noticeable

than in the first scenario. But, as in the previous one, OCs and OBs populations do
not change much. It is interesting to observe that under the first two treatments (with
wR = 1× 109 and wR = 1× 1010) the CCs population shows a slight increase during the
remodeling wave activation; in these two regimes the CCs population drops down to lower
levels.

Scenario 3: Slow, BMU-dependent metastasis

The third scenario, Fig. 3.11, is rather similar to the second one. The main difference is
that, in this case, the CCs population does not show a significant increase during activation
of OCs and OBs waves.

3.5.4 Summary of numerical simulations

In this Section, we explored three scenarios corresponding to different responses of the
bone metastatic tumor to the microenvironment: an aggressive tumor, a tumor that relies
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Scenario 1 - Radiotherapy
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Figure 3.9: Scenario 1 for radiotherapy treatment model for three different cost weight
values. Note that control is normalized with respect to its possible maximum value umax

R =
0.05.

Scenario 2 - Radiotherapy
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Figure 3.10: Scenario 2 for radiotherapy treatment model. Note that control is normal-
ized with respect to its possible maximum value umax

R = 0.05.
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Scenario 3 - Radiotherapy
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Figure 3.11: Scenario 3 for radiotherapy treatment model. Note that control is normal-
ized with respect to its possible maximum value umax

R = 0.05.

on bone resorption, and a tumor that depends on both bone cell populations.

By bifurcation diagram from Fig. 3.4, we could predict that, for the particular values
of the model parameters, the denosumab treatment is only effective in the third scenario,
which is the BMU dependent tumor. And even so, when the weight parameter wD is large
enough then a stronger denosumab treatment is more expensive even if it has the ability
to reduce the tumor size. The simulations from Figs. 3.5–3.8 reflect some possible outputs
for the cellular dynamics changes under a denosumab treatment that seeks to minimize
economic cost and side-effects.

Similarly, the radiotherapy model was numerically explored in Figs. 3.9–3.11. In con-
trast to the denosumab treatment model, the bifurcation diagram reveals that radiation
has a high potential to bring down the tumor at equilibrium. Another difference in com-
parison to the denosumab treatment model is that for the radiotherapy model we assumed
that radiation also alters the elimination rates of the bone cells. The numerical simulations
show interesting cellular dynamics.

Even though that in appearance the radiotherapy shows a better performance in re-
ducing the bone metastasis tumor that the denosumab treatment, it is important to point
out that in the numerical simulations radiation has weight parameters that surpass by
at least three orders of magnitude the ones assigned for the denosumab treatment. This
implies that radiation was assigned a higher cost in terms of economical cost and also from
the point of view of the side-effects. Increasing the weight parameters for radiation would
translate in affecting less the growth of the tumor.
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Chapter 3. Conventional bone metastasis treatments as optimal control problems

3.6 Mixed therapies

From the previous Sections, we can see that denosumab timing is really important and
that despite reducing osteoclast activation for certain time the next remodeling wave may
be higher than normal. On the other hand, radiotherapy treatments reduce significantly
tumor burden but bone cells may also present an undesirable increase on the bone cell
populations. In this Thesis, we further explore the question about how the mixed ther-
apy of denosumab and radiotherapy perform together. The corresponding mixed therapy
model and its associated optimality system are readily obtained by incorporating the cor-
responding individual terms from denosumab and radiotherapy models presented before.

For the mixed therapy model, we also explored the same three metastatic Scenarios.
We gathered our results in Figures 3.12, 3.13, 3.14 and 3.15. In Figures 3.12 (Scenario 1)
and 3.13 (Scenario 2) we observe a synergistic effect between denosumab and radiotherapy:
tumor burden is significantly reduced while maintaining bone cell populations under con-
trol. We also observe this in Figure 3.14 (Scenario 3), but as with the denosumab model we
note that denosumab is barely activated. Similar as we did with the denosumab model, we
decreased the weight parameter associated with the usage of denosumab, obtaining Figure
3.15. Usage of denosumab causes increased activation of osteoclasts and osteoblasts, but
it is still a more controlled increase in comparison to the denosumab model.
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Scenario 1 - Mixed
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Figure 3.12: Scenario 1 for mixed treatment model.

Scenario 2 - Mixed
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Figure 3.13: Scenario 2 for mixed treatment model.

67



Chapter 3. Conventional bone metastasis treatments as optimal control problems

Scenario 3 - Mixed
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Figure 3.14: Scenario 3 for mixed treatment model.
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Figure 3.15: Scenario 3 for mixed treatment model.
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3.6. Mixed therapies

Discussions

In this Chapter, two bone metastasis treatment models are presented, extending a previ-
ous model that studies the dynamics of the BMU cells (osteoclasts and osteoblasts) and
bone metastatic cancer cells with the addition of two control functions. Having explicit
expressions for the steady-states and conditions for their local stability, an exploration of
parameters was made in order to find a multitude of dynamics that have already been seen
qualitatively in experiments. Our objective was to find and analyze treatment regimes for
two kinds of treatments –denosumab and radiotherapy–, and also to study their effects
on cellular dynamics. An optimal control approach incorporates a cost function of the
treatment use reflecting the economic cost and also side-effects.

We presented simulations that allowed us to verify if denosumab and radiation treat-
ments are effective to reduce cancer cell levels. We considered a number of possible relevant
scenarios of bone metastatic evolution under treatment, and we found interesting results
that were not straightforward to predict. In all the scenarios, the optimal treatment
regime obtained depends on the manipulation of the remodeling wave (amplitude or time
of appearance). In some cases, the cancer cell populations are already aggressive enough
to be influenced by the inhibition of osteoclasts. In other cases, their dependence is rather
low and so the metastatic burden is not decreased enough, or it may be decreased at cost
of disrupting the osteoclasts-osteoblasts cross-talk in a negative way. Thus, the inhibition
of osteoclasts is not always the optimal strategy, and it depends on the type of metastatic
cancer residing in the bone microenvironment. As predicted, denosumab treatment poses
a weak choice in terms of controlling the growth of the tumor in general. Radiation treat-
ment has a higher potential than the previous one, but the effects on the bone cells still
need to be analyzed. Also, radiation has long-run side-effects and important economical
cost that limit its applicability. A treatment that respects the natural microenvironment
while attacking cancer cells would be more effective and desirable. Despite these interest-
ing numerical results, it is important to point out that it is a difficult task to translate
them into practical tools. There are two main reasons for this. First, we are considering
a sole BMU being attacked by a sole metastatic tumor, but in reality there are multiple
of these units acting at different places of bone and time. Thus, the next step could be
to scale up the model and find optimal control solutions at a tissue level. Second, the
optimal control solutions depend on predicting the appearance or the start of the bone
remodeling cycle, but experimental work is still tackling this important question.

In the next Chapter, we now incorporate two key molecular factors that couples bone
resorption with bone formation, and also use the optimal control framework to explore
different therapeutic strategies.
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Chapter 4

Modeling TGFβ and Wnt in bone
diseases∗

In the previous Chapters, we have studied a rather general, biochemical-simplified
model for bone metastasis. Here, our objective is to decouple two important biochemical
agents that have been under-studied in mathematical models.

Recall that there are three main steps in bone remodeling: bone resorption due to
osteoclasts, a reversal phase and bone formation due to osteoblasts (Florencio-Silva et al.,
2015). As mentioned in the previous Chapters, during the bone resorption phase osteoclast
activity is regulated by osteoblasts through RANKL, a promoter of osteoclast activation,
and by its decoy receptor OPG. Next, the reversal phase is thought to be the coupling phase
whereby osteoclast activity is inhibited and osteoblast activity is promoted (Matsuo &
Irie, 2008). The coupling phase is governed by numerous pathways, being the transforming
growth factor (TGFβ) and the Wnt pathways two key coupling regulators (Weivoda et al.,
2016). In particular, TGFβ promotes active osteoclast apoptosis while Wnt promotes
osteoblast precursors differentiation. In this Chapter, we focus our attention to incorporate
these two factors in a mathematical model for a better understanding of the coupling phase
and how this coupling is affected under pathological conditions such as osteoporosis and
bone metastasis.

Also, recall that, among the mathematical models, there are two broad research lines
that are characterized by the biological scales incorporated: biochemical-detailed models
and biochemical-simplified models. Some important biochemical-detailed models are Pe-
terson & Riggs (2010) in which calcium homeostasis dynamics is incorporated, and Pivonka
& Komarova (2010b) that explores theoretically specific bone remodeling molecular disrup-
tions. Of importance, TGFβ and Wnt are incorporated in these biochemical-detailed mod-
els, but the dimensionality of the systems make a mathematical analysis intricate. Here
we propose a model that combines the mathematical tractability of biochemical-simplified
models to describe cellular dynamics and the biological relevance of biochemical-detailed
models to incorporate TGFβ and Wnt molecular dynamics.

Among the questions regarding the bone remodeling process is the possibility of an
oscillatory behavior between osteoclast and osteoblast activities and their corresponding
molecular factors. It has been estimated that the mean time between successive remodel-
ing events at the same location is 2 years (Manolagas, 2000). In Komarova et al. (2003) an

∗This Chapter has been submitted to Journal of Theoretical Biology.
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Chapter 4. Modeling TGFβ and Wnt in bone diseases

oscillatory bone remodeling behavior is associated with random bone remodeling. How-
ever, in another recent biochemical-simplified model proposed in Coelho et al. (2016) it
is pointed out that there is still no biological evidence that such behavior occurs in a
biological setting. In this Chapter we try, through our proposed mathematical model, to
find possible mechanisms related to TGFβ and Wnt that may trigger the appearance of
oscillatory behavior in the bone remodeling process.

After studying homeostasis in the bone remodeling process, we turn our attention to
bone diseases. Bone diseases pose challenging questions regarding the best therapeutic
strategies to fight against them (Marie, 2015). These pathologies are characterized by
unbalanced bone mass production due to corrupted communication between osteoclasts
and osteoblasts. Current osteoporosis treatments focus mainly on blocking the catabolic
effect from osteoclasts. In particular, bisphosphonates are employed to increase the ac-
tive osteoclast apoptosis rate, whereas denosumab is a RANKL antibody that prevents
osteoclast activation (Burkiewicz et al., 2009). Some of the previously mentioned models
study osteoporosis as a case study, and they mainly focus on anti-catabolic treatment. In
Javed et al. (2019) a biochemical-simplified model is specifically used to predict dynamical
properties of bone cells in an osteoporotic scenario. Recent research indicates that Wnt
proteins may be a potential anabolic therapeutic option for osteoporosis (Weivoda et al.,
2016). Here, we use osteoporosis disease as a case study to explore through the proposed
mathematical model the effects of anabolic control strategies.

Another bone disease of great importance is the metastasis-associated bone disease.
Two of the main culprits associated with the success of the bone metastasis vicious cycle
are TGFβ and Wnt signaling pathways (Mundy, 2002; Baron & Gori, 2018). As such,
therapies involving TGFβ inhibition have been proposed as potential control strategies
for bone metastasis (Juárez & Guise, 2011; Cook et al., 2016), as well as inhibition of
cancer-induced Wnt antagonists (Sousa & Clézardin, 2018).

Finding appropriate bone-associated diseases models is still an active and important
research field, and these include in vitro, in vivo and also in silico models (Madrasi
et al., 2018; Kähkönen et al., 2019). Mathematical and computational models for cancer-
associated bone disease have also been extensively developed in the literature. Recent
computational models for prostate cancer bone disease have been proposed in the work of
Araujo et al. (2014); Cook et al. (2016); Araujo et al. (2018) where a hybrid computational
automaton method was employed. This computational framework serves as an in silico
laboratory to test a number of biological settings across the tissue, cellular and molecular
scales. For the mathematical models, for instance, multiple myeloma bone disease has
been studied from a biochemical-simplified philosophy (Ayati et al., 2010) as well from a
biochemical-detailed perspective (Wang et al., 2011). Recently, cancer bone disease has
been explored in a biochemical-simplified models (Coelho et al., 2016; Camacho & Jerez,
2018) and in a biochemical-detailed model (Farhat et al., 2017). Of great interest to us
is this latter model proposed in Farhat et al. (2017) since the authors incorporate both
TGFβ and Wnt as state variables, but a mathematical analysis discussion is limited. In
this Chapter, we aim to fill a gap between the bone dynamics biology and the proposed
mathematical model with a preliminary theoretical based on mathematical tools such as
steady-state and bifurcation analyses.

Finally, after having gained insight into the bone remodeling and bone metastasis
processes, we incorporate control functions as a way to model treatment strategies. Par-
ticularly, we are interested in disease control strategies that are connected to the TGFβ

72



4.1. Bone remodeling

and Wnt signaling pathways. For the case of bone remodeling, an osteoporosis treat-
ment model is proposed, whereas for the bone metastasis dynamics we aim to model the
therapeutic control of an osteolytic lesion. Additionally, we address the question about
how chemotherapy-free multi-agent therapies could perform to reduce bone metastasis
proliferation compared to chemotherapy-included therapies.

The optimal control framework has been employed in different biological contexts
(Lenhart & Workman, 2007), like in hepatitis virus (Shah et al., 2019), cancer dynamics
(Carrère, 2017) and acute myeloid leukemia (Sharp et al., 2019). However, this approach
has been used scarcely in the literature for bone remodeling and bone metastasis. In
Moroz (2012) an optimal control problem is posed as to describe mechanical stress ef-
fects and regulation on the BMU dynamics. In Lemos et al. (2016) the optimal control
approach is employed to describe chemotherapy effects on the multiple myeloma bone
invasion dynamics.

