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Abstract

Type 2 diabetes is a serious health condition that has only become more preva-
lent in recent years. One tool frequently used to help in its diagnosis is the oral
glucose tolerance test, or OGTT. The methods currently in use for studying
OGTT data, however, are basic, and do not take full advantage of the struc-
ture of the data created in an OGTT test. This work proposes a model for
the mathematical analysis of OGTT data using Bayesian statistics on inverse
problems. The main focus of the thesis is first to propose the model, and then
to investigate various potential ramifications and improvements on it.

A model for OGTT data analysis is proposed, and tested on data from real
OGTT tests with results that fit data well and closely match the intuition of
medical collaborators.

A second test for diabetes has recently been proposed by researchers in Cuer-
navaca and Mexico City. Variable selection methodology is developed to study
the ability of this tool to predict OGTT results. The results are unpromising.
However, as a result of this analysis, a new technique for variable selection is
proposed. This technique is christened FATSO and is useful for likelihood reg-
ularization in situations where intuitive parameter tuning is desirable. This is
generally useful enough to give an importance to the new test which extends
beyond merely OGTT analysis.

A potential improvement on the OGTT protocol is considered which would
change the times at which OGTT data is collected. This modification is treated
as a problem in the Bayesian design of experiments, and a new algorithm is
developed for this purpose.

Another modification to the OGTT protocol is also considered which changes
the method used for collecting samples, replacing it with one that is cheaper and
which reduces patient discomfort. Although this method was thought to be too
imprecise for the purposes of an OGTT, the mathematical model is adjusted to
produce reasonable results from these data as well.
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se me ocurŕıa pedir.

Agradezco a las siguientes personas por apoyar con consultas técnicas en
diversas etapas del proceso de la investigación: El Dr. Peter Muller , el Dr.
Marcos Capistrán, el Dr. Rogelio Ramos Quiroga, el Dr. Yussef Mazouk, y el
Dr. Al Parker.
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Chapter 1

Introduction

Diabetes is a serious and potentially fatal illness that is on the rise and is ex-
pected to affect over 4% of the worldwide population by the year 2030 (Wild
et al., 2004; American Medical Association, 2006). Diabetes occurs when the
pancreas cannot produce enough insulin (a hormone which lowers blood glu-
cose), or when the body is unable to efficiently use the insulin it produces,
thereby reducing the effectiveness of the body’s blood sugar regulation.

While type 1 diabetes is usually diagnosed very early in life, and is related
to genetic disorders, the same cannot be said for type 2 diabetes, which is a
far more common ailment that is acquired at an older age. It usually develops
without any noticeable symptoms initially, but with time can become a serious
problem which leads to severe complications, including death. Because of the
long period of time without symptoms, it can often go undiagnosed for years.
With a timely diagnosis and proper treatment, type 2 diabetes can change from
a serious health risk to a relatively mild condition. Early diagnosis can also
serve to identify patients who are at risk of developing type 2 diabetes and take
steps to prevent this from occurring (American Medical Association, 2006).

In order to administer treatment or take preventative measures, it is of vital
importance to have a good means of diagnosis. One common technique for
diabetes diagnosis is the Oral Glucose Tolerance test (OGTT). To perform this
test, a patient arrives after a night of fasting and has his/her blood glucose
measured (in mg of glucose per dl of blood). The patient is then asked to
drink a 75g glucose concentrate. Blood glucose is measured again at various
times (typically over the course of two hours) and these measurements are used
to study the body’s ability to regulate sugar (American Medical Association,
2006; Jansson et al., 1980; Davidson et al., 2000).

The data produced by an OGTT are potentially very useful, but the classical
tools for its analysis are crude. As a result, any conclusions drawn from OGTT
tests do not use all of the information, and hence we find that the precision of
diagnoses based on OGTT test results is often somewhat lacking. The primary
aim of this thesis is to make significant contributions to the techniques used in
the analysis of OGTT data, and to thereby improve their viability as a technique
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CHAPTER 1. INTRODUCTION

for early diagnosis.
In chapter 2 we take the first steps to try to improve analysis of OGTT data.

To do this, we create a dynamic model which represents some aspects of how the
body processes blood glucose for the duration of the OGTT test. The critical
point is that OGTT measurements are repeated measurements of a process over
time and the dynamic model aims to represent the process itself. The dynamic
model is based on a system of ODEs, which is solved numerically. Fitting the
model to data is an inverse problem. To solve it, Bayesian priors are assigned
to the relevant parameters, and posterior exploration is done via MCMC using
the t-walk (Christen and Fox, 2010). The result of this modeling project is an
improved model for the analysis of OGTT data which has the potential to lead
to more accurate early diagnosis.

After the dynamic model has been developed, several further refinements
are possible. The first issue of note is the inconvenience of performing the test
to begin with. In chapter 3 we examine a new technique for breath analysis
which was recently developed in UNAM, Cuernavaca and in Hospital General,
in Mexico City (Gallego, 2016), and which may possibly allow for diabetes
diagnosis without requiring a patient to go through the inconvenience of an
OGTT. By merely requiring patients to breathe into a special bag, this technique
involves measuring 92 metabolites in breath, and the researchers suspect that
some of these may be indicative of diabetes.

Inferring which metabolites may be useful for detecting diabetes may be
treated as a variable selection problem. One common technique for variable
selection is likelihood regularization. In particular, one very common way to
perform this kind of regularization is with the LASSO operator (Tibshirani,
1996). We extend the geometric mechanism of the LASSO operator to create a
different operator which we call the FATSO operator. The FATSO operator is
designed around the idea of making tuning parameters interpretable. FATSO
is then used on simulated and real data with promising results.

To apply a linear selection operator to breath test data we require a single
dimensional marker from OGTT data which is a stand-in for the presence of
diabetes (or the severity thereof). For this purpose we have chosen the first
time when blood glucose returns to its resting state. We estimate this marker
for each individual for whom we have breath test data and we perform regression
on the resulting dataset, applying the FATSO operator. The result is a set of
candidate metabolites to consider as possible indicators of diabetes, but these
do not match the set of candidate metabolites as selected by the proponents of
the technique. For this reason, we choose not to pursue this particular avenue
any further. The development of FATSO in chapter 3, however, is relevant on
its own, and goes well beyond the analysis of OGTT data. In fact, it was tested
on synthetic data as well as well known multivariate data from prostate cancer.
In fact, we consider FATSO to be a potentially signficant and novel contribution
to variable selection methodology in general, relevant in its own right, beyond
the context of OGTT tests.

Returning to our investigation of OGTTs, we proceed to ask the question of
whether OGTT tests themselves can be improved. In chapter 4 we investigate
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this possibility by looking into ways of improving the testing protocol, restricting
ourselves to cases that do not require changing the physical infrastructure or
the associated technology. One way to do this is to reexamine the times at
which blood samples are taken over the course of an OGTT test. There is no
standard set of times, but locally, common practice is to measure blood glucose
at the start of the test, one hour after drinking the glucose concentrate, and at
the end of the test which is two hours after drinking the glucose (in this thesis,
our data comes from more frequent measurements, but the data were collected
specifically for research purposes). These times are somewhat arbitrary, so one
possible improvement to the test is to select a new set of times at which to
collect data.

The selection of measurement times is a problem of experimental design.
To approach this problem we develop a new algorithm to compare Bayesian
experimental designs, and then perform comparisons using this algorithm to
find a good design. This approach is similar to some previous attempts at
Bayesian experimental design, for instance see Christen and Buck (1998), but
has a better mathematical justification. After selecting a design, some numerical
experiments were done to validate it.

Changing the times for data collection is one way to improve the OGTT pro-
tocol to improve the accuracy of the collected data. Another way to change the
protocol is to change the method for data collection. In chapter 5 we look into
changes that alter the physical infrastructure required for the test. Specifically,
we are interested in simplifying it. The usual OGTT protocol requires samples
to be taken in a hospital, via a cannula, and then analyzed with a complex
apparatus which requires significant time and effort to produce a result. There
is, however, a very simple and inexpensive method to measure blood glucose,
known as a glucometer.

Glucometer measurements are measurements of capillary rather than venous
blood. They are known to be imprecise (Ginsberg, 2009), and were long thought
to be insufficient for an OGTT. The new dynamic model, however, provides
better information from OGTTs, and this yields some hope that we may be
able to obtain enough information from glucometer measurements.

We attempt first to directly use glucometer data with the dynamic model,
but we find that it is insufficient. We then investigate the difference between
glucometer measurements and classical venous blood measurements. We iden-
tify two sources of error: A bias caused by the different blood type, and a greater
variance caused by the measurement apparatus. After adjusting the model for
these issues, we find that in many cases it is indeed possible to obtain sufficient
information from glucometer measurements.

While the adjustment to the capillary glucose measurements is promising,
there are still several cases where the results from capillary measurements do
not match results from venous blood. To tackle this issue, we reexamine our
error model for venous blood, requesting duplicate samples from our medical
collaborator. These allow us to reformulate the error model for venous blood as
well. The new model matches capillary inference in several cases which it did
not before, providing further evidence that, with proper analysis, glucometer
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CHAPTER 1. INTRODUCTION

measurements are a viable alternative to study OGTTs in most cases.
Overall, this work offers improvements which hope to greatly increase the

descriptive power and scope of analytical methods for OGTT data. This thesis
proposes a new dynamic model and uses it to analyze data. After, the thesis
proposes two possible alternate versions of the OGTT test protocol which can
be considered, in one case to improve the accuracy and in another to reduce the
inconvenience in the test. It is expected that these results may serve to make
improvements to OGTT protocols and analysis, and ultimately to improve our
ability to diagnose diabetes. This thesis also explores an alternative to OGTT
tests, and although this alternative is ultimately not chosen for further research,
the investigation already conducted on this issue results in a contribution to the
theory of variable selection.
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Chapter 2

The ODE model and the
inverse problem

2.1 OGTT tests

As explained in the introduction, for diagnosis of type 2 diabetes, one common
test is the Oral Glucose Tolerance Test, or OGTT. For this test, a fasting patient
arrives and his or her resting glucose is measured from a blood sample. The
patient then drinks a 75g glucose concentrate and blood glucose is measured
repeatedly over the course of the next two hours. The exact glucose measuring
times vary depending on local practices. The results of these measurements are
expected to provide some notion of how the patient’s body handles the glucose
(Jansson et al., 1980; Davidson et al., 2000; Anderwald et al., 2011).