In summary, this Chapter is organized as follows: In Section 4.1 we propose a mathe-
matical model for bone remodeling which is based on biological assumptions with emphasis
on the roles of TGFβ and Wnt. The proposal combines both the mathematical tractability
from biochemical-simplified models to describe cellular dynamics and the biological rele-
vance from biochemical-detailed models to describe molecular dynamics. Then, we extend
the proposed bone remodeling model to study bone metastasis dynamics in Section 4.2.
In both Sections, we derive well-posedness, local stability and oscillatory properties of the
systems and connect them with their biological contexts. Based on the theoretical results
obtained earlier, in Section 4.3 we propose optimal control problems to model osteoporo-
sis and cancer-induced disease treatments. In particular, through the optimal control
approach, we try to identify the theoretical optimal performance of combination treat-
ments that include both conventional and novel control strategies like bisphosphonates
and TGFβ inhibition. Finally, we present some concluding remarks.

4.1 Bone remodeling

Intense research has been done in understanding the coupling between osteoclast-deri-
ved bone resorption and osteoblast-derived bone formation. Besides the amply studied
RANKL and OPG signaling osteoblast-mediated regulation pathways to osteoclasts. The
other main coupling factors are believed to be the TGFβ and Wnt signaling pathways
(Weivoda et al., 2016). TGFβ is a cytokine that belongs to a superfamily of ligands. This
cytokine is known for its multiple effects on numerous cellular processes. For instance,
TGFβ plays an important role in bone homeostasis by regulating the main RANKL/OPG
pathway. Recently, it has been pointed as the principal factor responsible for the transi-
tion (or reversal) phase in bone remodeling in which osteoclast-driven bone resorption is
stopped while osteoblast-driven bone formation starts (Matsuo & Irie, 2008). The bone
resorption-bone formation coupling is regulated in part via TGFβ by inducing the osteo-
clast expression of Wnt and thereby recruiting osteoblasts (Ota et al., 2013; Weivoda et al.,
2016). Also, it has been found experimentally that TGFβ induces downstream signaling
in osteoclasts that make them express Wnt1, and that this cytokine promoted osteoblasts
migration and proliferation (Weivoda et al., 2016).

TGFβ is abundant in the bone matrix. This cytokine is released in latent form and then
activated by osteoclast activity (Weivoda et al., 2016). At early stages of osteoblast differ-
entiation, TGFβ increases osteoblast precursor migration and proliferation; at later phases,
TGFβ inhibits osteoblast differentiation and bone mineralization. Moreover, TGFβ blocks
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the apoptosis (programmed cell death) of osteoblasts during their conversion into osteo-
cytes. Activation of TGFβ by osteoclasts inhibits further osteoclastogenesis. Depending
on the context, TGFβ can inhibit or promote osteoclast differentiation (Weivoda et al.,
2016; Juárez & Guise, 2011).

For the development of our model we assume the following hypotheses:

(H1”’) Osteoblasts (precursors and active) have a regulatory effect on osteoclasts via the
RANK/RANKL/OPG pathway (Florencio-Silva et al., 2015). See also Chapter 1.1.

(H2”’) TGFβ is released from bone matrix and it is activated by active osteoclast bone
resorption (Janssens et al., 2005).

(H3”’) TGFβ promotes osteoblast precursors proliferation (Janssens et al., 2005; Juárez
& Guise, 2011).

(H4”’) TGFβ activation reduce osteoclastogenesis (maturation of osteoclast precursors)
in the presence of osteoblast lineage by up-regulating OPG and down-regulating
RANKL (Janssens et al., 2005; Takai et al., 1998).

(H5”’) Mature osteoblast apoptosis is blocked by TGFβ (Janssens et al., 2005).

(H6”’) Wnt has a positive density-dependent effect on osteoblast precursors (Weivoda
et al., 2016).

(H7”’) Wnt is expressed by osteoclasts via TGFβ (Weivoda et al., 2016).

(H8”’) We assume that cells and molecules have first-order elimination (Komarova et al.,
2003; Farhat et al., 2017).

These are the main assumptions for developing our mathematical model for bone re-
modeling. In Figure 4.1 a schematic representation of these interactions is presented.

4.1.1 Mathematical model

As mentioned in the introduction, we are interested in introducing TGFβ and Wnt as
state variables. We do so by incorporating them in a modified version of the base model
presented in Section 1.1.2: 

dxC
dt

= αCxCx
g1
B − βCxC ,

dxB
dt

= αBWxBx
g2
C − βBxB,

(4.1)

(4.2)

where xC and xB are the osteoclast and osteoblast densities, respectively. For further
discussion about the model and its parameters, the reader is referred to Section 1.1.2. As
in Section 1.1.2, we will keep assuming a constant regulation of osteoclasts from osteoblasts
by assuming g1 < 0. For simplicity, we assume that g1 = −1 as an inversely linear
regulation.

TGFβ is regarded as indirect paracrine signaling from osteoclasts to osteoblasts and
also as an osteoclast autocrine signaling. Thus, in order to modify the base model, we
drop out some of the exponents related to these signalings and incorporate the TGFβ
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Figure 4.1: Left: Bone remodeling coupling interactions. Right: Bone metastasis
vicious cycle. The presence of cancer cells interfere with the bone cell communications.
C : active osteoclasts, B : osteoblast lineage, T : active TGFβ, W : Wnt protein, M : bone
metastasis cancer cells.

density as an explicit variable. The corresponding exponent in the reduced model (4.1)–
(4.2) is g2 which will therefore be assumed g2 = 0. In their place, the meaning of the
parameter g2 will be encoded in explicit molecular agents that resembles this paracrine
communication between osteoblasts and osteoclasts. A similar approach of decoupling the
power-law approximation was used in Ryser et al. (2010) where RANKL and OPG were
modeled explicitly.

Taking all together the previous discussion and the hypotheses (H1)–(H8), we propose
the following model:

dxC
dt

= αCx
−1
B︸ ︷︷ ︸

RANKL/OPG

− βCxC︸ ︷︷ ︸
OC apopt.

− βCTxCxT ,︸ ︷︷ ︸
TGFβ induced apop.

dxB
dt

= αBWxBxW︸ ︷︷ ︸
Wnt-induced prolif.

− βBxB,︸ ︷︷ ︸
OB apop.

dxT
dt

= αTxC︸ ︷︷ ︸
Resorp.

−βTxT︸ ︷︷ ︸
Degra.

,

dxW
dt

= αWxTxC︸ ︷︷ ︸
OC-induced prod.

−βWxW︸ ︷︷ ︸
Degra.

,

(4.3)

(4.4)

(4.5)

(4.6)

where xC(t), xB(t), xT (t) and xW (t) denote the densities of active osteoclasts, osteoblast
lineage cells, active TGFβ, and Wnt at time t, respectively; αi are recruitment (xC and
xB), release (xT ) or expression (xW ) rates, and βi are elimination rates; βCT represents
osteoclastic apoptosis due to TGFβ.

One of the first tasks arising while constructing a mathematical model is to check the
feasibility of such a model. In a biological context, it is important to check if the model is
well-posed in terms of non-negativity. The following result is related to this property:

Theorem 4.1. The set R4
+ is a positive-invariant set of the system (4.3)–(4.6).

Proof. The boundary of R4
+ is the union of four sets: ΩC = {0} × R4

+ × R4
+ × R4

+,
ΩB = R4

+ ×{0}×R4
+ ×R4

+, ΩT = R4
+ ×R4

+ ×{0}×R4
+, and ΩW = R4

+ ×R4
+ ×R4

+ ×{0}.
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In order to prove that R4 is positively invariant, we may prove that the vector field X ′

defined by the ODE system points inwards from the boundary or it is tangent to it.
For ΩC , note that xC = 0 and thus, from (4.3)–(4.6), we get:

dxC
dt

= αCx
−1
B > 0, (4.7)

and thus the vector field X ′ points inwards to R4 from ΩC .
For ΩT , note that xT = 0 and thus, from (4.3)–(4.6), we get:

dxT
dt

= αTxC ≥ 0, (4.8)

and thus the vector field X ′ points inwards to R4 from ΩT .
For ΩW , note that xW = 0 and thus, from (4.3)–(4.6), we get:

dxW
dt

= αWxTxC ≥ 0, (4.9)

and thus the vector field X ′ points inwards to R4 from ΩW .
Finally, for ΩB, we take xB → 0+. Then, from (4.3)–(4.6) and for fixed xW , we get:

dxB
dt

= xB(αBWxW − βB)→ 0 (4.10)

as xB → 0+. Thus the vector field X ′ becomes tangent to R4 from as we approach to ΩB.
Therefore, R4 is positively invariant.

The previous result guarantees that given positive initial conditions the solutions are
going to be positive for any time. Now we focus our attention on the equilibrium points
of the model to study long-term behavior of the system.

Theorem 4.2. The system (4.3)–(4.6) has a unique steady-state given by:

x̂W =
βB
αBW

, (4.11)

x̂T =

√
βW
αW

αT
βT

x̂W =

√
βW
αW

αT
βT

βB
αBW

, (4.12)

x̂C =
βT
αT

x̂T =

√
βW
αW

βT
αT

βB
αBW

, (4.13)

x̂B =
αC

x̂C(βC + βCT x̂T )
. (4.14)

Straightforward from setting the left-hand side of (4.3)–(4.6) equal to zero and solving
the system.

After finding the steady-states of the system another question of relevance is related
to the local stability of these equilibrium points. Recall that if a steady-state is locally
stable then the system converges to this point if initial conditions are sufficiently near to
the steady-state. From Theorem 4.2, assuming local stability of the steady-state, we can
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4.1. Bone remodeling

Symbol Description Value Source
xC(0) Initial active osteoclast density 5.0 Assumed
xB(0) Initial osteoblast density 1.0 Assumed
xT (0) Initial active TGFβ density 0.0 Assumed
xW (0) Initial Wnt density 0.0 Assumed
αC Active osteoclast production 3.0 Komarova et al. (2003)
βC Active osteoclasts apoptosis 0.3 Farhat et al. (2017)
βCT Active osteoclasts inhibition (TGFβ) 0.13 Ross et al. (2017)
αBW Osteoblasts production (Wnt) 0.26 Farhat et al. (2017)
βB Osteoblasts apoptosis 1.0 Assumed
αT TGFβ activation 100.0 Assumed
βT TGFβ degradation 499.1 Farhat et al. (2017)
αW Wnt production 1.0 Assumed
βW Wnt degradation 1.0 Assumed

Table 4.1: Parameter description and assumed values for model (4.3)–(4.6).

obtain the following observations:

1. The Wnt steady-state level x̂W affects directly the equilibrium values of bone cells
and TGFβ. This suggests that Wnt is a potent coupling mechanism at par of TGFβ.

2. Osteoclast equilibrium level x̂C controls inversely proportional the equilibrium level
of osteoblast population. This is a direct effect of the RANKL/OPG regulatory
mechanism from osteoblast to osteoclast.

The next natural question is about the behavior near the equilibrium point of the
system. In other words, we would like to determine its local stability. In C.1 we gathered
the associated characteristic polynomial and the corresponding conditions to guarantee
local stability of the obtained steady-state. Due to the non-linearities of the model, it
is difficult to extract a simplified, transparent list of biological conditions that guarantee
local stability. However, this result may be used as a guide to explore the parameter space
to identify different solution profiles of the model. In the following Section, we employ
these preliminary theoretical results to perform a numerical analysis of the model.

4.1.2 Numerical results

Even though we are considering a multi-scale problem (cells and molecules), for the nu-
merical simulations we consider normalized densities. Thus, the unitary value will be
regarded as a standard reference value for all the variables. This is motivated by works
such as Pivonka & Komarova (2010b) where a quantity of interest is the osteoclast to
osteoblast population as a way to visualize bone turnover.

Baseline parameters

For the case of bone remodeling, we gathered some parameter values from the literature
in Table 4.1. The resulting numerical simulation can be found in Figure 4.2 where it
can be observed that the first wave of osteoclast originates the appearance of a marked
osteoblast wave. This is due to the coupling between osteoclasts and osteoblasts. Over
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Figure 4.2: Bone remodeling oscillatory coupling. Left: Cell population densities.
Right: Molecule densities.

Figure 4.3: Bifurcation diagrams for osteoclast (xC) and osteoblast (xB) equilibrium den-
sities with respect to osteoblast elimination rate βB (up) and TGFβ release αT (down).
As βB increases, a Hopf bifurcation point HB emerges and gives rise to oscillations; the
opposite happens with αT . The lines marked with “oscillatory dynamics” represent the
maximum and minimum values of the periodic solutions. The gray lines correspond to
baseline parameter values. Solid lines represent stable equilibrium whereas dashed lines
represent unstable equilibrium.

time the coupling favors the osteoclast population and thus we associate this behavior to
an osteoporotic profile. We will bring back this discussion in Section 4.3.1.

Oscillations

Due to its nonlinear nature, model (4.3)–(4.6) poses a challenge in regards to the analytical
study of the stability of the steady-state (4.11)–(4.14). We can see in Figure 4.2 that using
the baseline parameters we obtain an oscillatory bone remodeling process. We wondered
if there may be some parameters involved in switching from an oscillatory to transient
behavior. To test this hypothesis, we employed a computational tool called PyDSTool
which is a Python module to obtain numerical approximations to bifurcation diagrams
(Clewley et al., 2007).

Because of its role in the feedback loop of the bone remodeling process, we tested
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4.1. Bone remodeling

Parameter ↗ Range OCs? OBs? Period?
αC (1.0, 3.0) ↘ ↗ —
βC (0.3, 1.0) — — ↘
βCT (0.07, 0.14) ↘ ↘ ↘
αBW (0.1, 0.5) ↘ ↗ ↗
βB (0.1, 1.0) ↗ ↘ ↘
αT (10.0, 100.0) ↘ ↘ ↘
αW (0.1, 2.0) ↘ ↗ ↗
βW (1.0, 5.0) ↗ ↘ ↘

Table 4.2: Qualitative parameter sensitivity analysis. The first column depicts the pa-
rameter that was increased. The second to fourth columns show how osteoclast density,
osteoblast density and the period of oscillations were modified with respect to the param-
eter.

the hypothesis that the parameters βB (osteoblast elimination rate) and αT (release and
activation rate of TGFβ) may be able to create or destroy an oscillatory behavior. In
particular, Hopf bifurcations dictate the transition from a latent state to an oscillatory
one. These points may arise when certain model parameters are varied in an interval of
interest where the imaginary parts of the roots of the characteristic polynomial have a
change of sign (Kuznetsov, 2013).