In practice, the analysis of OGTT tests is usually done using very simple
guidelines. Typically used markers include the average of the observed glucose
measurements and/or the value of the first and last measurement. A patient
is considered diabetic if the measurement chosen is above a certain threshold
(typically 200mg/dl). While this analysis has proven to be useful, it disregards
one of the primary qualities of OGTT test conditions: That they measure the
evolution of a process over time (Davidson et al., 2000).

Accordingly, we propose a dynamic model based on Ordinary Differential
Equations (ODEs) to model blood glucose during an OGTT. The idea of using
mathematical models to analyze OGTT results is not new. Previously proposed
models have not been used for inference, mostly because they lack the flexibility
to explain many of the phenomena seen in OGTTs. For instance, Jansson et al.
(1980) assumes that the body only lowers blood glucose, but in the course of
measuring several patients we can see that this is not always the case (see real
data in section 3.1)

In our approach, we use a dynamic model which was derived from the recom-
mendations of our medical collaborators and follows the logic of previous related
works such as Palumbo et al. (2013). It is flexible enough to describe most of
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the observed behavior of glucose in real patient’s OGTTs. Using Bayesian in-
ference, we set appropriate priors on the parameters and fit this model to real
data. We have been able to achieve good fits for observed data and our results
match the intuition of our medical collaborators well enough that we consider
our model a good candidate for serious analysis of OGTT data and, eventually,
for early diasgnosis.

This chapter is organized as follows, in section 2.2 we present the dynamic
model. In section 2.3 We develop a Bayesian statistical model that can be used
to draw inference from the dynamic model. In section 2.4 we explain the details
of how to perform inference from the model, and present results of said inference
on real patients. Finally, section 2.5 concludes the chapter.

2.2 The dynamic model

Our model is based on the interaction of glucose, insulin and glucagon only. The
glucose regulation system is far more complex but in the controlled environment
of an OGTT these are by far the leading factors. Insulin is a hormone secreted
by the pancreas which reduces blood glucose. Glucagon is also a hormone
produced in the pancreas and has the opposite effect, it triggers the liver to
produce glucose, thus increasing blood glucose levels. In simple terms, insulin
is produced when blood glucose is high and glucagon is produced when blood
glucose is low, making a feedback system of blood glucose level regulation (Jiang
and Zhang, 2003; Palumbo et al., 2013).

Our dynamical model is represented by the following system of ODEs

dG

dt
= L− I +

D

θ2
(2.1)

dI

dt
= θ0(G−Gb)+ − I

a
(2.2)

dL

dt
= θ1(Gb −G)+ − L

b
(2.3)

dD

dt
= −D

θ2
+

2V

c
(2.4)

dV

dt
= −2V

c
(2.5)

where the meaning of each of the state variables and parameters is explained in
table 2.1.

The heuristics behind this model are similar to other glucose-insulin models
(Palumbo et al., 2013, for instance) and are as follows. There is a threshold
level of glucose which the body hopes to maintain which is denoted by Gb. It is
set at 80mg/dl for all examples in this thesis, but it can be adjusted or inferred
otherwise if that is deemed appropriate. If blood glucose goes above Gb then
insulin is produced, increasing dI

dt as indicated by (2.2). As insulin is produced,

this acts to reduce glucose concentration in the blood, reducing dG
dt as indicated

by (2.1). The opposite effect is achieved by glucagon, as seen in (2.3) and (2.1).
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Interpretation Value
G Blood glucose. State variable
I Blood Insulin. State variable
L Blood Glucagon. State variable
D Glucose in digestive system. State variable
V Glucose not yet in the digestive system State variable
θ0 Insulin responsiveness Unknown par.
θ1 Glucagon responsiveness Unknown par.
θ2 Glucose digestive system mean life. Unknown par.
a, b Insulin and Glucagon clearance mean life. 31 min.
c Time taken to drink most of the glucose solution 5 min max.

Table 2.1: Meanings of state variables and parameters in the OGTT model.

Insulin and glucagon are both metabolized and decrease with mean lives a and
b as seen in equations (2.2) and (2.3), respectively.

D(t) and V (t) represent glucose which is moving into the bloodstream. It
begins outside the body, ie. the sugar concentrate V (t), decreasing and moving
into the digestive system, D(t), as seen in (2.5) and (2.4), and then from the
digestive system moving into the bloodstream, as seen in (2.4) and (2.1).

Time is measured in hours, and blood glucose is measured in mg/dL of
blood. The units of glucagon and insulin are more abstract and can be thought
of in terms of their effect on units of blood glucose. Insulin and glucagon re-
sponsiveness include both the generation of the hormone and also the response
of the body to the hormone after production. The model is not intended for in-
sulin nor glucagon level prediction and only glucose measurements are available,
therefore in our model the units of I and L are not relevant and not directly
interpretable.

a and b are extrapolated from best estimates of insulin and glucagon clear-
ance time from Duckworth et al. (1998). Similarly, estimates exist on times
of glucose absorption into the body (Anderwald et al., 2011), but these vary
greatly from patient to patient and thus θ2 is inferred. Jointly with θ0 and θ1,
which are also inferred, these parameters represent the patient’s condition in
our model.

For the examples in this thesis, the system of ODEs is solved numerically
(there is no known analytic solution). This is done by using the odeint function
in the scipy package of the python programming language, (Jones et al., 01 ).
This uses an implementation of the LSODA algorithm, described in Petzold
(1983).

While some justification for the dynamic model comes from the heuristics,
this is secondary to the real issue, which is whether its behavior can adequately
represent what happens to glucose inside a patient’s body. In figure 2.1 we see
glucose curves which follow from the model. The first three curves all start
at Gb, to show the behavior of the model when the patient is already stable.
One of the purposes of asking patients to fast beforehand is precisely to obtain
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Figure 2.1: Left: Three curves produced by our model, all beginning with
G(0) = Gb = 80mg/dl these represent three kinds of patient: The dotted line
is a healthy normal patient, the broken line is a diabetic patient who does not
adequately regulate insulin, and the solid line is an oscillating patient, whose
insulin and glucagon response is very strong. Right: Curves showing similar
scenarios but with slightly different parameter values, including G(0).

this behavior – however, particularly for diabetic patients, fasting may not be
sufficient and glucose may begin elsewhere. The curves in the right panel of
figure 2.1 represent a scenario wherein glucose begins somewhere other than
Gb.

2.3 Statistical model for the OGTT data analy-
sis: The Inverse Problem

In order to perform inference on the OGTTs of real patients, the model must
be fit to the data, ie. the patient’s glucose readings over the course of the test.
For instance, for one real patient, at times t = 0:00, 0:30, 1:00, 1:30, and 2:00
hours we obtained glucose measurements of y = 81, 156, 141, 102, and 89 mg/dl
respectively. The intent is to use these data to infer the glucose curves. We
assume data to be observations of G(t) at the measured times and model the
data y with

yi = G(ti) + εi

where εi ∼ N (0, σ2) and σ = 5mg/dl for all examples in this chapter. This
allows us to write the likelihood as

f(y|θ) ∝
∏
i

e−
yi−G(ti|θ)

2σ2 .

Fitting this kind of model is considered an inverse problem; a non-linear re-
gression problem with a complex regressor defined through a system of ODEs.
These systems are frequently characterized by drastically different sets of pa-
rameters fitting well with the same data, leading to many explanatory scenarios.
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For this reason, classical statistical estimators, such as the least squares estima-
tor, only select one possible scenario, often quite an unreasonable one, following
the data closely. There are several ways to address this issue, but one popular
choice is to use Bayesian inference and encode some notion of what reasonable
parameter combinations are in the prior distribution (Fox et al., 2013; Kaipio
and Somersalo, 2006).

For all of the examples in this chapter, the following priors were used:

θ0 ∼ Gamma(2, 1)

θ1 ∼ Gamma(2, 1)

θ2 ∼ Gamma(10, 1/20) 1I{θ2 > 0.16}
Gb ∼ N (80, 10000) truncated to [30, 400].

The priors for θ0 and θ1 were chosen to give high probability to all values
estimated from even the most extreme patients that have been analyzed in
this way. The prior for θ2 is chosen to match information in Anderwald et al.
(2011). The prior for Gb is centered on healthy patients and is truncated since
any patient whose initial glucose is outside of this range should not undergo an
OGTT test but instead be placed into emergency care (Our medical collaborator
performs a preliminary finger stick glucose test precisely for this purpose. For
further information on finger stick tests, see chapter 5).

2.4 Inference

The object of interest is the function G(t) for each patient and inference is per-
formed on data from each patient separately leading to a separate posterior for
θ0, θ1, θ2 and Gb for each patient. Our objective here is not a population study,
and hence we concentrate on studying our model and its ability to fit OGTT
data parsimoniously. Posterior exploration is achieved using MCMC techniques.
Most MCMCs must be tuned to the posterior for each situation and in this case
for each patient. A practical alternative is to use a self-tuning MCMC algo-
rithm. One such algorithm is the t-walk, which is an MCMC algorithm that
adapts to the scale of the target distribution. This is the algorithm that was
chosen for this case, see Christen and Fox (2010).

Posterior exploration can be done in reasonable time even without high end
hardware. All the examples in this chapter were performed on a laptop computer
with an i5 processor and took less than 2 minutes to perform 15000 iterations
of the t-walk. This represents 150 pseudo-independent posterior samples (using
higher than necessary autocorrelation times, to account for patients with pos-
terior distributions which are harder to explore than usual). This is quite an
acceptable numerical processing time, since it takes 2 hours to gather the blood
samples and processing is typically done overnight, depending on the availability
of staff and laboratory equipment.
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2.4.1 Results on real data

Figure 2.2 shows a posterior sample for three real patients. The curves fit
the data well, even for the third patient (top to bottom), whose data would
not fit a curve which does not account for glucagon. The first patient is a
healthy patient, whose body handles glucose normally. The second patient is
a potentially diabetic patient, whose glucose does not return to the baseline
during the test. The third patient is a patient whose body responds rapidly to
glucose, causing oscillations. Performing inference on many patients has shown
that the latter is not an unusual or rare situation.