Exploring the parameter space, using steady-state values from Theorem 4.2 to maintain
normalized values, we obtained Figure 4.3 where the appearance of Hopf bifurcations is
shown. From this figure we can obtain the following observations:

1. Osteoblast elimination rate βB is involved in the emergence of oscillatory behavior,
whereas αT favors the emergence of transient behavior.

2. When oscillations emerge, control of the bone remodeling process becomes more
difficult due to non-linear periodic behavior.

3. Decreasing the release/activation of TGFβ produces the following scenario: After
the emergence of the Hopf bifurcation, there is a regime in which osteoblasts oscil-
late with increasing amplitude, perhaps to compensate the osteoclastic increase of
activity. However, due to lack of TGFβ mediated activation, osteoblastic activity
ceases.

These observations lead to the hypothesis that for a bone remodeling process scenario
that favors osteoclast activity (e.g. osteoporosis) the inhibition of osteoblast apoptosis or
the increase of TGFβ levels may be appropriate control measures. Also, these numerical
results shed some light in regards to our question of the creation or elimination of an
oscillatory bone remodeling process.

Parameter sensitivity

For the bone remodeling system, we performed a sensitivity analysis for the model pa-
rameters. We regarded parameters from Table 4.1 as baseline parameters. We plotted in
Figure 4.4 the most representative changes in the behavior of the solutions with respect
to some parameters. In Table 4.2 we gathered the qualitative changes observed for all the
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Figure 4.4: Sensitivity with respect to two main coupling elements: Up: βCT and
Down: αBW . Left: Osteoclast density. Right: Osteoblast density.

parameters of the system. We identified elements from Table 4.2 that have antagonistic
effects. For instance, the regulation parameter αC antagonize with the elimination of os-
teoblasts βB or with the elimination of Wnt βW . Whereas Wnt and osteoblasts display
regulatory effects on osteoclasts. From Table 4.2 we can infer that TGFβ have a potent
coupling mechanism. If TGFβ liberation and activation αT is increased, both osteoclast
and osteoblast populations decrease.

In Figure 4.4 we gathered two important parameters. The first one is the apoptotic
responsiveness to TGFβ from osteoclasts βCT . The second parameter is the proliferation
responsiveness to Wnt from osteoblasts αBW . These parameters are of biological relevance
because they can be linked to the corresponding cell receptors, which can be manipulated
to test therapeutic possibilities (Wan et al., 2012). Also, they are relevant because they
might be perturbed by unwelcome visitors like cancer cells, which may produce for instance
antagonists to the Wnt signaling pathway. This is partially addressed in the next Section
where we present a bone metastasis mathematical model that incorporates manipulation
of the bone cell cross-talk due to cancer cells.

4.2 Bone metastasis

Having studied the bone remodeling process, now we ask how bone pathologies may arise
by taking into account negative external forces like metastatic cancer cells. In this Section,
we will introduce the biological assumptions for the bone metastasis dynamics.

During the vicious cycle of bone metastasis, osteoclast activity is up-regulated by can-
cer cells. Bone resorption causes embedded agents in the bone matrix to be released,
being TGFβ one of them. Liberated in a latent form, TGFβ is then activated by active
osteoclasts and subsequently promoting cancer cell proliferation (Mundy, 2002; Juárez &
Guise, 2011). Osteoblast cell population may also be manipulated by cancer cell-produced
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agents. For instance, some cancer cells produce Dkk1 which is a regulator that inhibits the
Wnt signaling pathway (Suvannasankha & Chirgwin, 2014). In this way, osteoblast activ-
ity may be down- or up-regulated, depending on the balance of the cancer cell-produced
osteoblast-promoting or -inhibiting agents (Chiechi & Guise, 2016). In general, depending
on the balance in the osteoclast to osteoblast activity levels there are two types lesions:
the osteolytic lesion (favors bone resorption) and the osteoblastic lesion (favors bone de-
position) (Mundy, 2002; Krzeszinski & Wan, 2015).

As mentioned in the introduction, bone metastasis cells aim to create a vicious cycle
in which osteoclastic activity is increased in order to release growth factors from the bone
matrix. One of such factors is TGFβ that has important coupling effects in the bone
remodeling process. Bone resorption causes embedded agents in the bone matrix to be
released, being TGFβ one of them. Liberated in a latent form, TGFβ is then activated
by active osteoclasts and subsequently promoting cancer cell proliferation (Mundy, 2002;
Juárez & Guise, 2011). Osteoblast cell population may also be manipulated by cancer
cell-produced agents. For instance, some cancer cells produce Dkk1 which is a regulator
that inhibits the Wnt signaling pathway (Suvannasankha & Chirgwin, 2014). In this
way, osteoblast activity may be down- or up-regulated, depending on the balance of the
cancer cell-produced osteoblast-promoting or -inhibiting agents (Chiechi & Guise, 2016).
In general, depending on the balance in the osteoclast to osteoblast activity levels there
are two types lesions: the osteolytic lesion (favors bone resorption) and the osteoblastic
lesion (favors bone deposition) (Mundy, 2002; Krzeszinski & Wan, 2015).

Besides assumptions (H1)–(H8) from Section 4.1, we incorporate the following ones to
model bone metastasis:

(H9”’) Bone metastatic cells promote activation of osteoclasts by decreasing inhibition
from osteoblasts (e.g. cancer-derived PTHrP increases the RANKL to OPG ratio)
(Mundy, 2002; Coelho et al., 2016).

(H10”’) Bone metastatic cells produce factors to inhibition osteoblast activity (e.g. DKK1
inhibits Wnt pathway) (Florencio-Silva et al., 2015; Farhat et al., 2017).

(H11”’) Bone metastatic cells are affected positively by active TGFβ (Mundy, 2002; Farhat
et al., 2017).

(H12”’) Bone metastatic cells follow an intrinsic logistic growth (Farhat et al., 2017).

Using these as building blocks, we incorporate bone metastasis into the bone remod-
eling dynamics.

4.2.1 Mathematical model

Similarly as in Section 4.1.1, we incorporate TGFβ and Wnt pathways (see Figure 4.1) in a
modified version of previously proposed and studied model for bone metastasis (Chapters
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Symbol Description Value
xM (0) Initial cancer cell proportion 0.01
KC OCs-OBs decoupling effect 0.5
KB Wnt production inhibition 0.2
αCM Promotion of active osteoclasts 0.01
αM Cancer cell growth rate 0.001
KM Carrying capacity 10.0
αMT Promotion due to TGFβ 0.1

Table 4.3: Bone metastasis parameter description of model (4.15)–(4.18). All the pa-
rameters are introduced in this Chapter.
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Figure 4.5: Bone metastasis evolution.

2 and 3):

dxC
dt

= αC

(
1−KC

xM
KM

)
︸ ︷︷ ︸
OCs-OBs decoup.

x−1B − βCxC − βCTxCxT + αCMxM ,︸ ︷︷ ︸
Cancer prom.

dxB
dt

= αBWxBxW − βBxB,
dxT
dt

= αTxC − βTxT ,
dxW
dt

= αW

(
1−KB

xM
KM

)
︸ ︷︷ ︸

Wnt inhi.

xTxC − βWxW ,

dxM
dt

= ( αM︸︷︷︸
Cancer proli.

+ αMTxT︸ ︷︷ ︸
TGFβ prom.

)xM

(
1− xM

KM

)
︸ ︷︷ ︸

logistic

,

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

where xM (t) denotes metastatic cells residing within the BMU, αM is the net proliferation
rate of the cancer cells, KM is the carrying capacity, and αMT is the positive effect on
cancer cell proliferation due to bone-derived TGFβ. The parameters KC and KB are
the maximum effectivity of decoupling OCs-OBs signaling on OCs growth and of Wnt
production inhibition by cancer cells, respectively. Note that 0 ≤ KC < 1 and 0 ≤ KB < 1.
As before, this extended model is well-posed in the sense of positive solutions:

Theorem 4.3. The set R5
+ is a positive-invariant set of the system (4.15)–(4.19).
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Proof. Similar as the one from Theorem 4.1.

Now we search for the steady-states of the bone metastasis model. In this case we
obtain to biologically relevant steady-states: the cancer-free equilibrium and the cancer-
invasion equilibrium. This can be seen next:

Theorem 4.4. The system (4.15)–(4.19) has two steady-states: a cancer-free equilibrium
x̂ given by (4.11)–(4.14) together with x̂M = 0, and a cancer-invasion equilibrium x̃ that
it is given by:

x̃M = KM , (4.20)

x̃W = x̂W =
βB
αBW

, (4.21)

x̃T =

√
βW

αW (1−KB)

αT
βT

βB
αBW

, (4.22)

x̃C =

√
βW

αW (1−KB)

βT
αT

βB
αBW

, (4.23)

x̃B =
αC(1−KC)

x̃C(βC + βCT x̃T − αCMKM )
. (4.24)

Proof.
Straightforward from setting the left-hand side of the system equal to zero and solving.

From Theorem 4.4 we can obtain the following observations:

1. At the cancer-invasion equilibrium, the presence of bone metastatic population does
not change the levels of Wnt.

2. On the other hand, levels of TGFβ and osteoclasts increases as the Wnt production
inhibition KB increases.

3. Osteoblast levels at the cancer-invasion equilibrium decrease as the cancer-induced
osteoclast-osteoblast decoupling KC increases.

4. The direct osteoclast activation from cancer cells αCM increases the osteoblast levels
at the cancer-invasion equilibrium. This is due to the regulation from osteoblast to
osteoclast. If αCM is too high the system enters an unstable regime where solutions
become unbounded.

These observations point out that control of bone metastasis is a complex process by
direct inhibition of TGFβ. Yet again, it is difficult to gain more theoretical insight about
this equilibrium state stability. However, we recur to this abstract result as a guideline
for numerical simulations.
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Figure 4.6: Bifurcation diagram for osteoclast (xC) and osteoblast (xB) equilibrium
densities with respect to the parameters βB (up) and αT (down). The Hopf bifurcation
is delayed in the presence of cancer for βB, left for αT ). Solid lines represent stable
equilibrium whereas dashed lines represent unstable equilibrium.

4.2.2 Numerical results

Baseline parameters

Together with parameters for the bone remodeling process (Table 4.1) we considered some
baseline parameters to simulate metastatic bone disease. In Figure 4.5 we plotted the
corresponding simulation. See Table 4.3.

For the cancer proliferation rate αM we chose a comparable value from the literature
(in Farhat et al. (2017) a value of 0.0023 is estimated for the case of prostate cancer bone
metastasis). Additionally, we aimed to study a metastatic tumor with a low intrinsic
growth rate (low αM ) that had a strong dependence on the TGFβ levels (high αMT ).

Oscillations

Analytical exploration of the equilibria stability of system (4.15)–(4.18) is now guided by
the result found in C.2. We performed a numerical bifurcation diagram using the same
homeostatic parameters as in Figure 4.3 and the cancer-associated baseline parameters 4.3.
The resulting bifurcation diagrams are found in Figure 4.6. Observe in Figure 4.6 that
the invasion equilibrium absorbed the local stability from the cancer-free equilibrium. In
other words, the presence of cancer cells turns the cancer-invasion equilibrium state in a
dominant, locally stable equilibrium. This means that solutions near the cancer-invasion
equilibrium are going to approach or to oscillate with respect to this equilibrium point
even if they start near the cancer-free equilibrium.

We can also observe in Figure 4.6 that a Hopf bifurcation point also appears in the
cancer-invasion equilibrium. However, its appearance is delayed notoriously with respect
to the bifurcation parameter βB. This means that the presence of cancer cells may turn
an oscillatory bone remodeling coupling into a transient dynamical behavior. If the levels
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4.2. Bone metastasis

Figure 4.7: Parameter sensitivity for the bone metastasis model.

of osteoclast and osteoblast densities are far away in the transient regime then the bone
mass is going to increase or decrease steadily, ending up rapidly in an osteolytic or an
osteoblastic lesion.

Parameter sensitivity

Similar to the bone remodeling model, we proceeded to perform a qualitative parame-
ter sensitivity analysis. In Figure 4.7 we gathered the results of increasing the cancer-
associated parameters of the model.

As predicted by the steady-state analysis, the direct contribution from cancer to os-

85



Chapter 4. Modeling TGFβ and Wnt in bone diseases

teoclasts (αCM ) has an unstable effect of the osteoblast growth. The cancer-induced
interference in the bone cells crosstalk has osteolytic effects. Increasing the parameter KC

decreases the osteoblast population to dramatic levels, leaving the osteoclast population
at the same levels. On the other hand, the parameter KB have both undesirable effects:
increases osteoclasts and decreases osteoblasts. Finally, the contribution from TGFβ to
the cancer growth (αMT ) does not change the equilibrium points. This parameter changes
the oscillatory behavior and the rapidness of the cancer population growth.

4.3 Bone disease treatment modeling

In this Section, we explore a diversity of therapies for two bone diseases: osteoporosis
(cancer-free) and an osteolytic lesion (cancer-invasion). In Skjødt et al. (2018) the authors
present a discussion about the side-effects of the most relevant therapies associated with
osteoporosis and bone metastasis. For instance, bisphosphonates conform anti-catabolic,
osteoclast apoptosis promoter treatment that may imply osteonecrosis of the jaw and also
gastrointestinal effects. On the other hand, intermittent parathyroid hormone is considered
as an anabolic, osteoblast activity promoter treatment that may imply hypercalcemia (high
levels of calcium) and thus abdominal and bone pain.