These curves display more nuance than current guidelines or practices for
OGTT analysis. For instance, current practices would not distinguish between
the first and third patients, despite their metabolism showing clearly different
behavior, since the maximum measured value for both patients is similar (note
also that although the first patient has higher glucose measurements, the third
actually achieves a higher peak value in the estimated curve; this information
can only be found by considering the temporal aspect of the measurements).
Our model has strong descriptive power, giving reasonably small uncertainty
for times in the measurement interval. It also has reasonable predictive power
for a short time outside of the measurement interval as can be seen by prolonging
the function G(t) beyond the last measurement (in our graphs we prolong this
an additional hour.) This can be thought of as a projection of what the patient’s
glucose would be if the conditions of the experiment were to continue. It is not
clear, however, how long the dynamics of the system can be expected to remain
intact, so this interpretation should only be considered over a short term.

Figures 2.3, 2.4 and 2.5 show histograms obtained from the MCMC posterior
sampling for each of the model parameters for the patients from figure 2.2.
The priors are represented with solid lines for reference. We may note that
for patients without measurements below their resting glucose levels the data
is uninformative about θ1, which represents glucagon response. This is to be
expected since in our model glucagon does not kick in unless blood glucose goes
below Gb. Oscillating patients do provide data that is informative with regards
to θ1.

2.5 Conclusions

The diagnosis of type 2 diabetes is an important public health issue, and it
requires a more sophisticated tool than the direct recording of values from the
test, not only because these values are insufficiently informative, but also be-
cause they do not account for measurement error.

Our model shows that overall it is able to represent the results of OGTT tests
for nearly all patients for whom a fit was attempted. For one patient for whom
the fit failed, it was later discovered that there was an error when recording the
data, and the failure of the model to fit was an indication that triggered this
error’s discovery. The model also displays significantly deeper nuance and detail
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Figure 2.2: OGTT inference for three patients. The first appears to be a healthy
patient, the second a diabetic and the third an oscillating case. The graphs show
the posterior distribution of G(t) over 3 hours. Each vertical slice is a kernel
density estimate of the posterior distribution of G(t) at that time. The dots are
the collected data.
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θ0 θ1 θ2

Figure 2.3: Histograms of posterior samples for the first patient. They are the
parameters θ0, θ1, and θ2 respectively. They are superimposed on a graph of the
prior density of each parameter. In particular we note that for θ1 the posterior
matches the prior closely, and for θ0, the data is extremely informative.

θ0 θ1 θ2

Figure 2.4: Similar graphs for the second (potentially diabetic) patient. Once
again we note that θ1 once again deviates very little from the prior. This is
caused by having no data below Gb.

θ0 θ1 θ2

Figure 2.5: Similar graphs for the third (oscillating) patient. We note that in
this case, the data that is below Gb gives us information about θ1.
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than previous analysis techniques could ever hope to represent.
At present, this model serves for the analysis of OGTT data, but not for

diagnosis. The reason for this is that this model provides much more information
than had previously been available, and our medical collaborators are - as of
yet - uncertain about how to interpret this new information for which they have
not been trained. Further study is required in order to transform full glucose
curves into diagnoses or treatment recommendations. That said, this kind of a
study should be well worth the effort.

At present, there is no known method which serves to diagnose initial stages
of type 2 diabetes quickly, and accurate diagnosis may only be done by following
a patient over time. Regarding our model, we can envisage a faster and simpler
solution based on a single dimensional marker. One single dimensional marker
that seems reasonable is min {t : G(t) = Gb and G′(t) < 0} (first return of blood
glucose to the base level Gb), although simply using the marginal posterior
distribution for θ0, and comparing it with reference θ0 values in healthy patients,
might also be a possibility.

We consider this model a strong candidate for further research in the analysis
of OGTT data. However, even if not this specific model, some sort of dynamic
model with strong descriptive power is required for the important and delicate
issues involved in the analysis of OGTT tests.
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Chapter 3

Breath tests and FATSO

3.1 Motivation

Recently, a new mechanism for the analysis of metabolites in breath was de-
veloped in the UNAM, Cuernavaca and in Hospital General, in Mexico City.
The technique involves collecting a sample from a patient’s breath in activated
carbon, and then studying the sample with gas chromatography. This process
measures the prevalence of 92 organic compounds in breath. Gallego (2016)
studied this technique as a potential way to predict diabetes. She collected a
sample of 35 patients (27 healthy, 3 at risk and 5 critical diabetics) for whom a
clinical diagnosis was available and performed this test. OGTT data for nearly
all patients was also available.

The prospect of using breath metabolites as a test for diabetes is very excit-
ing because it is noninvasive and fast. If effective, this would allow patients to
be diagnosed without having to go through the hassle of an OGTT test. The
only thing required of a patient is to rinse his/her mouth and then breathe into
a bag.

The question of whether the data collected is a good predictor for diabetes
was studied in Gallego (2016). The primary evidence in favor is a principal
component analysis of the data. The data is a 35 × 92 matrix of metabolite
counts. The results of a PCA analysis on this matrix were charted, and the 2
main components are charted in figure 3.1 (image taken directly from Gallego
(2016)). Healthy patients are colored blue, patients at risk are orange, and
critical patients are red. This chart appears to show some correlation between
the severity of diabetes and the principal components of the data matrix, and the
author went so far as to add colored ellipses to highlight the apparent division
of the patient grouping.

There is, however, a problem with figure 3.1 that is not visible at first glance,
and it is the conspicuous absence of patient number 5 from the chart. In figure
3.2 we use the same data to replicate the PCA analysis using the same coloring.
We note the presence of a severe outlier. This is patient number 5, whose first
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Figure 3.1: Figure from Gallego (2016) showing the principal component de-
composition of 35 patients’ breath test data and the severity of diabetes related
illness. While it is difficult to spot immediately, patient 5 is missing.

component is an order of magnitude larger than any other patient’s (And we
note that in our first graph, larger values of the first component would appear to
indicate higher severity of diabetes), however this patient was classified clinically
as healthy. We used the data from this patient’s OGTT to perform posterior
inference, and the result is seen in figure 3.3, which is a normal OGTT curve
which might be expected for a healthy patient. While this does not invalidate
the medical physics in Gallego (2016), it does significantly undermine the con-
clusions about the relationship between the principal components of the breath
test and diabetes. In particular, it is well known that PCA analysis is sensitive
to outliers, and hence, even if this outlier is discounted, it severely affects which
components are being plotted.

These considerations aside, we attempted to use the data for inference. With
a 35x92 matrix this is a p > n problem, and there is an infinite number of
linear combinations of the metabolites which generate any vector of length 35.
We hence approach this as a standard p > n linear regression problem, and
investigate selection operators and regularization.

The chapter is organized as follows. First, in section 3.2 we introduce the
topic of variable selection in linear models. In section 3.3 we establish our
notation and investigate the geometric properties of the LASSO operator. In
section 3.4 we introduce the FATSO operator, which is based on the geometrical
properties discussed in section 3.3. In section 3.5 we study the behavior of
FATSO and see how it addresses the issue of parameter interpretability. Section
3.6 discusses the differences between FATSO and various other extensions of
LASSO. In section 3.7 we look into the observable effects of the parameters in
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Figure 3.2: Our own principal component analysis, using the same data as from
figure 3.1. We use the same coloring to indicate the severity of diabetes related
illnesses, and we note an outlier. This is patient 5, who is classified as healthy!

Figure 3.3: OGTT inference for patient 5, who is the outlier in the breath tests.
As we see, this patient’s OGTT shows him/her as being normal, as does his/her
clinical history.
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numerical examples and with real data. Section 3.8 explores the results of using
FATSO on the data from the breath tests, and finally, section 3.9 gives some
final thoughts.

3.2 Variable selection and LASSO

In standard linear models, it is not uncommon to have prior knowledge that
several of the regression coefficients should be zero. This happens, for example,
when it is suspected that most of the factors considered in a large model are
not relevant. The identity of which factors are relevant, however, is not known
beforehand. It is of interest to estimate model parameters and to identify which
coefficients are nonzero. This is a classical problem with a classical solution,
wherein regression is performed on the model and then the parameters are tested
one at a time to determine whether they are significantly nonzero. Often this is
followed by a second round of inference using only those parameters determined
to be nonzero the first time through (see Rencher, 2008, for example).

This procedure works well for large sample sizes and small dimensions, but
for high dimensions (large numbers of explanatory variables X) or small samples
sizes, eg. the p > n problem, it becomes impossible to perform linear regression
using classical techniques since the response Y is typically found exactly inside
of the column space of X, and there are infinitely many exact solutions.

There are several ways to handle to this problem, but many of them center
only around estimation and do not intend to identify relevant factors. Meth-
ods that do intend to separate relevant from irrelevant variables are known as
variable selection methods. There is a broad body of recent literature on the
subject of variable selection in extremely high dimensional problems, such as
those which are frequently encountered in gene selection and microarray data
(Guyon and Elisseeff, 2003). In this chapter we will focus on linear regression
problems, usually with a more manageable (if still large) number of dimensions.
We will also find some justification for using variable selection techniques even
in low dimensional problems.

In order to obtain good estimates in these situations, one common solution
is to use regularizing operators. One popular such operator is the LASSO op-
erator (Tibshirani, 1996), which is designed to yield point estimates which are
frequently exactly zero. Tuning the degree of selectivity of the LASSO operator,
however, is not very fluid. The degree of selectivity is tied to shrinkage of the
estimators and it is difficult to interpret.

While LASSO is a very popular operator for variable selection in linear
models (and has been tried in non linear models also, see Ribbing et al., 2007),
several other regularization methods exist, such as ridge regression (Hoerl and
Kennard, 1970), bridge regression (Park and Yoon, 2011), elastic net (Zou and
Hastie, 2005), etc. While these operators have several important virtues, none
of them address the issue of interpretability in variable selection.

In a Bayesian setting, a large number of selection operators have been sug-
gested recently in the form of scale mixtures of normals. For instance the
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horseshoe prior (Carvalho et al., 2010), Dirichlet-Laplace priors (Bhattacharya
et al., 2014) and others (Liang et al., 2008). These approaches also do not focus
on interpretability issues. We suggest a selection operator that is not scale a
mixture of normals; we follow a different strategy.

In the remainder of this chapter, we look into the geometric mechanism by
which LASSO promotes regression estimators to zero, and we study some of
the consequences. Using this information we propose a new family of opera-
tors which use the same geometric mechanism as LASSO, but provide an extra
parameter which permits fluid and intuitive tuning of the degree of selectivity
separately from shrinkage. We prove that this family of operators corresponds
to a large family of Bayesian prior distributions, and we study the relationship
between the geometry of the priors and the meaning of the parameters in a
Bayesian context.

3.3 The LASSO operator

Consider a standard linear model of the form

Y = Xβ + ε

where Y is the 1×n data vector, β a 1×p vector of parameters, XT is the design
matrix and the errors are ε ∼ N (0, σ2I). In a situation in which we suspect
that many of the coefficients in β are 0 the problem of interest is estimating
which coefficients are nonzero along with their value. When the dimension
of β is high in relation to the sample size, classical inference does not work,
so this problem becomes a problem of variable selection. For this purpose,
one common technique is to use the Least Absolute Shrinkage and Selection
Operator (LASSO), see Tibshirani (1996). In classical statistics LASSO is seen
as a likelihood penalization, and in Bayesian statistics it is treated as a Laplace
prior (Park and Casella, 2008). In the Bayesian setting, the MAP corresponds
with the classical estimator, namely

β̂ = argmaxβ

[
L(β,X, Y )− λ

∑
|βi|
]

where L is the Gaussian log-likelihood function. The expression λ
∑
|βi| is the

LASSO operator and it depends on the value of a parameter λ.
A popular alternative parametrization for LASSO is to write the operator

as k/σ2
∑p
i=1 |βi|, which makes the LASSO estimator equal to

β̂ = argmaxβ

[
− 1

2σ2
||Y −XTβ||22 −

k

σ2

p∑
i=1

|βi|

]

= argmaxβ

[
−1

2
||Y −XTβ||22 − k

p∑
i=1

|βi|

]
.

Thus, β̂ no longer depends on σ.
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(A) (B) (C)

Figure 3.4: The three forms of intersections of level curves of the likelihood
(elipses) and the LASSO operator (squares). (A) cannot happen at the MAP
estimator, (B) corresponds to the likelihood curve being tangent to the slope of
the prior and (C) corresponds to the likelihood curve intersecting the prior at
an extreme, in this case the parameter in the x axis is sent to exactly zero.

The reason why LASSO produces parameter estimations that are exactly
zero can perhaps best be understood by examining its level curves. In the case
where β is bivariate there are three possibilities for the geometry of the level
curves at the estimator (see figure 3.4). The level curves of the likelihood and
the operator may cross (type A), may be tangent (type B), or they might meet
at a point at which the curves of the operator are non-differentiable (type C).
We note that type A cannot be the estimator by a simple argument: The point
marked α cannot be the estimator since at the point marked β the value of
the likelihood is the same, but the value of the operator is greater. Hence, the
estimator must be either type B or type C. It is a β̂ of type C that interests us
given that these situations make the MAP estimator of one parameter exactly
equal to zero.

3.3.1 How LASSO promotes variable selection

When considering whether β̂ is of type B or C, we find that it depends on the
value of λ, and this dependence has a notable property.

For fixed X, with probability 1, random data Y will allow the lasso estimator
to fulfill the following criterion: There exists ν such that if λ > ν then β̂ is of
type C.

Proof. Note that the LASSO operator may be viewed as the Lagrangian for the
restricted maximization of the likelihood subject to

∑
|βi| < t for some t. The

larger the value of λ, the smaller the value of t, and when λ→∞ then t→ 0.

For the bivariate case, consider the slope of the level curve of the likelihood
function at the origin. With probability 1, this slope will be neither 1 nor -1.

Note that the level curves of the likelihood function are concentric. Hence,
there is an open ball around the origin where the level curve does not have a
slope of 1 or -1 either. In this area, it is impossible for β̂ to be of type B.
Therefore, for large enough λ, β̂ must be of type C.
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Now for the general case, note that all of the bivariate marginals behave as
the bivariate case just explained.

For a fixed X and a fixed random Y, with probability 1 there exists ν such
that if λ > ν then β̂i = 0 for all except one value of i.

Proof. ν is the maximum threshold for each pairwise comparison of βi vs βj .

In other words, there is almost certainly a threshold for which any λ above
this threshold will make all estimators zero except for one.

In general, there is no clear way to choose λ so as to select variables in
any controlled way. In other words, we know that when λ grows, our selection
becomes tighter and tighter, discarding more and more variables, but there is
no interpretable measure of how much tighter. In other words, the choice of λ
can run the gamut from allowing all coefficients to be nonzero to allowing only
one of them, and no good way to control its degree of selectivity.

In practice, the most common method for selecting λ is to use data-driven
techniques such as cross-validation (Obuchi, 2016; Ribbing et al., 2007).

In passing, we note the following important point: A known issue with
LASSO is that estimations depend on the scale of the variables, so it is common
practice to center the covariates and standardize them so that

∑
i x

2
i = 1 (Rib-

bing et al., 2007), although recently there have been alternative suggestions on
how to rescale the variables (Sardy, 2008). Regardless of the specific method,
something must be done unless the scale of the covariates is carefully chosen.
This point is critical not only in LASSO, but in other selection operators as well.
For this chapter, we will assume that prior to any regularization, covariates have
been centered and standardized in the way described above. This will become
important when performing calculations related to our proposal later on, but it
is equally critical in LASSO, so we mention it now.

3.4 An alternative proposal

We note, as seen in the proof of lemma 3.3.1, that the behavior of the level
curves of the likelihood at zero is directly related to what variable selection
choice will be made by the LASSO estimator. Essentially, the LASSO estimator
will be either at a point where the level curves of the likelihood are at a 45 degree
angle, or it will make a selection. The only time that it will select both variables
regardless of λ is if the likelihood level curves are at a 45 degree angle exactly
at 0 (for Gaussian data, the probability of this occurring is zero). In figure 3.5
we see a graphical representation of exactly where the LASSO estimator may
be located (depending on choice of λ).

In order to address the issue of selectivity, we propose to alter the LASSO
level curves. The idea is to propose a new set of level curves directly, and to
build a selection operator from this proposal. The objective is to adjust the
slopes of the level curves such that they span a continuous range. If the slope
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Figure 3.5: The possible locations for the LASSO estimator, as determined by
the level curves. Which specific location corresponds to the LASSO estimator
depends on λ. The dark line runs from the MLE along the points where the
level curves are at a 45 degree angle, until it reaches an axis.
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Figure 3.6: The proposed operator’s level curves are the boundary of the in-
tersection of disks. If the angle of the likelihood level curves at 0 falls between
θ − π

2 and θ then one variable will not dominate the other regardless of the
level of shrinkage (λ in LASSO). We will refer to the angle θ introduced in this
figure, and shown again in figure 3.7, in many parts of the chapter. The value of
the level curve corresponds to the level of shrinkage, but a new parameter ρ is
introduced, to change the geometry and the angle θ, which controls the position
and size of the circles. The two images show the geometry with a different ρ
and θ.

of the likelihood level curves at zero is in this range, then one variable will not
dominate the other.

If the slope of the level curve at zero is in this range then β̂ will be of type
B regardless of the degree of shrinkage.

The geometry of the proposed level curves is the perimeter of the intersec-
tions of disks, as illustrated in figure 3.6 (or in general the boundary of the
intersection of d-balls in dimension d). If the angle θ in the figure is the same
for all level curves, then if the angle of the likelihood level curves at the origin
is between θ − π

2 and θ, then both variables will be selected regardless of the
degree of shrinkage (parameter λ for LASSO). This construction will introduce
a second parameter ρ, which determines θ, and which will be used in addition
to a shrinkage parameter.

For the construction to make sense, the angles of intersection of the level
curves with the axes must not depend on the degree of shrinkage. Consequently,
the center of the corresponding circle will vary depending on which level curve
we are on. We proceed to explore the necessary calculations for the construction
of an operator from this idea.

Figure 3.7 shows the essential geometry used to calculate the location of the
center of each curve. We note that triangles abc and AbC share intersection b and
we also note that the angle at c is the same as the angle at C so these triangles
are similar. We can therefore characterize the angle c by ρ = ||ac||/||ab|| =
||AC||/||Ab||. We can now write a = aβ = α1 where 1 is a 1 × p vector of
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Figure 3.7: The geometry required for calculating the value of the operator. A
and a are the centers of the circles , the arcs of which intersect the horizontal
axis at C and c, respectively. Note that triangles abc and AbC are similar. This
figure is a reference for several calculations throughout the chapter.

ones, and α is the distance from a to the origin along any given axis. ρ is
the additional parameter in our operator, which will be directly related to the
desired level of selectivity.

With this notation, and using d for the dimension of β it is now possible to
write out the calculation

||ac|| = ρ||ab||√∑
i

(|βi|+ α)2 = ρ
√
pα2

α2
(
p
[
1− ρ2

])
+ α

(
2
∑
|βi|
)

+
∑
|βi|2 = 0.

In the range of interest, ρ > 1 and α > 0 so we solve this equation to find a
closed form expression for α

α =
−2
∑
|βi| −

√
(2
∑
|βi|)2 − 4 (

∑
|βi|2) (p [1− ρ2])

2 (p [1− ρ2])
.

We must remember that in this section we have written a and α out of
notational convenience, but that they depend on β and on ρ, so it really is αβ,ρ
and aβ,ρ.

Now that we have computed the geometry of the problem, the remaining
issue is to use this geometry to construct an operator (in this case one that
will also match a prior distribution). Any probability distribution for which the
level curves of the density function are concentric circles (or higher dimensional
equivalent) centered at the origin may be used as a basis for the construction of
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the operator. If the density function is f(β) then we can construct a distribution
with density function g(β) ∝ f(|β|+aβ,ρ). This does not have a scale parameter
unless f does, but most useful distributions do have one. We will refer to this
family of priors as FATSOs or Flexible Axis-Thickened Selection Operators, and
the basic form of FATSO will be based on a Gaussian distribution.