To model different treatment strategies while bearing in mind possible use limitation
due to economical cost or side-effect burden we employ the optimal control framework.
We propose objective functionals that aim to minimize undesirable quantities and also we
incorporate into the dynamical system the corresponding effects of the treatments on the
cell and molecular activities.

The theoretical approach to this and other types of optimal control problems has been
long studied (Pontryagin et al., 1962). In this Chapter, we employ the computational
tool BOCOP that finds approximations of optimal solutions through solving a nonlinear
programming problem and an interior-point algorithm (Bonnans et al., 2017).

For the case of bone remodeling, we want to assess the optimal controllability of osteo-
porosis considering an anti-resorptive treatment (bisphosphonates) in combination with
an anabolic treatment (Wnt introduction). For bone metastasis, we incorporate an anti-
TGFβ therapy and also chemotherapy.

4.3.1 Osteoporosis therapy

Osteoporosis is a degradation of the bone. It is caused by higher levels of osteoclastic bone
resorption. Several local and systemic factors are implicated as the culprits of osteoporosis.
Two conventional treatments to deal with this pathology are denosumab bisphosphonates
(Burkiewicz et al., 2009). Denosumab is a fully human monoclonal antibody that captures
RANKL and thereby reduce osteoclast activation (Javed et al., 2018). Bisphosphonates,
on the other hand, promote the apoptosis of osteoclasts (Coelho et al., 2016).

Recently, Wnt signaling has been proposed as a potential therapeutic opportunity for
osteoporosis disease. Intense research is focusing to understand this anabolic approach
for bone pathologies (Weivoda et al., 2016; Baron & Gori, 2018). Thus, here we focus
on the standard bisphosphonates (anti-catabolic) and a novel, hypothetical Wnt protein
injection (anabolic) treatments. Also, we incorporate a hypothetical TGFβ injection due
to the pleiotropic effects of TGFβ in the bone remodeling process.

Let us consider the bone remodeling model (4.3)–(4.6) introduced in Section 4.1. We
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associated the baseline parameters to osteoporosis due to the increased OCs level in com-
parison to the OBs level, see Section 4.1.1 and Figure 4.2. Let ubis, uwnt and utg1 be control
functions that model the impact of bisphosphonates, Wnt induction and TGFβ induction
in the bone remodeling process, respectively. We propose the following modification to
the original bone remodeling system (4.3)–(4.6):

dxC
dt

= αCx
−1
B − βCxC − βCTxCxT − ubisxC︸ ︷︷ ︸

Bisphos.

,

dxB
dt

= αBWxBxW − βBxB,
dxT
dt

= αTxC − βTxT + utg1,︸︷︷︸
TGFβ ind.

dxW
dt

= αWxTxC − βWxW + uwnt,︸ ︷︷ ︸
Wnt ind.

(4.25)

(4.26)

(4.27)

(4.28)

The optimal control problem will have the following objectives:

1. Minimize the use of treatments ubis, utg1 and uwnt.

2. Minimize the difference between osteoclast and osteoblast levels.

3. Keep low values of osteoclast levels.

Using the controlled system (4.25)–(4.28) and the proposed objectives we may intro-
duce the following cost functional:

J(u) =

∫ tf

0
C1ubis + C2uwnt + C3utg1 + C4(xC − xB)2 + C5(xC − 1)2dt. (4.29)

The coefficients Ci (i = 1, . . . , 5) are called weight parameters which balance the im-
portance of each component to the total value of the cost functional J . For instance, if
Ci = 0 then the corresponding quantity of the integral (4.29) does not imply an additional
cost.

Applying an external input to a biological process usually implies having defined
bounds for such input. Here, we assume the following bounds for the control functions
ubis and uwnt:

0 ≤ ubis(t) ≤ 0.5, 0 ≤ utg1(t) ≤ 100, 0 ≤ uwnt(t) ≤ 2, for all 0 ≤ t ≤ tf . (4.30)

The bounds in (4.30) are proposed for numerical exploration purposes while trying to
equilibrate reasonable biological effects and variable magnitudes in the dynamical model.

Observe that in the cost functional (4.29) and in model (4.25)–(4.28) the control func-
tions appear as linear terms. Thus, it is expected that the optimal solutions are of the
so-called bang-bang type (Lenhart & Workman, 2007). In these type of solutions the con-
trol function switch from an ’off’ state to an ’on’ state. It is possible that singular arcs
arise, giving intermediate values between the ’off’ and ’on’ states (Ledzewicz et al., 2019).

Here we consider three strategies for controlling osteoporosis:
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Strategy A

Strategy B

Strategy C

Figure 4.8: Bone remodeling model: Osteoporosis treatments. Dashed lines represent
solutions without control. The red dot represents the initial condition (xC(0), xB(0)).
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Strategy ubis? C1 utg1? C2 uwnt? C3 C4 C5

A X 0 X 15 1 2
B X 0 X 12 2 1
C X 0.05 X 7.2 1 1

Table 4.4: Summary of strategies explored for osteoporosis. Control functions without
a check mark are regarded as zero functions.

• Strategy A. We consider the combination of bisphosphonates (ubis) and Wnt input
(uwnt). We ask the cost functional to penalize high levels of OCs (C5) more than the
difference between OCs and OBs levels (C4).

• Strategy B. We also consider bisphosphonates and Wnt input. We reduce slightly the
cost of utilizing the uwnt control. Also, we invert the roles of C4 and C5 putting emphasis
on the difference between OCs and OBs levels.

• Strategy C. Finally, in this strategy, we focus on theoretical TGFβ and Wnt input
therapies. In this strategy, we equalize the importance of the parameters C4 and C5.

Balancing the weight parameters Ci (i = 1, . . . , 5) makes the optimal solution to focus
on certain aspects of the model dynamics and the usage of the controls. In Table 4.4 we
gathered these strategies and the corresponding numerical values used for the weight pa-
rameters Ci. We aimed to calibrate the weight parameters such that the optimal solutions
were not in an ’on’ state for prolonged periods of time.

In Figure 4.8 we gathered three different optimal control treatments for osteoporosis.
In the first row, we put osteoclast and osteoblast evolution over time and in the second row
the corresponding treatment schedule for bisphosphonate, TGFβ input, and Wnt input.
In the third column of the first row, we put the phase plot to better appreciate the changes
in the oscillatory behavior. We observe in Figure 4.8 that, for the three strategies, the
ratio between osteoclasts and osteoblasts is close to 1 as imposed in the cost functional.
This is more readily seen in the third column where the phase plot is presented, and it
is important since we expect a balanced levels of OCs and OBs in order to get balanced
bone resorption and bone formation. It is interesting to realize that the bisphosphonates
and Wnt therapies complement each other –when one treatment is ’on’ the other is ’off’–
while minimizing the use of both treatments (Strategies A and B). In other words, in A
there is a prolonged intermittent bisphosphonates application while Wnt input is reduced,
and the opposite happens in B. On the other hand, TGFβ and Wnt therapies (Strategy
C) have a synergy in relation to the optimal scheduling; they turn ’on’ and ’off’ together
as intermittent therapies.

Comparing the effectiveness and deciding which of the optimal solutions between each
other is difficult because changing the weight parameters Ci may change the behavior of
the optimal controls. For the three Strategies presented here, we observe that each one
has a different aim dictated by C4 (the difference between OCs and OBs levels) and C5

(OCs levels). More precisely, recall that the terms C4 and C5 in the cost functional (4.29)
appear as C4(xC − xB)2 and C5(xC − 1)2. Thus, higher values of C4 and C5 drive the
optimal solution to (i) make xC close to xB and (ii) xC close to 1. Baring this in mind,
note that Strategy A focuses more on making xC close to 1 because C5 > C4. On the
other hand, Strategy B emphasizes the control over the ratio OCs/OBs, making xC close

89



Chapter 4. Modeling TGFβ and Wnt in bone diseases

to xB, because C4 > C5. Finally, Strategy C normalizes the relative importance of these
elements by putting C4 = C5 = 1.

As observed in the OCs vs OBs plots, the three strategies have a reasonable perfor-
mance in terms of controlling the amplitudes of the periodic solutions of OCs and OBs.
It would be interesting to propose a more rigorous approach with experimental-derived
weight parameters to perform a comparative cost-effectiveness analysis among different
combination therapies.

4.3.2 Bone metastasis treatment

As mentioned in Section 4.2, the metastatic bone disease originates from cancer cells
perturbing the bone remodeling process. In particular, cancer cells deceive bone cells
through a vicious cycle in order to get cytokines such as TGFβ. As such, intense research
has been focused on finding strategies to slow down the bone metastatic colonization. One
of the proposed potential therapy to face metastatic bone disease is precisely the inhibition
of TGFβ (Cook et al., 2016).

Like many other cancer diseases, the metastatic bone disease poses a huge multi-
disciplinary endeavor towards the quality of life of the patient (Mundy, 2002; Krzeszinski
& Wan, 2015). Particularly, bone metastasis implies the undesirable increase of bone re-
sorption or bone deposition. As such, anti-resorptive or anti-catabolic treatments are often
recommended together with neoadjuvant chemotherapy (Coelho et al., 2016; Camacho &
Pienta, 2014).

Here, we will incorporate TGFβ inhibition and chemotherapy to the previously intro-
duced bisphosphonates and Wnt injection treatments. Consider now the bone metastasis
model (4.15)–(4.19) introduced in Section 4.2. We associated the baseline parameters to a
metastatic bone disease where the tumor has an inherent slow proliferation rate but TGFβ
levels have an important positive effect on the tumor, see Section 4.2.1 and Figure 4.5.
Let ubis and uwnt be two control functions that model the impact of bisphosphonates and
Wnt induction in the bone remodeling process, respectively. We propose the following
modification to the original bone remodeling system (4.3)–(4.6):

dxC
dt

= αC

(
1−KC

xM
KM

)
x−1B − βCxC − βCTxCxT + αCMxM

− ubisxC ,
dxB
dt

= αBWxBxW − βBxB,
dxT
dt

= αTxC − βTxT − utg2xT ,︸ ︷︷ ︸
TGFβ inhi.

dxW
dt

= αW

(
1−KB

xM
KM

)
xTxC − βWxW + uwnt,

dxM
dt

= (αM + αMTxT )xM

(
1− xM

KM

)
− uchemxM︸ ︷︷ ︸

chemo.

,

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

The optimal control problem will have the following objectives:

1. Minimize the use of treatments ubis, utg2, uwnt and uchem.
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Strategy ubis? C1 utg2? C2 uwnt? C3 uchem? C4 C5 C6

A1 X 50 X 0.25 1000 5
B1 X 50 X 100 1000 5
C1 X 0.25 X 100 1000 5
A2 X 0.25 X 7000 1000 5
B2 X 50 X 7000 1000 5
C2 X 50 X 0.25 X 100 X 5000 1000 10

Table 4.5: Summary of strategies explored for cancer-induced disease. Control functions
without a check mark are regarded as zero functions.

2. Minimize the difference between the osteoclast and osteoblast levels.

3. Keep low values of cancer cell levels.

The cost functional associated to the bone metastasis treatment model (4.31)–(4.35)
is proposed as follows:

J(u) =

∫ tf

0

C1ubis + C2utg2 + C3uwnt + C4uchem + C5x
2
M + C6(xC − xB)2dt. (4.36)

As in the bone remodeling model, in the bone metastasis model we also require the
control functions u to satisfy the following bounds:

0 ≤ ubis(t) ≤ 0.5, 0 ≤ utg2(t) ≤ 200, 0 ≤ uwnt(t) ≤ 5, ≤ uchem(t) ≤ 0.1.

For cancer-induced bone disease, we consider six control strategies classified into two
broad groups: without chemotherapy and with chemotherapy.

• Without chemotherapy.

– Strategy A1. Bisphosphonates (ubis) to control osteoclast activity and TGFβ inhibi-
tion (utg2) to control cancer cell proliferation.

– Strategy B1. Bisphosphonates (ubis) and Wnt input (uwnt) to control bone resorption.

– Strategy C1. TGFβ inhibition (utg2) to control cancer cell proliferation and Wnt
input (uwnt) to promote osteoblast activation.

• With chemotherapy (uchem).

– Strategy A2. TGFβ inhibition (utg2) to control cancer cell proliferation.

– Strategy B2. Wnt input (uwnt) to promote osteoblast activation.

– Strategy C2. All the aforementioned control functions.

In Table 4.5 we gathered these strategies and the corresponding numerical values used for
the weight parameters Ci. Analogously as with the bone remodeling model, we calibrated
the weight parameters such that the optimal solutions were not in an ’on’ state for pro-
longed periods of time. Additionally, we penalized strongly the usage of chemotherapy
(C4 ∈ 5000, 7000) and the presence of cancer cells (C5 = 1000). For the bone metastasis
model, the weight parameter calibration is more difficult than the bone remodeling model,
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Strategy A1

Strategy B1

Strategy C1

Figure 4.9: Bone metastasis treatments: strategies without chemotherapy. Dashed
lines represent solutions without control. The red dot represents the initial condition
(xC(0), xB(0)).
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Strategy A2

Strategy B2

Strategy C2

Figure 4.10: Bone metastasis treatments: strategies with chemotherapy. Dashed
lines represent solutions without control. The red dot represents the initial condition
(xC(0), xB(0)).
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and so there are still some optimal solutions that remain in an ’on’ state for a considerable
amount of time.

As in the bone remodeling model, we expect bang-bang solutions with the possibility
of singular arcs. We gathered some numerical simulations in Figure 4.9 (no-chemotherapy
combination therapy) and in Figure 4.10 (chemotherapy included). It is interesting to
observe in Figure 4.9 that some chemotherapy-free combined therapies may present a
significant impact on cancer growth. In the case of Strategy A1 (bisphosphonate + TGFβ
inhibition), cancer progression is slowed down weakly but an oscillatory bone remodeling
process is recovered. Next, in Strategy B1 (bisphosphonate + Wnt input) we can observe
a more significant decrease in cancer proliferation. Finally, Strategy C1 (TGFβ inhibition
+ Wnt input) presents a similar behavior as the previous Strategy.

Combining chemotherapy with bone-related therapies may have a better performance
than chemotherapy-free treatments, as seen in Figure 4.10. In Strategy A2 (TGFβ inhi-
bition + chemotherapy) the optimal solution allows a prolonged intermittent inhibition
of TGFβ and also a brief intermittent use of chemotherapy. Besides the decrease of can-
cer proliferation, we can also observe a decrease in the amplitude of the oscillatory bone
cell dynamics. In Strategy B2 (Wnt input + chemotherapy) the optimal solution relies
strongly upon the singular arc solution of Wnt application, leaving the chemotherapy use
practically shut down except for a short time window. Finally, in Strategy C2 we incor-
porated the four control functions. Note that we also increased C6 from 5 to 10. Observe
that the four control functions in this Strategy present an intermittent behavior. This
Strategy presents a significant reduction in cancer proliferation and also a more controlled
bone remodeling process.

In contrast to the bone remodeling-osteoporosis model, it is more feasible to compare
the different Strategies for metastatic bone disease. This is due to the preservation of
the weight parameters Ci across almost every Strategy, with differences in Strategy B2
with C3, and the all-in Strategy C2 with C4 and C6. We noted that Wnt therapy has
an important contribution in controlling the metastatic bone disease, suggesting further
experimental research towards assessing the feasibility of combining Wnt therapy with
conventional therapies. Strategy C2 have the best qualitative performance in terms of
controlling cancer cell proliferation while alleviating the osteolytic lesion as it is seen in
the OCs vs OCs plot. Overall, these and the numerical simulations for osteoporosis point
out that optimal timing and dose fraction are important but they are not easy to compute.
Further experimental, theoretical and numerical analyses are needed in order to search for
optimal and robust personalized combination therapies.
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Discussions

In this Chapter, we presented two new mathematical models to study bone in health and
in disease. The first mathematical model focused on the bone cells, osteoclasts and os-
teoblasts, and two remarkable molecular coupling agents, TGFβ and Wnt proteins. The
model was further extended to consider bone metastatic cancer cells in a second mathe-
matical model which was motivated by the observation that bone metastasis perturbs the
bone remodeling crosstalk, favoring the cancer growth and bone cells unbalance.

For each corresponding mathematical model, we found the corresponding equilibrium
points and performed a numerical local stability analysis. We identified the appearance of
oscillatory coupling between osteoclasts and osteoblasts. This oscillatory behavior comes
from the emergence of a Hopf bifurcation, which was found through numerical exploration.
This discovery sheds some light in regards to the existence of oscillations in the bone
remodeling process and the possible mechanisms responsible for them.

Analogously, we presented a brief steady-state analysis for the bone metastasis model.
We found that parameters associated with the interference of bone cells crosstalk from can-
cer cells –corruption of the RANKL/OPG regulatory pathway, for instance– have strong
effects on the solution dynamics. In particular, inhibition of the Wnt signaling from can-
cer cells have a dual negative effect on the bone: it increases osteoclasts and decreases
osteoblasts. Also, we found that cancer invasion in the bone changes the qualitative be-
havior of the bone cell dynamics. Bone metastasis cells have the ability to delay the Hopf
bifurcation appearance. This fact translates in expecting that bone metastasis returns
back the osteoclast and osteoblast dynamics into a latent, non-oscillatory behavior.

Finally, we proposed an optimal control problem to each corresponding mathematical
model. The aim of the optimal control framework is to minimize undesirable quantities of
the system and maximize desirable ones while minimizing the use of external input. In the
context of bone remodeling, we modeled bisphosphonates, TGFβ input and Wnt therapy
as control functions to tackle osteoporosis disease. In the context of bone metastasis, we
considered bisphosphonates and Wnt, and also TGFβ inhibition and chemotherapy. In
both optimal control problems, one of the main objectives was to control the osteoclast
to osteoblast ratio.

In the next and final Chapter, we motivate and propose spatial mathematical models.
We present preliminary theoretical and numerical results and point out relevant questions
to be addressed in the future.
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Chapter 5

Spatial modeling of bone
remodeling and bone metastasis

A basic multicellular unit (BMU) is a group of bone cells that acts temporarily on a certain
region of the bone matrix to carry out the so-called remodeling process (Parfitt, 2002).
BMUs couple two antagonistic mechanisms: remodeling starts with bone resorption due to
osteoclasts and it is followed by osteoblasts-mediated bone formation. Complex biochem-
ical and cell-cell interactions regulate the activity of the BMU (Chen et al., 2018). When
some of the regulatory pathways fail, an imbalance between resorption and formation of
bone matrix leads to fragile bone structures. Osteoporosis is an example of such failures.

In vivo experiments aimed to study bone metastasis are difficult to elaborate. Sev-
eral mathematical models have been developed in order to understand more about the
dynamics of the BMU in bone remodeling (Kroll, 2000; Komarova et al., 2003; Lemaire
et al., 2004; Pivonka et al., 2008; Ji et al., 2012). Recently, some of those models have
been extended to study a variety of phenomena that involves the dysfunction of the bone
remodeling process. In particular, bone metastasis mathematical models have been con-
structed and analyzed (Ayati et al., 2010; Wang et al., 2011; Coelho et al., 2016; Farhat
et al., 2017).

We will consider transforming growth factor-β (TGFβ) as a key agent in the bone
metastasis dynamics. This factor is released from the bone matrix by osteoclast resorption.
It is known that this factor has a multitude of effects on bone cell dynamics. In particular,
the activation of TGFβ by osteoclasts stops osteoclastogenesis, thus diminishing osteoclast
resorption, and also it has the potential to induce migration of osteoblast precursors to
the resorbed area, stimulate their proliferation and promote their differentiation (Juárez
& Guise, 2011). It is hypothesized that TGFβ induces the expression of Wnt1 from active
osteoclasts, and Wnt1 is the major responsible for osteoblast differentiation at the resorbed
area rather than TGFβ alone (Weivoda et al., 2016). Another important chemotactic
factor is RANKL which it has been shown to promote osteoclasts and RANK-expressing
cancer cells migration to resorbed areas at which they will try to establish a vicious cycle
(Jones et al., 2006).

As pointed out in Ryser et al. (2010); Buenzli et al. (2011); Graham et al. (2012), the
BMU dynamics is regulated not only by means of densities of the cytokines but also by the
spatial distribution of these. The main approaches to tackle spatial modeling problems
are partial differential equations (PDEs) and agent-based models (ABMs). Recently, in
Araujo et al. (2014) and Cook et al. (2016) an ABM is developed with the objective of
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bone matrix

resorbed
lacunae

osteoclasts osteoblasts

TGF-beta

RANKL

RANK

resorption formation

Figure 5.1: Schematic representation of spatial bone remodeling (up) and bone metas-
tasis (down) processes.

bone matrix

resorbed
lacunae

osteoclasts osteoblasts

TGF-beta

RANKL

RANK

resorption formation

cancer cells

Figure 5.2: Schematic representation of spatial bone remodeling (up) and bone metas-
tasis (down) processes.

studying prostate cancer bone metastasis. It is predicted that TGFβ inhibition helps in
a preventive scenario more than in an invasion one. To our knowledge, only two works
address the study of mathematical model bone cancer-mediated disease using PDEs: Ayati
et al. (2010) in which multiple myeloma bone disease is studied through diffusion, and
Ryser et al. (2012) in which RANKL and OPG are considered as explicit variables and
the principal movement component is chemotaxis. Following Ryser et al. (2012), in this
Chapter, we will study the spatial dynamics of bone metastases taking into consideration
the main cells and the key biochemical agents. The main difference with Ryser et al. (2012)
is that we are going to consider TGFβ concentrations as an important state variable.
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TGF-b

OCs OBs

IGF

Wnt1

RANKL OPG

Figure 5.3: Key players in normal bone remodeling.

5.1 Spatial bone remodeling model: no cancer scenario

Let u1(t) denote the number of osteoclasts at time t and u2(t) the number of osteoblasts.
Our model is based upon the base biochemical-simplified model showed in Section 1.1.2:

du1
dt

= α1u
g11
1 ug212 − β1u1, (5.1)

du2
dt

= α2u
g12
1 ug222 − β2u2. (5.2)

The exponent parameters try to codify the biochemical communication between cells.
Specifically, gij represents the net effectiveness of the autocrine or paracrine signalings
from cells of population uj on the proliferation rate of population ui. For instance, the
major bone remodeling pathway, the RANK/RANKL/OPG pathway, is codified in the
exponent g21 since RANKL and OPG are cytokines produced by osteoblasts that regulate
osteoclasts promotion or inhibition (Komarova et al., 2003).

In Ryser et al. (2010), a spatial model for bone remodeling is presented. The authors
follow a biochemical-simplified model extension with osteoclast and osteoblast densities.
Further, they include concentrations of RANKL and OPG as state variables of their sys-
tem. Because of that, they decide to drop out the exponent g21, the paracrine effects of
osteoblasts on osteoclasts. They also consider the exponent g22 = 0 under the assumption
that autocrine effects of osteoblasts are negligible with respect g12.

Here the proposed model is given by:

(OCs)
∂u1
∂t

= α1u1u
g1
2︸ ︷︷ ︸

RANK/RANKL/OPG

− β1u1︸︷︷︸
apoptosis

− A1
∂u1
∂x︸ ︷︷ ︸

advection

−D1
∂2u1
∂x2︸ ︷︷ ︸

diffusion

, (5.3)

(OBs)
∂u2
∂t

= α2u
g2
1 u2︸ ︷︷ ︸

TGFβ, IGF

− β2u2︸︷︷︸
apop. or osteo.

− A2
∂u2
∂x︸ ︷︷ ︸

advection

−D2
∂2u2
∂x2︸ ︷︷ ︸

diffusion

. (5.4)

5.1.1 Existence of solutions

In Section 1.3, we presented the formulation of parabolic problems. In this Chapter, we
restrict ourselves to one spatial dimension with Ω = (0, 1) and T = 1000. Note that this
implies that DT = (0, 1000] × (0, 1) and ST = (0, 1000] × {0, 1} in (1.12)–(1.14). The
advection-diffusion operator that we use here is

L = a
∂

∂x2
+ b

∂

∂x
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where a and b are fixed vectors. Additionally, we use only Dirichlet boundary conditions
which are obtained by putting α0 ≡ 0 in (1.13).

Also, in Section 1.3 we presented theoretical results that guarantee the existence and
uniqueness of solutions through upper and lower solutions. This is done by the Monotone
Method. The reader is referred to Section 1.3 to recall the notation, and also to Theorem
1.6 to recall existence and uniqueness of coupled parabolic quasimonotone problems.

Theorem 5.1. There exist solutions for model (5.3)–(5.4).

Proof 1. The proof is based on the preliminary theory presented in Section 1.3.3. For
model (5.3)–(5.4), the operator L is given by:

L(t, x) =

(
D1

∂2

∂x2
−A1

∂

∂x
,D2

∂2

∂x2
−A2

∂

∂x

)
(5.5)

with D1, D2 > 0. To assess the mixed quasimonotony of the reaction function (see
Section 1.3.3) of model (5.3)–(5.4), we check the following relationships:

∂

∂u2
f1(u1, u2) = α1g1u1u

g1−1
2 < 0 for fixed u1,

∂

∂u1
f2(u1, u2) = α2g2u

g2−1
1 u2 > 0 for fixed u2,

where f = (f1, f2) is the reaction function of the model (5.3)–(5.4).

In order to employ the Monotone Method Theorem, we must find coupled upper and
lower solutions ũi, ûi for i = 1, 2 that satisfy the following relationships (see Section 1.3.3):

∂

∂t
ũ1 −D1

∂2

∂x2
ũ1 +A1

∂

∂x
ũ1 ≥ α1ũ1û

g1
2 − β1ũ1, (5.6)

∂

∂t
ũ2 −D2

∂2

∂x2
ũ2 +A2

∂

∂x
ũ2 ≥ α2ũ2ũ

g2
1 − β2ũ2, (5.7)

∂

∂t
û1 −D1

∂2

∂x2
û1 +A1

∂

∂x
û1 ≤ α1û1ũ

g1
2 − β1û1, (5.8)

∂

∂t
û2 −D2

∂2

∂x2
û2 +A2

∂

∂x
û2 ≤ α2û2û

g2
1 − β2û2. (5.9)

To find suitable functions ũi, ûi, let us assume that ũ1, û1, ũ2 and û2 are constant
functions. These two assumptions lead to the following system of inequalities:

0 ≥ α1ũ1û
g1
2 − β1ũ1, (5.10)

0 ≥ α2ũ2ũ
g2
1 − β2ũ2, (5.11)

0 ≤ α1û1ũ
g1
2 − β1û1, (5.12)

0 ≤ α2û2û
g2
1 − β2û2. (5.13)

From (5.10), if we propose:

û2(t, x) ≤
(
β1
α1

)1/g1

, (5.14)
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then (5.6) is satisfied.

From (5.13), if we propose:

û1(t, x) ≥
(
β2
α2

)1/g2

(5.15)

then (5.9) is satisfied. Thus, we have found suitable lower solutions ûi.

From (5.12), if we propose:

ũ2(t, x) ≥
(
β1
α1

)1/g1

(5.16)

then (5.8) is satisfied.

Finally, from (5.11), if we propose:

ũ1(t, x) ≤
(
β2
α2

)1/g2

(5.17)

then (5.7) is satisfied. Thus, we have found suitable upper solutions ũi. This finish
the proof. However, notice from (5.15) and (5.17) that, since û1(t, x) ≤ ũ1(t, x), then
û1(t, x) = ũ1(t, x).

Proof 2.