The FATSO will always be a probability distribution so long as f is also a
probability distribution, and will have finite moments whenever f does since∫

h(β)g(β)dβ ∝
∫
h(β)f(β + αβ,ρ)dβ ≤

∫
h(β)f(β)dβ.

The full formula for the Gaussian FATSO will have log density

log[g(β)] = Kρ,λ + λ
∑

(|βi|+ αβ,ρ)
2

for some normalizing constant K, which does not have to be computed since it
does not depend on the βis.

This distribution also has the following useful property:
The negative log density of the Gaussian FATSO is concave.

Proof. Note that −log(φ(x)) (where φ is the univariate Gaussian density) is
an increasing function for positive x. Note also that −log[g(β)] = −log(φ(β +
αβ,ρ)). We also observe that αβ,ρ is convex when seen as a function of β, so the
result follows.

A trivial corollary is that, since the likelihood function for linear regression
is also log-convex, then the posterior is log-convex and the calculation of the
MAP is a convex optimization problem. Unfortunately most convex optimiza-
tion algorithms require the use of gradients, and FATSO is not differentiable at
any point where some βi = 0, so the gradient does not exist at the expected
optimum. That said, the convexity of the target function guarantees a unique
maximum, and other desirable properties for optimization. Almost any opti-
mization technique which does not depend on differentiability at the optimum
will calculate the FATSO estimator effectively.

3.5 Interpreting FATSO and selecting parame-
ters

The design of FATSO is based around the idea of reducing the collection of level
curves for which parameter estimates are zero in a controlled way. Namely, the
issue is the slopes of the level curves of the likelihood function at zero. By
adding the parameter ρ, we have allowed an interval of these slopes to produce
nonzero parameter estimates, rather than a single slope. This seems promising,
but in order to be of real use, we need a proper way to interpret this slope and
assign ρ (and λ in most cases) to fit our problem.

As we have previously observed, in the bivariate case, if the angle of the
level curves is between θ and π

2 − θ then both variables will be selected. For
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interpretative purposes, let m be the slope m = tan(θ); θ as in figure 3.6.
Following the geometry from figure 3.7 we can observe that b is a known angle(

3π
4

)
. Using sin(b) = 1√

2
allows us to calculate ρ = |AC|

|Ab| = sin(b)
sin(c) = 1√

2
and

θ = cosec−1(
√

2ρ), so we have

ρ =

√
1 +m2

2
.

We now have an easy conversion between θ, m and ρ, but on its own this
brings us no closer to interpreting m nor to being able to set m (ie. ρ) in the
FATSO operator.

The key to this crucial step is to calculate the slope of the likelihood level
curve at zero. We note that the level curves are perpendicular to the gradient,
so it is possible to study this slope by considering the gradient of the likelihood
function at zero.

We observe that for the standard linear regression problem, the likelihood
function is integrable, and a flat prior can be used to obtain a Gaussian posterior
(Box and Tiao, 1992). We will not actually use a flat prior nor treat the result
as a posterior, but for mathematical convenience, we can think of the likelihood
function as if it were a Gaussian density π(β) with mean µ at the MLE and

covariance matrix Σ =
(
XTX

)−1
σ2 =

[
ς2i ςij
ςij ς2j

]
.

The gradient of π(β) of a Gaussian density is (Petersen et al., 2008)

dπ(β)

dβ
= −π(β)Σ−1(β − µ).

When we reduce it to the bivariate case, the slope of the gradient at zero is

µjς
2
i − µiςij

µiς2j − µjςij
.

As previously explained, the covariates have been standardized so
∑
i x

2
i = 1

and hence it is easy to observe that ςi = ςj , so we can write this quantity with
ς, obtaining

µjς
2 − µiςij

µiς2 − µjςij
.

In the independent case, where ςij = 0 (which can only happen if there is
no intercept: If both the covariates and the response variable are centered then
the intercept is always 0 anyway) this result is simply the ratio of the signals of
the two parameters (note that with standardized covariates these are the pure
effects on Y , free from the units of measurement; this can be seen easily since
ςi = ςj so

µj
µi

=
µjςi
µiςj

or the quotient of signal to noise ratios, which are unitless).

This corresponds well with an intuitive notion of the relative importance, or
difference from zero, of one parameter to the other. In other words, this gives
us an interpretation for the slope of the likelihood level curve at zero.
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This intuitive notion is quite reasonable in the case of βi and βj are indepen-
dent, but when they are correlated then it is lacking. If βi and βj tend towards
zero together, for instance, then we would hope our notion of relative difference
from zero would reflect that.

One way to attempt to correct this is to consider instead the conditional
distribution of one variable given the other (Eaton, 2007),

βi|βj ∼ N (µi +
ςij
ς2j

(βj − µj), (1−
ς2ij
ς2i σ

2
j

)ς2i ),

and calculate the conditional equivalent which we will call rij

rij =

∣∣∣∣E(βi|βj = 0)

E(βj |βi = 0)

∣∣∣∣ .
This would give a more accurate representation of the relative difference from

zero of the two variables, since it is the quotient of the means in the particular
case of interest in which the other variable is zero (Also, var(βi|βj = 0) =
var(βj |βi = 0) so this is still unitless).

Figure 3.8 gives some intuition to show how the conditional distribution is a
better choice than the marginal distribution. Both of the Gaussian distributions
shown have the same marginal density, but in one case they are independent
and in the other they are highly correlated. The difference between the relative
importance of the two variables is visually apparent: If one of the variables is
set to be zero, the other should be small as well.

When we calculate rij , the result is exactly
∣∣∣µiς2−µjςijµjς2−µiςij

∣∣∣, which is precisely

the slope of the gradient of the likelihood at zero.
In other words, regardless of correlation, the slope of the level curves of the

likelihood at zero matches the conditional signal ratio, rij , which is a good intu-
itive measure of relative importance between variables in a regression problem.

The user therefore assigns m as the circumstances require so that, regardless
of λ, both βi and βj are selected if ri,j is between m and 1

m . Our previous
calculation allows us to set ρ when m is known, although it is also possible to
simply use an alternate parametrization, working with m directly instead of ρ.
This parametrization is easier to interpret and will be used from here on out.

This is nicely interpretable in two dimensions. In higher dimensions the
structure is analogous and the mathematics are identical (One can Simply do
the calculation with the marginal distribution of the two intended variables).
The interpretation of the slope is slightly less intuitive, since the direction is
determined by a vector rather than by a single number. The relationship of the
corresponding components of the gradient, however, still matches ri,j .

We have a way to interpret m. For full Bayesian inference, one would simply
select m but it may also be reasonable to choose another path and simply try
out values of m. Since the computational cost is low (unless the number of
parameters is truly huge), a fair amount of information about the behavior and
relative importance of parameters can be gleaned in fairly little time. In table
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(A) (B)

Figure 3.8: Two Gaussian bivariate densities with the same marginals and
different degrees of correlation. In (A) the variables are independent and (with
the vertical variable as βi and the horizontal variable as βj) we have rij = 2. In
the second case, the two variables are strongly correlated. When one variable
tends towards zero, the other is also very small. In this case, intuitively, the
variables are closer and there is less of a reason to prefer one over the other.
This intuition is reflected by rij = 1.375.

3.2, from section 3.7.2, we can see an example of what such an exploration might
look like.

One final practical note on the subject of the selection of m is based on
the fact that it is independent of units. Since it means the same at all scales,
one can think that reasonable values for m should be between 1.1 and 15. If
m is less than 1.1 then there is very little difference between the geometries of
FATSO and LASSO, whereas if m is greater than 15 one is hardly performing
any variable selection at all.

3.5.1 λ and prior conditional variance in Gaussian FATSO

We now have a handle on m but Gaussian FATSO has a second parameter λ.
If λ → 0 then we end up with a flat prior which may be suitable to variable
estimation without any selection. On the other hand if λ → ∞ then the prior
will be concentrated around zero. This yields higher selectivity, but also shrinks
the value of all estimations.

One way to think about selecting λ is to think of the FATSO less as an
operator and more as a prior distribution. We can then study the properties
of FATSO as a probability distribution, in which case λ may be interpreted as
related to the variance of this distribution. Following the geometry from figure
3.7 we have the next lemma.

For a Gaussian FATSO, the prior distribution of (βi|βj = 0∀j 6= i) is a
Gaussian random variable with mean zero and (prior)variance

44



3.5. INTERPRETING FATSO AND SELECTING PARAMETERS

λ−1
√

2sin
(
θ − π

4

)
where θ is the angle as shown in figures 3.6 and 3.7.

Proof. We note from figure 3.7 and Tales’s theorem, that the ratio of AC to BC
is the same regardless of how far C is along the horizontal axis. Then we have
the relationship

λ||C −A||2 = λk||C −B||2

where the left hand side differs by a constant from the value of the FATSO
prior log-density calculated at the point C and the right hand side differs by a
constant from a Gaussian log-density calculated at the same location (B is the
origin).

Some trigonometry will then yield the value of k =
√

2sin(θ − π
4 ), which

proves the claim.

When θ → π
4 then the variance goes to zero, and the geometry of FATSO

approaches the geometry of LASSO.
Of note, if θ is close to π

4 then sin
(
θ − π

4

)
can become very small, and as a

result m will have an effect on shrinkage of estimators unless λ is adjusted to
compensate. This is not a very significant issue unless m < 1.1

If FATSO will be used for Bayesian analysis, this shows the effect of λ on
the FATSO prior. The conditional variance of one parameter given all others
are zero is a reasonable way to establish prior variability. λ should be selected
accordingly.

Departing from a full Bayesian prior statement, one reasonable way to select
λ is to use data-driven techniques such as cross-validation, but these may come
at a significant computational cost, or the sample size may be too small for
cross-validation to be a reasonable choice.

If we want to set λ using heuristics, we will turn to the observed data Y for
some guidance. Note that if only βi is active and all others are equal to zero,
then if we write Xi as the ith column of X we have

Y = Xiβi + ε.