Following the same procedure as before, if we only assume that û1(t, x) and ũ1(t, x)
are constant functions, and further assume that the lower solution û1(t, x) ≡ 0, then we
may define implicitly the upper solution ũ2 and the lower solution û2 as the solutions of
the uncoupled system given by:

∂

∂t
ũ2 −D2

∂2

∂x2
ũ2 +A2

∂

∂x
ũ2 = α2ũ2ũ

g2
1 − β2ũ2, (5.18)

∂

∂t
û2 −D2

∂2

∂x2
û2 +A2

∂

∂x
û2 = −β2û2. (5.19)

5.1.2 Numerical simulations

In Figure 5.4 a normal remodeling simulation is shown. It is noteworthy to mention
that osteoblasts were assumed to not have advection; however, the diffusion part makes
them follow the path predefined by the osteoclasts wave that always goes first (that is, it
appears before the osteoblast wave). This spatial section is remodeled three times, where
a remodeling cycle is counted as the appearance of the OCs and the OBs waves. It can
be noted that subsequent remodeling waves diminish progressively. Also, the second and
third remodeling waves can be associated as two BMUs that make bone remodeling on the
same location, where one of the BMUs comes from the left and the other from the right.
This could be a mechanism of performing a more delicate bone remodeling in the section.
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Figure 5.4: Spatial bone remodeling. BMU parameters are taken from Table 1.4. Spatial
parameters are: A1 = 1.0× 10−4, A2 = 0, D1 = 1.0× 10−6 and D2 = 2D1.

5.2 Spatial bone metastasis model

In this Chapter, we are concerned about including a spatial variable in a biochemical-
simplified extension due to its importance to bone remodeling and bone metastasis dy-
namics, as pointed out in the introduction. We first focus on a model at a cellular level
and then propose a cellular-molecular spatial model.

Due to its nature, TGFβ can be considered as an autocrine and paracrine factor
produced by osteoclasts. That is, its effects are coded in the exponents g11 and g12.
As seen in the previous Chapter, TGFβ and Wnt have an important contribution to
the coupling between osteoclasts and osteoblasts. Thus, we extend spatially the model
presented in Chapter 4.

Let u3(t, x) the number of cancer cells, uTG(t, x) the concentration of TGFβ and
uW(t, x) the concentration of Wnt at time t and location x. Let us extend also u1(t) and
u2(t) to the spatial domain by u1(t, x) and u2(t, x).

5.2.1 Diffusion-reaction cellular level model

Following Ayati et al. (2010), we propose to extend the previous model from Chapter 2
spatially by adding diffusion:

(OCs)
∂u1
∂t

= α1u1u
g1
2︸ ︷︷ ︸

RANK/RANKL/OPG

− β1u1︸︷︷︸
apoptosis

+ σ1u1u3︸ ︷︷ ︸
promotion by cancer

+D1
∂2u1
∂x2︸ ︷︷ ︸

diffusion

, (5.20)

(OBs)
∂u2
∂t

= α2u2u
g2
1︸ ︷︷ ︸

TGFβ/Eph

− β2u2︸︷︷︸
apoptosis

+ σ2u2u3︸ ︷︷ ︸
effects of cancer

+D2
∂2u2
∂x2︸ ︷︷ ︸

diffusion

, (5.21)
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(CCs)
∂u3
∂t

= α3u3

(
1− u3

K

)
︸ ︷︷ ︸
logistic growth

+σ3u1u3︸ ︷︷ ︸
TGFβ

+D3
∂2u3
∂x2︸ ︷︷ ︸

diffusion

. (5.22)

5.2.1.1 Numerical simulations

Figure 5.5: Spatial bone metastasis. BMU parameters are taken from Table 1.4. Bone
metastasis parameters are taken from Table 2.1, Periodicity 1. Spatial parameters are:
A1 = A2 = 0, D1 = 1.0× 10−5, D2 = 2D1 and D3 = 10D1.

For the sake of modeling different spatial initial configurations, we focus on two initial
condition sets:

(IC1 ) Center c = 0.3, radius r = c/8,

u1(0, x) =

{
10, x ∈ (c+ 3r, c+ 5r)

u∗1, otherwise

u2(0, x) =

{
5, x ∈ (c+ 3r, c+ 5r) ∪ (c+ 7r, c+ 9r)

u∗2, otherwise

u3(0, x) =

{
50, x ∈ (c+ 7r, c+ 9r)

0, otherwise

(IC2 ) Center c = 0.3, radius r = c/8,

u1(0, x) =

{
10, x ∈ (c− r, c+ r) ∪ (c+ 3r, c+ 5r) ∪ (c+ 7r, c+ 9r)

u∗1, otherwise
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Figure 5.6: Spatial bone metastasis. BMU parameters are taken from Table 1.4. Bone
metastasis parameters are taken from Table 2.1, Mixed Lesion. Spatial parameters are:
A1 = A2 = 0, D1 = 1.0× 10−5, D2 = 2D1 and D3 = 10D1.

Figure 5.7: Spatial bone metastasis. BMU parameters are taken from Table 1.4. Bone
metastasis parameters are taken from Table 2.1, Osteolytic Lesion. Spatial parameters
are: A1 = −2.0× 10−3, A2 = 0, D1 = 1.0× 10−6, D2 = 5D1 and D3 = 10D1.
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Figure 5.8: QR code to watch the previous figures in video format.

u2(0, x) =

{
5, x ∈ (c− r, c+ r) ∪ (c+ 3r, c+ 5r) ∪ (c+ 7r, c+ 9r)

u∗2, otherwise

u3(0, x) =

{
50, x ∈ (c+ 1.5r, c+ 2.5r)

0, otherwise

Recall that (u∗1, u
∗
2) refers to the steady-state of the bone remodeling base model pre-

sented in Section 1.1.2, see also (1.3).
In Figure 5.5 the Periodicity 1 case (Chapter 2, Table 2.1) is showed. We obtain a

similar qualitative behavior as with the temporal model. We observe that cancer cells are
eliminated progressively, whereas the spatial bone remodeling shown previously in Figure
5.4 is recovered. this is seen in both initial condition sets (IC1) and (IC2) with differences
in the amplitude of bone cell populations.

In Figures 5.6 and 5.7 we show the metastatic invasion scenarios Mixed Lesion and
Osteolytic Lesion (Chapter 2, Table 2.1). In Figure 5.6 we note that the initial cancer
cell population decreases at early progression stages, but then the osteoclast-mediated
bone resorption is hijacked by the diffused cancer cells which aids cancer progression.
Osteoblast population gets inhibited when cancer cell population increases. Osteoclast
population presents a notorious increase in the appearance of successive resorption waves.
In Figure 5.7 we observe a more adverse scenario. Osteoblast population is inhibited in
a short time. Cancer cell population maintain at the beginning a steady population level
and then show a sustained proliferation. Finally, in this case, the osteoclast population
does not show an oscillatory behavior but rather a progressive increase in its population
levels.

5.2.2 Advection-diffusion-reaction cellular-molecular model

As a first step to model the spatial dynamics of bone metastasis, we are going to consider
the folowing simplest case. Osteoclasts an osteoblasts only move spatially by advection,
that is, following a predefined direction. For example, we can consider an horizontal
movement from right to left of these cell populations. Cancer cells and TGFβ will have a
diffusive movement. We propose then the following model:

(OCs)
∂u1
∂t

= αC

(
1−KC

u3
KM

)
︸ ︷︷ ︸
OCs-OBs decoup.

u−12 − βCu1 − βCTu1uTG + αCMu3,︸ ︷︷ ︸
Cancer prom.

− A1∇u1︸ ︷︷ ︸
advection

,

(5.23)
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(OBs)
∂u2
∂t

= αBWu2uW − βBu2 − A2∇u2︸ ︷︷ ︸
advection

, (5.24)

(CCs)
∂u3
∂t

= ( αM︸︷︷︸
Cancer proli.

+ αMTuTG︸ ︷︷ ︸
TGFβ prom.

)u3

(
1− u3

KM

)
︸ ︷︷ ︸

logistic

+D3∆u3︸ ︷︷ ︸
diffusion

, (5.25)

(TGFβ)
∂uTG
∂t

= αTu1 − βTuTG +DTG∆uTG︸ ︷︷ ︸
diffusion

, (5.26)

(Wnt)
∂uW
∂t

= αW

(
1−KB

u3
KM

)
︸ ︷︷ ︸

Wnt inhi.

uTGu1 − βWuW +DW∆uW︸ ︷︷ ︸
diffusion

. (5.27)
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5.2. Spatial bone metastasis model

Discussions

In this Chapter, we developed spatial models to study bone remodeling and bone metas-
tasis at a cellular and molecular level. Numerical experiments corroborate the importance
of spatial dynamics on these two bone processes. Also, theoretical results of the temporal
TGFβ model indicate that osteoblast recruitment and elimination rates are important to
determine oscillatory behaviors; the equilibrium of TGFβ levels only depends on these two
parameters. In other words, this temporal model predicts an important role of osteoblasts
in the TGFβ dynamics. Further work is necessary to visualize numerical experiments
for the TGFβ model and assess the relevance of its dynamics in a spatial context. Once
the spatial dynamics is better understood, it would be interesting to assess if therapeu-
tic strategies have different effects on the spatial models in comparison to the temporal
models.

107





Conclusions and future work

The objective of this Thesis was to propose mathematical models that describe bone
remodeling and the bone metastasis processes and identify key elements that originate
bone diseases. Although several theoretical and numerical results were obtained, it is
important to stress out that they should be contrasted with experimental data when they
become readily available. This is a necessary feedback loop of paramount importance for
every mathematical model to grasp the level of confidence in the descriptions given by
the models proposed. Next, we condense the conclusions for each corresponding Chapter
worked in this Thesis:

Chapter 2. In this chapter, we proposed a mathematical model based on a power-law
approximations (S-Systems). The key feature is that we incorporate realistic hypotheses
that couple cancer cell dynamics with the bone cell-related dynamics, filling a missing gap
in the literature. Our base model is able to describe the different three types of bone
diseases caused by bone metastasis: osteolytic lesion, osteoblastic lesion and mixed lesion.
Numerical results validated and illustrated the cancer-free and cancer-invasion equilibrium
solutions. We discovered with a numerical bifurcation analysis that there is a key coefficient
for the change of stability of the equilibria and also for the existence of bifurcation points.
As an important work for the future, we plan to make a parameter estimation based on
quantitative experimental data rather than in qualitative data. Also, it may be interesting
to check the prediction potential of the model with further experimental data.

Chapter 3. In this Chapter, we introduced control functions to model two treatments:
denosumab and radiotherapy. The objective was to propose a modeling framework based
on optimal control in which the use of control is not arbitrary. From the simulations,
we found that inhibition of osteoclasts is not always the optimal answer, and it depends
on the type of metastatic cancer residing in the bone microenvironment. As predicted,
denosumab treatment poses a weak choice in terms of controlling the growth of the tumor
in general. Radiation treatment has a higher potential than the previous one, but the
effects on the bone cells still need to be analyzed, as well as the long-run side-effects and
important economical cost that limit its applicability. A treatment that respects the nat-
ural microenvironment while attacking cancer cells would be more effective and desirable.
It would be interesting to explore alternative treatment strategies by considering other
potential control terms. For example, exploring a control function that halts interactions
between cancer and osteoclasts and osteoblasts by inhibiting other key molecules rather
than RANKL, like ILs or PTHrP. Whereas the optimal control framework is still used
in numerous works, it prevails an urgent need to translate real quantitative data into
the mathematical modeling language. The ultimate objective is to convert these types of
models into predictive tools towards the development of patient-personalized treatments.
Factors that need to be considered in extended works are, for instance, economic cost of
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treatment, number of skeletal-related events and other side-effects of using the treatment,
number of cells in a specific bone metastasis, and others. We visualize our results as a
step forward to accomplish such objective.

Chapter 4. The base model, albeit its reduced number of parameters and mathemati-
cal tractability, is not able to answer questions related to particular biochemical agents. In
this Chapter, we presented a new model that combines elements of biochemical-simplified
and -detailed models. The emphasis is put in decoupling from the power-law approxima-
tion two key elements in bone remodeling: TGFβ and Wnt. These factors are not only
important in bone remodeling but also they are suspect to have a relevant role in bone
metastasis. Numerically, we identified the appearance of oscillatory coupling between os-
teoclasts and osteoblasts. However, the period of oscillation is different presented by the
base model, and further experimental data must clarify which oscillatory behavior (if any)
is more relevant. If the model is correct in describing bone remodeling process, the dis-
covery of numerical oscillations sheds some light in regards to the existence of oscillations
in the bone remodeling process and the possible mechanisms responsible for them. We
also found that parameters associated with the interference of bone cells crosstalk from
cancer cells have strong effects on the solution dynamics. In particular, inhibition of the
Wnt signaling from cancer cells have a dual negative effect on the bone: it increases osteo-
clasts and decreases osteoblasts. This could be an interesting hypothesis to be tested in an
experimental setting. We also found numerically that bone metastasis cells have the abil-
ity to delay the Hopf bifurcation appearance. On the other hand, TGFβ has pleiotropic
effects on bone cells and our results point out that it is indeed a fragile element to be
controlled when diseases like osteoporosis and bone metastasis start to develop. Wnt is
an emerging pathway that had interesting regulatory effects on our numerical simulations
of combination therapies, suggesting a strong positive effect towards reducing osteoporo-
sis and bone metastasis osteolytic progression. Our numerical simulations also present
relevant hypotheses related to theoretical optimal control of bone diseases. Emerging
experimental data of these two important signaling pathways should be contrasted with
and reincorporated into theoretical models to further our understanding of how to op-
timally control bone diseases. There are multiple opportunities for future work related
to bone disease treatment strategies. One important aspect to consider in the future is
one of off-targeting. In particular, TGFβ and Wnt signaling pathways are involved not
only in bone remodeling but also in other cellular processes, in health and in disease. In
this Chapter, we focused on the bone remodeling coupling the importance of these two
signaling pathways. Improvements of the mathematical model should take into account
more effects of these pathways in the bone and in cancer dynamics (Enders, 2009; Canalis,
2013; Marie, 2015). As such, other mathematical models have taken into account indirect
control of these pathways, particularly of the Wnt signaling pathway. The indirect control
in up-regulating Wnt levels has been done by inhibiting bone- or cancer-produced Wnt
antagonists such as Dkk1 (Shah et al., 2015). Also, it could be interesting to find the
mathematical conditions for the existence of Hopf bifurcation points, and further identify
another important elements related to the genesis of oscillations. We plan to work on
these relevant issues in the future.

Chapter 5. There is evidence that geometric distribution of bone cells is important
for bone remodeling, and it also plays a relevant role in the distribution of bone metastasis
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cancer cells. Baring this in mind, in this Chapter we proposed a modeling framework to
explore the effects of a one-dimensional space variable. Through numerical experiments,
we could assess that incorporating a spatial variable to bone remodeling and bone metasta-
sis models may impact the qualitative behavior of the dynamical evolution. Experimental
and computational data point that not only the distribution of cells but also the distri-
bution of biochemical agents have to be considered for bone dynamics. Thus, we finished
this Thesis by posing a mathematical model that have both spatial elements and the de-
coupling of TGFβ from the power-law approximation. To our knowledge, this is the first
kind of mathematical model in the literature: other spatial mathematical models focus on
RANKL/OPG. This Chapter offers the amplest window for future work. Numerical ex-
periments for the TGFβ would be interesting for gaining some insight into the dynamical
behavior of the model. Also, it would be more realistic to incorporate Wnt into the spatial
model, as done in the previous Chapter. After introducing TGFβ and Wnt, an inviting
problem to tackle would be the one of spatial control. There are similar theoretical and
numerical approaches for studying optimal control problems in a spatial setting. Future
work will also focus on this aspect.
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Appendix A

Routh-Hurwitz Criterion

The Routh-Hurwitz (R-H) criterion gives necessary and sufficient conditions so that all
the roots of a polynomial have negative real part. In particular, we are interested in the
case of a polynomial of order three:

Q(s) = c3s
3 + c2s

2 + c1s+ c0. (A.1)

If the following conditions

(C1) c3 > 0, c2 > 0 and c0 > 0,

(C2) c2c1 > c0c3,

are satisfied, then the roots of a polynomial (A.1) have negative real part. For more details
of the R-H criterion, see (Gantmacher, 1959).

115





Appendix B

Uniqueness of optimal control
solutions

We follow Fister et al. (1998) to show uniqueness of the optimal solution for the model
(3.4) under certain conditions over the final time (Theorem 3.3). First, we prove some
basic results.

Lemma 6. Let a, b, c, ā, b̄, c̄ be real positive numbers such that they are bounded by some
positive constant M . Then

i) ab− āb̄ ≤M(|a− ā|+|b− b̄|).

ii) (ab− āb̄)(c− c̄) ≤M((a− ā)2 + (b− b̄)2 + (c− c̄)2).
Proof i) Notice that

ab− āb̄ ≤ |ab− āb̄|

≤ |a− ā|
2

b+
|b− b̄|

2
a+
|a− ā|

2
b̄+
|b− b̄|

2
ā

≤ M

2

(
2|a− ā|+2|b− b̄|

)
= M(|a− ā|+|b− b̄|).

ii) Multiplying by (c− c̄) and using the Cauchy inequality (or the AM-GM inequality)
we get

(ab− āb̄)(c− c̄) ≤ |ab− āb̄||c− c̄|
≤M(|a− ā||c− c̄|+|b− b̄||c− c̄|)

≤M
(

1

2

(
(a− ā)2 + (c− c̄)2

)
+

1

2

(
(b− b̄)2 + (c− c̄)2

))
≤M

(
(a− ā)2 + (b− b̄)2 + (c− c̄)2

)
.

Lemma 7. The function f(x) = max{0,min{1, x}} is Lipschitz.

Proof Notice that if x ∈ (−∞, 0)∪ (0, 1)∪ (1,+∞) then there is nothing to prove: the
function is of class C1 in that set. So, we need to focus on x = 0 and x = 1. Suppose that
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x1 < 0 and 1 > x2 > 0, then:

|f(x1)− f(x2)|= |0− x2|= x2 ≤ x2 − x1 = |x2 − x1|= |x1 − x2|.

The other cases are analogous. We can conclude that f(x) is Lipschitz.

Now, we proceed to prove Theorem 2.

Proof Let suppose that there are two optimal pairs (x, λ, u) and (x̄, λ̄, ū) that solve the
problem (3.4) and the adjoint system (3.12), where x = (x1, x2, x3) and λ = (λ1, λ2, λ3).
Let m > 0 be fixed. Then there exist functions y1, y2, y3 and µ1, µ2, µ3 (also with bar)
such that xi = yie

mt, x̄i = yie
mt, λi = µie

−mt, λ̄i = µ̄ie
−mt. Then:

u = max

{
0,min

{
1,
α1e

mg1ty1y
g1
2 µ1

2B

}}
, ū = max

{
0,min

{
1,
α1e

mg1tȳ1ȳ
g1
2 µ̄1

2B

}}
.

Substituting into the optimality system (3.4b)-(3.4d) and (3.12) we get:

y′1e
mt +my1e

mt = α1e
mtemg1ty1y

g1
2 (1− u)− β1emty1 + σ1e

2mty1y3,

y′2e
mt +my2e

mt = α2e
mg2temtyg21 y2 − β2emty2 + σ2e

2mty2y3,

y′3e
mt +my3e

mt = α3e
mty3

(
1− emty3/K

)
− β3emty3 + σ3e

mg2temtyg21 y3

+ σ4e
mg1temtyg12 y3,

µ′1e
−mt −mµ1e−mt = −e−mtµ1(α1e

mg1tyg12 (1− u)− β1 + σ1e
mty3)

− e−mtµ2(α2g2e
m(g2−1)tyg2−11 emty2)

− e−mtµ3(σ3g2em(g2−1)tyg2−11 emty3),

µ′2e
−mt −mµ2e−mt = −e−mtµ1(α1g1e

mtem(g1−1)ty1y
g1−1
2 (1− u))

− e−mtµ2(α2e
mg2tyg21 − β2 + σ2e

mty3)

− e−mtµ3(σ4g1em(g1−1)tyg1−12 emty3),

µ′3e
−mt −mµ3e−mt = −e−mtµ1(σ1emty1)− e−mtµ2(σ2emty2)

− e−mtµ3(α3(1− 2emty3/K)− β3 + σ3e
mg2tyg21 + σ4e

mg1tyg12 )

− 2emty3.

We can divide the first three equations by emt and the other three by e−mt. Simplifying:

y′1 +my1 = α1e
mg1ty1y

g1
2 (1− u)− β1y1 + σ1e

mty1y3,

y′2 +my2 = α2e
mg2tyg21 y2 − β2y2 + σ2e

mty2y3,

y′3 +my3 = α3y3
(
1− emty3/K

)
− β3y3 + σ3e

mg2tyg21 y3 + σ4e
mg1tyg12 y3,

µ′1 −mµ1 = −µ1(α1e
mg1tyg12 (1− u)− β1 + σ1e

mty3)− µ2(α2g2e
mg2tyg2−11 y2)

− µ3(σ3g2emg2tyg2−11 y3),

µ′2 −mµ2 = −µ1(α1g1e
mg1ty1y

g1−1
2 (1− u))− µ2(α2e

mg2tyg21 − β2 + σ2e
mty3)

− µ3(σ4g1emg1tyg1−12 y3),

µ′3 −mµ3 = −µ1(σ1emty1)− µ2(σ2emty2)
− µ3(α3(1− 2emty3/K)− β3 + σ3e

mg2tyg21 + σ4e
mg1tyg12 )− 2e2mty3.
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The system related to the other optimal solution (x̄, λ̄, ū) is analogous. Subtracting the
corresponding equations related to (x, λ, u) and (x̄, λ̄, ū) we get:

(y1 − ȳ1)′ +m(y1 − ȳ1) = α1e
mg1t(y1y

g1
2 (1− u)− ȳ1ȳ2g1(1− ū))

− β1(y1 − ȳ1) + σ1e
mt(y1y3 − ȳ1ȳ3),

(y2 − ȳ2)′ +m(y2 − ȳ2) = α2e
mg2t(yg21 y2 − ȳ1g2 ȳ2)− β2(y2 − ȳ2)

+ σ2e
mt(y2y3 − ȳ2ȳ3),

(y3 − ȳ3)′ +m(y3 − ȳ3) = α3

(
(y3 − ȳ3)− emt(y23 − ȳ32)/K

)
− β3(y3 − ȳ3) + σ3e

mg2t(yg21 y3 − ȳ1g2 ȳ3)
+ σ4e

mg1t(yg12 y3 − ȳ2g1 ȳ3),
(µ1 − µ̄1)′ −m(µ1 − µ̄1) = −α1e

mg1t(µ1y
g1
2 − µ̄1ȳ2g1) + α1e

mg1t(µ1y
g1
2 u− µ̄1ȳ2g1 ū)

+ β1(µ1 − µ̄1)− σ1emt(µ1y3 − µ̄1ȳ3)
− α2g2e

mg2t(µ2y
g2−1
1 y2 − µ̄2ȳ1g2−1ȳ2)

− σ3g2emg2t(µ3yg2−11 y3 − µ̄3ȳ1g2−1ȳ3),
(µ2 − µ̄2)′ −m(µ2 − µ̄2) = −α1g1e

mg1t(µ1y1y
g1−1
2 − µ̄1ȳ1ȳ2g1−1)

+ α1g1e
mg1t(µ1y1y

g1−1
2 u− µ̄1ȳ1ȳ2g1−1ū)

− α2e
mg2t(µ2y

g2
1 − µ̄2ȳ1g2)

+ β2(µ2 − µ̄2)− σ2emt(µ2y3 − µ̄2ȳ3)
− σ4g1emg1t(µ3yg1−12 y3 − µ̄3ȳ2g1−1ȳ3),

(µ3 − µ̄3)′ −m(µ3 − µ̄3) = −σ1emt(µ1y1 − µ̄1ȳ1)− σ2emt(µ2y2 − µ̄2ȳ2)

− α3(µ3 − µ̄3) +
2α3e

mt

K
(µ3y3 − µ̄3ȳ3) + β3(µ3 − µ̄3)

− σ3emg2t(yg21 − ȳ1g2)− σ4emg1t(yg12 − ȳ2g1)

− 2e2mt(y3 − ȳ3).

Now, we multiply each equation by the left-hand side without the derivative and then
integrate from 0 to a time T :

1

2
(y1 − ȳ1)2

∣∣∣∣T
0

+m

∫ T

0
(y1 − ȳ1)2dt =

α1

∫ T

0
(y1 − ȳ1)emg1t(y1yg12 − ȳ1ȳ2g1)dt

− α1

∫ T

0
(y1 − ȳ1)emg1t(y1yg12 u− ȳ1ȳ2g1 ū)dt

− β1
∫ T

0
(y1 − ȳ1)2dt+ σ1

∫ T

0
(y1 − ȳ1)emt(y1y3 − ȳ1ȳ3)dt,

1

2
(y2 − ȳ2)2

∣∣∣∣T
0

+m

∫ T

0
(y2 − ȳ2)2dt =

α2

∫ T

0
(y2 − ȳ2)emg2t(yg21 y2 − ȳ1g2 ȳ2)dt− β2

∫ T

0
(y2 − ȳ2)2dt
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+ σ2

∫ T

0
(y2 − ȳ2)emt(y2y3 − ȳ2ȳ3)dt,

1

2
(y3 − ȳ3)2

∣∣∣∣T
0

+m

∫ T

0
(y3 − ȳ3)2dt =

α3

∫ T

0
(y3 − ȳ3)2dt−

α3

K

∫ T

0
(y3 − ȳ3)

(
emt(y23 − ȳ32)

)
dt

− β3
∫ T

0
(y3 − ȳ3)2dt+ σ3

∫ T

0
(y3 − ȳ3)emg2t(yg21 y3 − ȳ1g2 ȳ3)dt

+ σ4

∫ T

0
(y3 − ȳ3)emg1t(yg12 y3 − ȳ2g1 ȳ3)dt,

− 1

2
(µ1 − µ̄1)2

∣∣∣∣T
0

+m

∫ T

0
(µ1 − µ̄1)2dt =

α1

∫ T

0
(µ1 − µ̄1)emg1t(µ1yg12 − µ̄1ȳ2g1)dt

− α1

∫ T

0
(µ1 − µ̄1)emg1t(µ1yg12 u− µ̄1ȳ2g1 ū)dt

− β1
∫ T

0
(µ1 − µ̄1)2dt+ σ1

∫ T

0
(µ1 − µ̄1)emt(µ1y3 − µ̄1ȳ3)dt

+ α2g2

∫ T

0
(µ1 − µ̄1)emg2t(µ2yg2−11 y2 − µ̄2ȳ1g2−1ȳ2)dt

+ σ3g2

∫ T

0
(µ1 − µ̄1)emg2t(µ3yg2−11 y3 − µ̄3ȳ1g2−1ȳ3)dt,

− 1

2
(µ2 − µ̄2)2

∣∣∣∣T
0

+m

∫ T

0
(µ2 − µ̄2)2dt =

α1g1

∫ T

0
(µ2 − µ̄2)emg1t(µ1y1yg1−12 − µ̄1ȳ1ȳ2g1−1)dt

− α1g1

∫ T

0
(µ2 − µ̄2)emg1t(µ1y1yg1−12 u− µ̄1ȳ1ȳ2g1−1ū)dt

+ α2

∫ T

0
(µ2 − µ̄2)emg2t(µ2yg21 − µ̄2ȳ1g2)dt− β2

∫ T

0
(µ2 − µ̄2)2dt

+ σ2

∫ T

0
(µ2 − µ̄2)emt(µ2y3 − µ̄2ȳ3)dt

+ σ4g1

∫ T

0
(µ2 − µ̄2)emg1t(µ3yg1−12 y3 − µ̄3ȳ2g1−1ȳ3)dt,

− 1

2
(µ3 − µ̄3)2

∣∣∣∣T
0

+m

∫ T

0
(µ3 − µ̄3)2dt =

σ1

∫ T

0
(µ3 − µ̄3)emt(µ1y1 − µ̄1ȳ1)dt+ σ2

∫ T

0
(µ3 − µ̄3)emt(µ2y2 − µ̄2ȳ2)dt

− (β3 − α3)

∫ T

0
(µ3 − µ̄3)2dt−

2α3

K

∫ T

0
(µ3 − µ̄3)emt(µ3y3 − µ̄3ȳ3)dt
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+ σ3

∫ T

0
(µ3 − µ̄3)emg2t(yg21 − ȳ1g2)dt

+ σ4

∫ T

0
(µ3 − µ̄3)emg1t(yg12 − ȳ2g1)dt+ 2

∫ T

0
(µ3 − µ̄3)e2mt(y3 − ȳ3)dt.