Now, using the Bayesian interpretation (even if we are not going to per-
form Bayesian inference), we can think of βi as a random variable (a priori
independent of ε) and write

var(Y )− σ2 = var(βi)X
T
i Xi,

and here we use the fact that X was standardized so that
∑
j X

2
j,i = 1.

var(Y ) is not known, but it can be estimated with the sample variance

var(Y ) ≈
∑ (Yi−Ȳ )2

n . Hence, if var(ε) is known we can calculate one choice for
λ as follows

λ =
√

2sin
(
θ − π

4

)
[var(Y )− σ2]−1
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However, it is worth observing that in practice, the value of λ has a relatively
small effect on point estimates, as will be seen empirically in the results section
of this chapter. λ acts more as an on/off switch than a dial, and hence it is not
too important to worry about its exact value. One has only to find something
in the (usually very large) reasonable range. The above method for selecting λ
is not meant to be taken as a precise value, but merely to give a notion of where
the reasonable range might be.

A second option, as is done in LASSO, mentioned in section 3.3 is to param-
eterize not with λ but with k/σ2, yielding estimates which no longer depend on
σ. Of course, this comes at the cost of being able to use knowledge of σ in order
to select the parameter, as was done above with λ. Even if we prefer to use
λ, however, this shows us that we can scale λ with the inverse of the standard
deviation of the noise to achieve similar results.

3.6 Comparison to other LASSO extensions

FATSO is not the first attempt to extend the ideas of LASSO in a new direction.
There are several other regularizations which have been attempted and which
yield different benefits. We make no claims that FATSO is necessarily any better
than any of these, but only that the issues it aims to address are different.

3.6.1 Ridge and Bridge regression

Ridge regression, also known as Tikhonov regularization in inverse problems
(Fox et al., 2013) and is an older idea than LASSO. It is also closely related to
the use of Gaussian priors in Bayesian regression. It essentially aims to estimate
the regression coefficients with

β̂ = argmaxβ

[
L(β,X, Y )− λ

∑
β2
i

]
,

where λ
∑
β2
i is the Ridge operator. One idea which places LASSO at one end

and Ridge regression at the other is called Bridge regression, which changes the
operator to λ

∑
|βi|α for α ∈ (1, 2). Of note, however, for any value of α > 1

the slope of the level curves at 0 is exactly zero. Hence, Ridge and Bridge are
not selection operators in the sense that the resulting estimators are not zero
(Hoerl and Kennard, 1970; Park and Yoon, 2011).

3.6.2 Group LASSO

One common extension to LASSO is the group LASSO, which separates the
columns of X into groups and which promotes the selection of groups of vari-
ables together. While this does extend the ability of LASSO to handle more
complex situations, it also requires some degree of understanding of the rela-
tionships between covariates, which is not the goal of FATSO. In another sense,
however, group LASSO is more closely related to FATSO than the other LASSO
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extensions since it aims to incorporate information about parameter grouping
that is not immediately visible in the data but which is understood by the user
(Yuan and Lin, 2006).

3.6.3 Scale mixtures of Normals

In recent Bayesian literature, there has been an explosion of selection operators
proposed with the theme of corresponding to priors which are scale mixtures of
normals (Carvalho et al., 2010; Bhattacharya et al., 2014; Liang et al., 2008).
A scale mixture of normals is a random variable X which can be represented
as X = Y σ where Y is a random variable with a standard normal distribution
and σ is some other (continuous or discrete) random variable (West, 1987).
LASSO itself is closely related to this family, since it corresponds to a Laplace
prior and a single variate Laplace prior is a scale mixture of normals with σ
a Gamma distributed random variable. There are various motivations for the
proposed operators, but they generally are focussed on some form of asymptotic
convergence either of the entire posterior distribution or of some point estimate
derived from it. We are unaware of any which ease the interpretation of tuning
parameters.

3.6.4 Elastic net

The idea with the most similar behavior to FATSO is the elastic net. The elastic
net uses as a regularization operator λ1

∑
|βi| + λ2

∑
β2
i (and then applies

a correction to the estimator), essentially working as a linear combination of
the Ridge and LASSO operators. The first thing to note about the elastic
net operator is that the level curves are not concentric, and the slope of the
curves’ intersection with the axes depends on the curve. For distant curves,
the geometry of Ridge is dominant, whereas with curves closer to the origin the
geometry is closer to that of LASSO.

While elastic net does not maintain the concentric level curves of FATSO,
it does allow for variable selection with less stringent selectivity than LASSO,
so it behaves in a similar way. In elastic net, however, the degree of selectiv-
ity is moderated very obscurely by the interplay of λ1 and λ2. The common
recommendation is to select both parameters by data-driven techniques, such
as cross-validation. This is a valid approach, but does not allow users to make
informed decisions about the desired degree of selectivity based on their own
expertise. Given that the p > n scenario is one where data is known to have
very little information, the goal of allowing human knowledge to participate is
very sensible.

While FATSO is in no way intended to replace the elastic net, it is worth
noting that the two main issues with LASSO which the elastic net aims to solve
are both addressed by FATSO as well. The first of these issues is that in p > n
situations, LASSO cannot select more than n variables, and in the following
section we will see an example where FATSO selects more than n covariates.
The second issue is that when several covariates are highly correlated LASSO
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Table 3.1: Results of estimations using the FATSO operator using various values
for ρ and λ. We see that ρ affects selectivity smoothly, while adjusting λ does
not allow for very flexible tuning.

m ρ λ β̂1 β̂2 β̂3 Other βs

500 353.6 0.1 0.697 0.329 0.543 Many are of similar
order of magnitude

30 21.21 30 0.709 0.336 0.548 |β6|, |β7|, |β12|, |β16|, |β20|
also active

3 2.236 30 0.814 0.397 0.602 β7 and β17 are active
2 1.581 30 0.871 0.464 0.671 Others inactive
2 1.581 0.01 0.857 0.442 0.65 β17 active
2 1.581 1 0.868 0.459 0.69 Others inactive
2 1.581 100 0.868 0.46 0.658 Others inactive
2 1.581 1000 0.71 0.249 0.437 Others inactive

tends to select only one of them. It is proven in the original elastic net paper
(Zou and Hastie, 2005) that any strictly convex regularization will solve this
issue and FATSO is strictly convex.

FATSO does not aim to compete with the elastic net in terms of compu-
tational tractability or in terms of asymptotic error reduction, so while the
behavior of the two operators is somewhat similar, their ultimate objectives are
different.

3.7 Numerical results of FATSO

3.7.1 Simulated Data

15 observations of a 20 dimensional regression problem were simulated. The true
values of the regressors β were zeros except for three variables. These variables
were β1 = 0.9, β2 = 0.5, and β3 = 0.7 (noise standard error was 0.1). Using
these same data, FATSO estimates were calculated using different values of ρ
and λ. Table 3.1 shows maximum a posteriori estimates of these data based on
various values of ρ and λ using Gaussian FATSO.

With a high value for m and a low value for λ, the FATSO prior is nearly flat.
In these situations the estimator is nearly the MLE, and since the dimension is
greater than the sample size, the MLE does not give any real information about
the parameters. As FATSO becomes more informative, so do the estimations.
Similarly, we note the effect of λ and m act independently. We note that the
effect of λ acts almost as if it had a threshold. For a fixed m of 2, then for any
λ ≥ 1 the exact value does not seem to have very much effect. λ at 1 and at
100 both yield very similar estimations for the parameters, and it is not until λ
is extremely large (1000) that the effect of shrinkage becomes noticeable. With
very small λ, however, the effect is lost somewhat (the extreme case being λ = 0
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where we are left with the MLE again). The same cannot be said for m (or ρ),
which affects estimations much more fluidly. We see that with a fixed λ of 30,
the effect of m on selectivity is very clear. As m approaches 1 the selection is
more strict, and as m grows then selection is looser. This confirms that the
parameter m permits tuning the degree of selectivity in a fluid way that is not
possible with a shrinkage parameter alone.

It is very tempting to be seduced by good results with m = 2 and reasonably
high λ since the estimations are so close to the truth, but we must remember
that these are synthetic data. The estimates with higher values of m are also
estimates that could easily produce the same dataset, but in this particular case
did not. When the dimension of the parameter space is larger than the sample
size, then the data will be in the column space of the design matrix. The choice
of one set of estimators over another is not information that is really in the
data at all. With lower m, FATSO will tend to choose smaller sets of covariates
which explain the data, but whether that is desirable or not is really an issue
for the user to judge.

In order to illustrate this case, data was simulated with 17 nonzero variables
rather than 3. It is known that LASSO selects at most as many variables as
the sample size, so using LASSO here will select for at most 15 of the 17 active
variables. The variables that were zero were β1, β11 and β19 and inference was
performed in the same way. With ρ = 1.2 and λ = 100 (a highly selective com-
bination with a geometry similar to LASSO) we estimate 6 inactive variables.
These are β4, β6, β10, β11, β12, and β19. As we see, not only are the variables
being selected more strictly, but the variable choice is simply wrong. This is
caused by the insistence on a high level of selectivity. With ρ = 3 and λ = 100
we estimate two inactive βs, and these are β11 and β19. In this case the random
simulation turns out to be unusually highly correlated with β1 simply by chance,
so β1 was not selected against. We note that specifying too stringent selection
criteria forces the model to shift away from the true values of the parameters,
but allowing more nonzero entries yields a very good selection of variables. The
difference between this situation and the last one is subtle, and it may often be a
good idea to make the selection based on human understanding of the situation
rather than on data which is necessarily insufficient.

3.7.2 Real Data

We use data from Stamey et al. (1989) to evaluate the performance of FATSO
and the effect of parameter adjustment. These data are often used for LASSO
demonstrations. The data are a 9 column matrix which describe prostate cancer
data in 97 patients. The first 8 columns describe characteristics of the tumor
and the last column is the response variable: An antigen. The data is available
in the R package lasso2 (Lokhorst et al., 2014)

Since the data was sorted by the response variable, the rows of the matrix
were permuted randomly. There are 97 rows; estimation was done using the first
67 rows and used to estimate the remaining 30. Table 3.2 displays the results
of inference on this collection of data using different values for the parameters.

49



CHAPTER 3. BREATH TESTS AND FATSO

Table 3.2: Results of estimations using the FATSO operator on the prostate
cancer data. Once again we see that ρ can be adjusted to tune the degree of
selectivity with some reasonable degree of control.
m λ active βs MSE Observations

100 0.0001 all except β8 0.60516 Almost exactly
simple linear regression

5 0.5 all except β8 0.61363
3 1 β1, β2, β4, β5, β6, β7 0.63189 Removing one variable

does not greatly
increase the error

2 1 β1, β2, β4, β5, β6, β7 0.65002
1.2 1 β1, β3, β6 0.78280 With a higher error

we can remove many more

The main takeaway from this experiment is the fluid way in which we can
select the βis. Since this is not a high dimensional problem, the MLE is a good
estimator, but by tuning m we can pick a simplified model which selects more or
fewer variables. Removing variables comes at a cost, but we can see exactly how
costly this removal is. Using this information it is possible to manually tune our
model to whatever balance of parsimony and accuracy we want. Hence, even
in this relatively low dimensional scenario, there is something to be gained by
having a fluid selection operator.

3.8 Use of FATSO on breath test data

Once FATSO has been developed, we proceed to use it on the breath test data.
Our first objective is to have an appropriate single dimensional marker for breath
test data to use as the response variable. One choice is to use our clinical results
which classify patients into 3 categories (healthy, insulin resistant and severe
diabetic), but although this clinical diagnosis is probably our most reliable data,
it is categorical. For a linear model, it is preferable to use data which varies
on a continuous scale. We have complete OGTT data for 30 of the 35 patients
for whom there is breath data available. The remaining 5 patients had severe
health complications, so performing an OGTT test was considered dangerous.
These patients were instead placed in emergency care.

The dynamic model was used to fit curves to each of the patients for whom
complete OGTT data is available. The resulting curves were compared with
the clinical diagnosis for each patient, and it was found that the geometry of
the curves matched the diagnosis well for all patients. We therefore consider it
reasonable to use the OGTT data to construct a linear model.

The next task is to select a single dimensional response which represents
the risk of diabetes for each patient. There are many plausible choices, but one
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reasonable option is

Yi = min{t : G(t) = Gb andG′(t) < 0}

for patient i, which is the option that was chosen. This datum was estimated
for each patient using the MAP estimator.

For the matrix X of metabolite counts, some minor preprocessing was also
required. For some patients, the breath test had been performed more than
once, and for these patients the average of the counts for each metabolite was
used. Also, several entries were found to be missing, but after verifying with
the team in charge of breath tests, these missing data are interpreted to be
indications that the metabolite was not found in the breath test, and hence
they are set at 0.

Regression was performed using FATSO, with high, low, and intermediate
degrees of selectivity. Even with high levels of selectivity, at least 18 explanatory
variables were selected. These 18 variables were compared with the variables
that are most active in the principal component analysis from section 3.1 and
were found not to match. Although this does not necessarily invalidate the idea
that breath tests may be reasonable predictors for diabetes, it does reduce the
value of the principal component analysis as evidence thereof.

3.9 Conclusions

The results of using FATSO on breath test data are not particularly promising.
While they are not sufficient to completely rule out breath tests as a way to
diagnose diabetes, they significantly reduce the credibility of the initial principal
component analysis as evidence thereof. This aforementioned result from prin-
cipal component analysis is the main piece of evidence in favor of considering
breath tests as an alternative test for diabetes, and therefore it seems unreason-
able to pursue breath tests any further. Instead, we will center our attention
back on OGTT tests, for which we have more promising results.

The above notwithstanding, the methodology for variable selection that was
developed has a scope which reaches far beyond any applications to diabetes.

In situations with high dimensional data, where p > n, there are infinitely
many parameter combinations which might yield the observed data. In these
situations, the data does not clearly favor one choice of parameters over another,
so in order to make a selection, some measure of human choice is required.
LASSO and other similar regularization operators are means by which a form
of preference is given to one kind of solution over another. These systems all
have parameters which affect – in some sense – how this choice is made. The
selection of these parameters by data-driven techniques is appealing, but the
information to make the choice is not really in the data. As a result, it becomes
desirable to understand the meaning of the parameters and the effect of their
choice on the resulting inference. This problem is particularly serious in the
Bayesian setting since the operators correspond to prior distributions and it is
invalid to assign priors using the data that these priors are chosen to analyze.
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This last issue is not a vague or theoretical one since both LASSO and Elastic
Net have been adapted for Bayesian inference regardless of the difficulty in
assigning parameters (Park and Casella, 2008; Li and Lin, 2010).

While significant effort has been made to improve the data-driven techniques
for adjusting parameters, this effort has done little in the sense of improving
the interpretability of the parameters for human users who have additional
information. In this sense, the elastic net is the system which boasts the lowest
mean squared error for theoretical purposes, but it is also gives perhaps the
least interpretable combination of parameters.

FATSO is an attempt to offer a means of setting the degree of selectivity by
hand. While it is theoretically possible to use data-driven techniques to assign
m, if data driven techniques are preferred, then one would probably be better
served using another regularization operator. On the other hand, in situations
where one intends to choose the degree of selectivity using outside knowledge,
FATSO is recommended to set the selectivity in a way that is understandable
and meaningful.
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Chapter 4

Design of experiments

4.1 Improving OGTT tests

As seen in chapter 2, The use of a dynamic model to analyze the results of OGTT
tests represents a significant potential improvement over the current guidelines
since it attempts to describe how the patient’s body handles the ingested glucose
over the duration of the test. The use of this ODE model may help to improve
the analysis of OGTT data.

We have also investigated an alternative test which was suggested, and our
study found that this test is not a promising avenue of study. As a result, we
have reaffirmed our interest in OGTT tests as a means for diagnosis of type 2
diabetes. This leads us to continue to investigate OGTT tests directly.

Our dynamic model has improved our analysis of the results of the test,
but the test itself remains, for the most part, unaltered. A natural question
is whether the model yields further information on the test itself and, if so,
whether this information can be used to improve it. There are two main kinds
of changes that can be considered. The first is a change to the testing protocol,
altering none of the related infrastructure or equipment, and the second is a
change to the equipment. In this chapter we will focus on the first kind of
change.

In particular, the issue we are interested in is the set of times ti at which
glucose is measured. At present, these are assigned arbitrarily, according to
local practices, rather than systematically, to make the most of the information
gained by the test. These times vary from location to location, but common
practice is to measure glucose at t1 = 0 (arrival), t2 = 1 and t3 = 2 hours.
Throughout this thesis we use data taken at more frequent intervals (up to every
15 min in section 4.5.1). These more frequent measurements are uncommon, but
are occasionally taken for research purposes (OGTTs performed by our medical
collaborator).

The selection of measurement times is not a trivial issue. Of note, it is not
difficult to come up with bad sets of times at which to measure. For instance,
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if we look back to figure 2.1 we can see that the red and blue lines cross around
time t = 0 : 30 hours and that they converge again around time t = 3 : 00
hours. If we only measure at times t1 = 0 : 00, t2 = 0 : 30 and t3 = 3 : 00 then
it will not be possible to distinguish between these two significantly different
scenarios. It is also worth noting that, without referring back to the curves as
displayed, this set of times is not obviously problematic.

It is clear that any testing scheme can be improved by increasing the number
of times at which a measurement is taken (the patients from figure 2.2 had
samples taken at t = 0:00, 0:30, 1:00, 1:30, 2:00 hours) but it would be desirable
to know how many times are enough as well as what times these should be.

Selecting the correct times is a problem of experimental design. Since the
model is fit to data using Bayesian inference, We will use Bayesian experimental
design to propose a new set of times with the aim of improving the test. In this
chapter we will investigate the theory of Bayesian experimental design, and look
into the previously proposed techniques for this purpose. All of these techniques
tend to share one significant flaw, which is that they make strong demands on the
structure of the design problem or on the geometry of the utility function. Since
we cannot assure that our particular design problem meets these demands, we
will propose a method for experimental design which works to compare designs
pairwise and which does not make these assumptions. A suitable algorithm
is also proposed to implement this method in practice. The method is not
particularly different from previously explored methods (Christen and Buck,
1998), but significant effort is made to improve the theoretical backing of this
method.

Another issue at play is the choice of priors for the design problem. Section
4.4 explores the pragmatic issues relating to the choice of priors and explains the
unusual choice which is made for this work. While the particular choice we make
here may seem odd, we believe that the motivation for our choice represents a
common issue and that the choice we make may be thought of as a reasonable
option in other situations as well.

The new design problem for OGTT tests is posed, and the method we devel-
oped is used to make a recommendation about a good set of times to get high
quality information from OGTT data. Several numerical experiments are then
done to validate the design choice.

This chapter is organized as follows: Section 4.2 presents the theory of
Bayesian experimental design. In section 4.3 we offer a new algorithm to decide
between designs. Section 4.4 discusses the issue of prior selection for diagnosis
of diabetes using OGTT tests, particularly in the context of experimental de-
sign. Finally, section 4.5 presents the results of using the algorithm to study
the problem of design for OGTT tests.

4.2 Experimental design

Most of statistics is concerned with inference from collected data, ignoring the
issue of how the data is collected to begin with. This is, overall, a significant

54



4.2. EXPERIMENTAL DESIGN

omission, since the quality of inference typically depends heavily on the quality
of the data. Experimental design is the use of statistical techniques to improve
the quality of the data that will be collected, and thus improve the quality of
the resulting inference (Berger, 1993).

Unlike most areas of statistics, experimental design is concerned with what
happens before any data becomes available. In Bayesian statistics in particular,
the information available before the presence of data is encoded in the prior
distribution. While Bayesian inference is concerned with the results of study-
ing the interaction of the prior distribution and data, experimental design is
primarily interested in studying the properties of the prior distribution itself,
considering what it says regarding the data that might be obtained when it is
actually collected.

In the case of OGTT tests, a design is d = (t1, . . . tn), the times at which
blood samples are drawn for testing.

For a given design d, it is common practice to write π(y|θ, d) as the likelihood
function for the data y and the parameter θ when using the design d, see for
example Huan and Marzouk (2014) for one case where this is used. This is not
actually a conditional probability in the strict sense of the word: d is not a
random variable, and π(d) does not exist. This practice is therefore notational
abuse. It is, however, standard, and here we conform to this notation.