Using the previous lemma with x :=
α1emg1ty1y

g1
2 µ1

2B we have:∫ T

0
(u− ū)2dt =

∫ T

0

(
max

{
0,min

{
1,
α1e

mg1ty1y
g1
2 µ1

2B

}}
−max

{
0,min

{
1,
α1e

mg1tȳ1ȳ
g1
2 µ̄1

2B

}})2

dt

≤
∫ T

0

(
α1e

mg1ty1y
g1
2 µ1

2B
− α1e

mg1tȳ1ȳ
g1
2 µ̄1

2B

)2

dt

≤ α1

2B

∫ T

0
(y1y

g1
2 µ1 − ȳ1ȳ2g1 µ̄1)

2
dt.

Now, using that the function f(y1, y2, µ1) = y1y
g1
2 µ1 is locally Lipschitz, we can conclude

that there exists a positive constant L such that:

α1

2B

∫ T

0
(y1y

g1
2 µ1 − ȳ1ȳ2g1 µ̄1)

2
dt ≤ α1L

2B

∫ T

0

(
(y1 − ȳ1)2 + (y2 − ȳ2)2 + (µ1 − µ̄1)2

)
dt.

Another useful inequality is derived from using Lemma 6 two times successively and the
locally Lipschitz condition for f(y2) = yg12 . Hence we have:

|y1 − ȳ1|(y1yg12 u− ȳ1ȳ2g1 ū) ≤M5((y1 − ȳ1)2 + (u− ū)2 + (y2 − ȳ2)2)

for some constantM5 > 0. Now, using the previous results we can get the desired bounds:

1

2
(y1 − ȳ1)2

∣∣∣∣T
0

+m

∫ T

0
(y1 − ȳ1)2dt =

α1

∫ T

0
(y1 − ȳ1)emg1t(y1yg12 − ȳ1ȳ2g1)dt− α1

∫ T

0
(y1 − ȳ1)emg1t(y1yg12 u− ȳ1ȳ2g1 ū)dt

− β1
∫ T

0
(y1 − ȳ1)2dt+ σ1

∫ T

0
(y1 − ȳ1)emt(y1y3 − ȳ1ȳ3)dt

≤ α1

∫ T

0
|y1 − ȳ1||y1yg12 − ȳ1ȳ2g1 |dt+ α1

∫ T

0
|y1 − ȳ1||y1yg12 u− ȳ1ȳ2g1 ū|dt

+ σ1e
mT

∫ T

0
|y1 − ȳ1||y1y3 − ȳ1ȳ3|dt

≤ L11

∫ T

0

(
(y1 − ȳ1)2 + (y2 − ȳ2)2

)
dt+ L12e

mT

∫ T

0

(
(y1 − ȳ1)2 + (y3 − ȳ3)2

)
dt

+ α1

∫ T

0
|y1 − ȳ1||y1yg12 u− ȳ1ȳ2g1 ū|dt
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≤ L11

∫ T

0

(
(y1 − ȳ1)2 + (y2 − ȳ2)2

)
dt+ L12e

mT

∫ T

0

(
(y1 − ȳ1)2 + (y3 − ȳ3)2

)
dt

+M13

∫ T

0

(
(y1 − ȳ1)2 + (u− ū)2 + (y2 − ȳ2)2

)
dt

≤ L11

∫ T

0

(
(y1 − ȳ1)2 + (y2 − ȳ2)2

)
dt+ L12e

mT

∫ T

0

(
(y1 − ȳ1)2 + (y3 − ȳ3)2

)
dt

+ L13

∫ T

0

(
(y1 − ȳ1)2 + (µ1 − µ̄1)2 + (y2 − ȳ2)2

)
dt.

Analogously, we get:

1

2
(y2 − ȳ2)2

∣∣∣∣T
0

+m

∫ T

0
(y2 − ȳ2)2dt ≤

L21e
mg2T

∫ T

0

(
(y1 − ȳ1)2 + (y2 − ȳ2)2

)
dt

+ L22e
mT

∫ T

0

(
(y2 − ȳ2)2 + (y3 − ȳ3)2

)
dt,

1

2
(y3 − ȳ3)2

∣∣∣∣T
0

+m

∫ T

0
(y3 − ȳ3)2dt ≤

L31

∫ T

0
(y3 − ȳ3)2dt+ L32e

mT

∫ T

0
(y3 − ȳ3)2dt

+ L33e
mg2T

∫ T

0

(
(y1 − ȳ1)2 + (y3 − ȳ3)2

)
dt

+ L34

∫ T

0

(
(y2 − ȳ2)2 + (y3 − ȳ3)2

)
dt,

− 1

2
(µ1 − µ̄1)2

∣∣∣∣T
0

+m

∫ T

0
(µ1 − µ̄1)2dt ≤

L41

∫ T

0

(
(µ1 − µ̄1)2 + (y2 − ȳ2)2

)
dt

+ L43e
mT

∫ T

0

(
(µ1 − µ̄1)2 + (y3 − ȳ3)2

)
dt

+ L42

∫ T

0

(
(µ1 − µ̄1)2 + (y2 − ȳ2)2 + (y1 − ȳ1)2

)
dt

+ L44e
mg2T

∫ T

0

(
(µ1 − µ̄1)2 + (µ2 − µ̄2)2 + (y1 − ȳ1)2 + (y2 − ȳ2)2

)
dt

+ L45e
mg2T

∫ T

0

(
(µ1 − µ̄1)2 + (µ3 − µ̄3)2 + (y1 − ȳ1)2 + (y3 − ȳ3)2

)
dt,

− 1

2
(µ2 − µ̄2)2

∣∣∣∣T
0

+m

∫ T

0
(µ2 − µ̄2)2dt

≤ L51

∫ T

0

(
(µ2 − µ̄2)2 + (µ1 − µ̄1)2)+(y1 − ȳ1)2+(y2 − ȳ2)2

)
dt
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+ L52

∫ T

0

(
(µ2 − µ̄2)2 + (µ1 − µ̄1)2 + (y1 − ȳ1)2 + (y2 − ȳ2)2

)
dt

+ L53e
mg2T

∫ T

0

(
(µ2 − µ̄2)2 + (y1 − ȳ1)2

)
dt

+ L54e
mT

∫ T

0

(
(µ2 − µ̄2)2 + (y3 − ȳ3)2

)
dt

+ L55

∫ T

0

(
(µ2 − µ̄2)2 + (µ3 − µ̄3)2)+(y2 − ȳ2)2+(y3 − ȳ3)2

)
dt,

− 1

2
(µ3 − µ̄3)2

∣∣∣∣T
0

+m

∫ T

0
(µ3 − µ̄3)2dt

≤ L61e
mT

∫ T

0

(
(µ3 − µ̄3)2 + (µ1 − µ̄1)2 + (y1 − ȳ1)2

)
dt

+ L62e
mT

∫ T

0

(
(µ3 − µ̄3)2 + (µ2 − µ̄2)2 + (y2 − ȳ2)2

)
dt

+ L63

∫ T

0

(
(µ3 − µ̄3)2 + (y3 − ȳ3)2

)
dt

+ L64e
mT

∫ T

0

(
(µ3 − µ̄3)2 + (y3 − ȳ3)2

)
dt

+ L65e
mg2T

∫ T

0

(
(µ3 − µ̄3)2 + (y1 − ȳ1)2

)
dt

+ L66e
2mT

∫ T

0

(
(µ3 − µ̄3)2 + (y3 − ȳ3)2

)
dt

+ L67

∫ T

0

(
(µ3 − µ̄3)2 + (y2 − ȳ2)2

)
dt.

Summing the above six equations and grouping terms we get:(
m− L11 − L12e

mT − L13 − L21e
mg2T − L22e

mT − L31 − L32e
mT − L33e

mg2T − L34

−L41 − L42 − L43e
mT − L44e

mg2T − L45e
mg2T − L51 − L52 − L53e

mg2T − L54e
mT − L55

−L61e
mT − L62e

mT − L63 − L64e
mT − L65e

mg2T − L66e
2mT − L67

) ∫ T

0

(
(y1 − ȳ1)2

+(y2 − ȳ2)2 + (y3 − ȳ3)2 + (µ1 − µ̄1)2 + (µ2 − µ̄2)2 + (µ3 − µ̄3)2
)
dt ≤ 0.

This can be rewritten as:(
m− C1 − C2e

mT − C3e
mg2T − C4e

2mT
) ∫ T

0

(
(y1 − ȳ1)2 + (y2 − ȳ2)2 + (y3 − ȳ3)2

+(µ1 − µ̄1)2 + (µ2 − µ̄2)2 + (µ3 − µ̄3)2
)
dt ≤ 0.

So if m− C1 − C2e
mT − C3e

mg2T − C4e
2mT > 0 then y1 = ȳ1, y2 = ȳ2, y3 = ȳ3, µ1 = µ̄1,

µ2 = µ̄2 and µ3 = µ̄3, and therefore the OC solutions u and ū are the same.
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Appendix C

Stability results for TGFβ and
Wnt models

C.1 Local stability of the bone remodeling model

The characteristic polynomial of model (4.3)–(4.6) associated to its steady-state (4.11)–
(4.14) is given by:

p(λ) =λ4 + λ3 (βC + βCTC1 + βT + βW )

+ λ2 (βCTβTC1 + βTβW + (βC + βCTC1) (βT + βW ))

+ λ
βW
C2

(
αBWαWβ

2
1βBβTC1 + αBWαWβ

2
Cβ

2
TC1 + αTβCβCTβBβTβW

−αTβ2CTβ2BβWC1 − 2αTβ
2
CTβBβTβWC1

)
+

2βBβTβWC1

(
αBWαWβ

2
CβT − αTβ2CTβBβW

)
C2

(C.1)

where C1 = x̂T and C2 = αBWαWβCβTC1 − αTβCTβBβW .
We can state the following abstract result, which is a direct result of the Routh-Hurwitz

criteria (Wiggers & Pedersen, 2018):

Theorem C.1. Let p(λ) = λ4 + a1λ
3 + a2λ

2 + a3λ+ a4 be the characteristic polynomial
(C.1) of model (4.3)–(4.6) with respect the steady-state (4.11)–(4.14), where ai are the
respective coefficients in terms of the model parameters. If the following inequalities hold:

ai > 0 (i = 1, 2, 3, 4),

a1a2a3 − a21a4 − a23 > 0,

then the steady-state (4.11)–(4.14) is locally stable.

C.2 Local stability of the bone metastasis model

The characteristic polynomial of model (4.15)–(4.19) associated to its cancer-invasion
steady-state (4.20)–(4.24) is given by:

p(λ) =
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λ5 + λ4 (αM + αMTC1 + βC + βCTC1 + βT + βW )

+ λ3 (βCTβTC1 + βT (βC + βCTC1) + βW (βC + βCTC1 + βT )

+ (αM + αMTC1) (βC + βCTC1 + βT + βW ))

+
λ2

C2
(−C1 (1−KB) (1−KC)C7 + (βTβW (βC + 2βCTC1)

+ (αM + αMTC1) (βCTβTC1 + βT (βC + βCTC1) + βW (βC + βCTC1 + βT )))C2)

+
λ

C2
(−βTC1 (1−KB) (1−KC)C7 + C1 (1−KB) (1−KC) (βC + βCTC1)C7

−C1 (1−KB) (1−KC) (βC + βCTC1 + βT )C7

+ (αM + αMTC1) (βTβW (βC + 2βCTC1)C2 − C1 (1−KB) (1−KC)C7))

− 2βTC1

C2
(1−KB) (1−KC) (αM + αMTC1)C7 (C.2)

where

C1 =

√
αTβBβW
αBWαWβT

,

C2 = KMαBWαCMαTαW + αBWαWβCβTC1 − αTβBβCTβW ,
C3 = KMαBWαCMαTαWβBβCTβW ,

C4 = αBWαWβBβ
2
CβTβW ,

C5 = K2
Mα

2
BWα

2
CMαTα

2
W ,

C6 = αTβ
2
Bβ

2
CTβ

2
W ,

C7 = C5 − 2C3 − C4 + C6.

For the bone metastasis model we have the following result for the local stability of
the cancer-invasion steady-state (Wiggers & Pedersen, 2018):

Theorem C.2. Let p(λ) = λ5 + a1λ
4 + a2λ

3 + a3λ
2 + a4λ + a5 be the characteristic

polynomial (C.2) of model (4.15)–(4.19) with respect the cancer-invasion steady-state x̃
(4.20)–(4.24), where ai are the respective coefficients in terms of the model parameters. If
the following inequalities hold:

ai > 0 (i = 1, 2, 3, 4),

a1a2 − a3 > 0,

(a1a2 − a3)(a3a4 − a2a5)− (a1a4 − a5)2 > 0,

then the cancer-invasion steady-state x̃ is locally stable.

126



Appendix D

Source code availability

The source code created for this Thesis may be found in the following link:

https://github.com/arielcam27/thesis2019
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