4.2.1 The main idea: Utility functions

Let d1 and d2 be designs which we want to compare. We define a utility function
u, which assigns a value to the result of an experiment. In the most general
sense, the utility is a functional from the space of posterior distributions to
R, however we need not worry about this representation since the posterior
distribution is determined by finite dimensional data. It is therefore possible
to write the utility as a function of data directly u(y). Note that since u(y)
depends on random data, a priori it is itself a random variable.

A utility function may be, for instance, equal to minus the posterior variance
of one component of the parameter, or minus some norm of the difference be-
tween the predictive distribution and the true distribution which generates data
(assuming such a thing exists), etc. Another choice is to use the K-L divergence
between the prior and posterior distributions, the idea being that the bigger
the difference between these distributions, the more information was acquired
from the data; see Huan and Marzouk (2014); Zhang (2006); Christen and Buck
(1998); Chaloner and Larntz (1989); Anand et al. (2010); Gilmour and Trinca
(2012); Alexanderian et al. (2016); Weaver et al. (2016); Solonen et al. (2012)
for several examples of utility functions and Bayesian desing problems

We write u(y|d) as the utility for the data y collected using an experimental
design d. Our selection between d1 and d2 is based on which of these designs
maximizes the expected utility given our prior distribution, namely

U(d|π) =

∫
u(y|d)π(y|d)dy.
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The distribution under which the expectation is calculated is the predictive prior
distribution of the data under the design d:

π(y|d) =

∫
π(y|θ, d)π(θ)dθ.

While it is common to simply write U(d), note that U(d) is also dependent on
the prior π(θ).

The main goal of experimental design is to find good designs, which means
we want a design d such that U(d) is as high as possible. Unfortunately, in our
case, U(d) is not tractable. The difficulty lies not only in calculating the integral∫
u(y|d)π(y|d)dy since even with specified data y, it is usually not possible to

calculate u(y) exactly.
The real difficulty in this experimental design, and a common issue in Bayesian

experimental design in general, lies in optimizing a function which cannot be
evaluated exactly. The approach we take here is to find good Monte Carlo
estimators for U(d) and use them for design comparisons on a comprehensive
discrete grid of possible designs. The optimization is then taken, not over the
continuous time space, but only over a discrete space of 15 min intervals, pro-
ceeding by semi-brute force maximization. We explain the details of this ap-
proach in section 4.3 and onwards. Meanwhile, in the next section we explain
briefly other common approaches for implementing Bayesian experimental de-
signs and why these are not suitable for our design problem.

4.2.2 Other approaches

The number of published papers on Bayesian experimental design is very small
relative to the amount of research done in Bayesian statistics and also very
small relative to the amount of research done in experimental design in general.
Nonetheless, some techniques have been proposed to optimize design parame-
ters. All of these approaches are based on the idea of finding

d∗ = argmaxdU(d)

using some kind of optimization algorithm.
Most traditional optimization techniques are not useful with a function as

poorly understood as U(d) (classical optimization techniques have been at-
tempted using random estimations of U(d), Anand et al., 2010, but this does
not have adequate theoretical justification), so specialized approaches must be
taken. There are two main ideas to try to circumvent this problem.

1. Asymptotic estimations of U(d): A well known result of Bayesian
statistics states that under certain regularity conditions, the posterior dis-
tribution approaches a Gaussian as sample size goes to infinity. If we
assume that the sample size is large, then for certain utility functions it
is possible to calculate the asymptotic value of U(d). Then U(d) is opti-
mized in the asymptotic regime (Zhang, 2006; Chaloner and Larntz, 1989;
Gilmour and Trinca, 2012).
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While this approach may be reasonable under some circumstances, it is
worth noting that the entire problem of experimental design is most inter-
esting precisely when sample sizes are small. Under most circumstances,
increasing the sample size is an easy way to improve a design, and the
need for a well-designed experiment arises only when circumstances indi-
cate that large sample sizes are impossible to begin with.

2. Stochastic approximation: There is a class of numerical techniques
called stochastic approximation techniques which deal with functions that
cannot be directly measured. Some of these techniques are used for opti-
mization, and these have been used to attempt to optimize U(d) without
requiring a large sample size. By far the most commonly used of these
techniques is the Robbins-Monro algorithm (Robbins and Monro, 1951;
Huan and Marzouk, 2014; Duflo, 1997).

Most stochastic approximation techniques (including Robbins-Monro) re-
quire an unbiased estimator of the gradient δU

δd . With certain utility func-
tions it is possible to obtain this estimator, but this is not universal.

Although there are some derivative free stochastic approximation tech-
niques (Duflo, 1997), a more serious issue than the requirement of gradi-
ents is the fact that all of these algorithms only perform local optimiza-
tion. In fact, to our knowledge, the convergence of stochastic optimizers
has only been proven for strongly convex functions (Duflo, 1997). If U(d)
is a well-behaved strongly convex function then this is not an issue, but
in our case we have no reason to believe that our expected utility U(d)
belongs to such a class.

Furthermore, stochastic approximation algorithms are based on simula-
tions and estimations. They are therefore subject to error based simply
on the randomness of the estimators. While avoiding this kind of error
altogether is impossible, it would be extremely desirable to control - or at
least quantify - the uncertainty in our eventual conclusions as a result of
these errors.

Recently an alternative has been proposed which approximates the util-
ity function using Gaussian processes. This estimation is not asymptotic with
sample size and may be a more robust alternative to asymptotic estimations
(Alexanderian et al., 2016; Weaver et al., 2016).

We propose a different alternative which does not have these problems, but
which suffers from a different set of limitations. Rather than attempting to find
an optimum design, we simply propose a good way to decide between any two
designs, and then perform many comparisons, optimizing by semi brute force.
This is generally not a good technique for optimization, but in this case its
use is warranted since it allow us to perform comparisons that do not depend
on sample size or any special properties of the function U , to avoid bad local
maxima, and also to control and quantify the uncertainty in our conclusions.
While we may not be able to reach any definite conclusion about what design
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is actually the best, we will be able to achieve arbitrarily high confidence in our
claims regarding what designs are good.

4.2.3 An unusual generalization

We make a generalization to the usual scheme of experimental design, which
is to allow for two different priors over the same parameter: One for design
(πD) and one for inference (πI). This generalization is admittedly unusual: It
is not clear that anyone would ever want to allow πD and πI to be different.
For now we limit ourselves to indicate that this generalized problem is indeed
well-defined. The motivation for this generalization is discussed in section 4.4,
where we see how, in some situations, this may indeed be desirable.

Accordingly, let πI(θ) be the prior which is used for performing inference,
and let πD(θ) be the prior used to design the experiment. If πD = πI then
we have the usual problem, as described above. The general function which we
wish to optimize is U(d|πD) which can be written as

U(d|πD) =

∫
uI(y|d)πD(y|d)dy,

where the utility uI(y|d) is calculated using the posterior distribution generated
by the inference prior πI .

For the remainder of this chapter we will write U(d|πD) as simply U(d)
and uI(y|d) as simply u(y|d). A design will be selected in a way that works
regardless of whether or not the priors are different.

4.3 The algorithm for design selection

4.3.1 Estimation of U(d)

We require some technique for estimating (but not necessarily directly calculat-
ing) u(y|d) for any given y and d. Note that unless y is fixed, u(y|d) depends
on random data y, and is hence a random variable itself. Since u is typically a
functional of the posterior distribution, we assume that we can estimate u(y|d)
with a posterior sample ϑ produced by some posterior sampling algorithm such
as an MCMC chain. We call this estimator û(y|d)(ϑ). Note that û depends
on the random data y and also on the random posterior sample ϑ. We have
two requirements on û. The first is that it is unbiased for fixed d and y (this
requirement can be relaxed to allow for asymptotically unbiased estimators, but
this comes at a cost, see section 4.3.3), and second that it have finite second
moment. In other words, that E(Y |d)D [û(y|d)2] < ∞. In our case, u(y|d) is
minus the mean squared error of G(t) integrated from t = 0 to t = 3 hours.
This can be estimated using Monte Carlo samples, as described in section 4.5

We now propose the following sampling algorithm for estimating U(d) for a
given d:
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Fix two constants T1 and T2:
for i from 1 to T1 do

Sample data y(i) from the predictive prior πD(Y |d);

Generate a sample ϑ(i) = {θ(i,j) : j = 1 . . . , T2} from the posterior
πI(θ|y(i), d);

Calculate ûi = û(y(i)|d)(ϑ(i));

end

Calculate Û(d) = 1
T1

∑
i ûi

We now calculate the expected value of our estimator ED(Û(d)):

ED(Û(d)) =
1

T1

∑
i

E(Y |d)D (ûi)

=
1

T1

∑
i

E(Y |d)D û(yi|d)(ϑ(i)))

= E(Y |d)D û(y|d)(ϑ)

where ϑ is a random variable with the same distribution as any ϑi
Now we observe that since û(y(i)|d)(ϑ) is unbiased then

ED(Û(d)) = U(d)

so Û(d) is an unbiased estimator.
Moreover, observe that Û(d) is an average of iid random variables, each of

which is distributed as û(y|d), which has finite second moment. Hence, Û(d) is
subject to the central limit theorem, so as T1 →∞ we have

P

 Û(d)− U(d)√
var(Û(d))

< α

→ Φ(α).

Now var(Û(d)) = var( 1
T1

∑
i ûi) = 1

T1
var(ûi). We can estimate var(ûi) with

its sample variance, and arrive at a normal asymptotic distribution for Û(d).
Similar estimators have been proposed in the past (Christen and Buck, 1998;

Anand et al., 2010) but the properties of the estimators (such as their asymp-
totic distribution) were not studied. In the following section we explain how
this distribution can be used to quantify uncertainties in comparisons between
designs.

4.3.2 Numerically deciding between d1 and d2

Now that we are able to estimate U(d1) and U(d2) the simplest idea is to
select the design with the higher estimator. This is not satisfactory, however,
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unless we have a proper way of controlling the uncertainty in this choice. Since
our estimators depend on random simulations, we want to be certain that the
difference between these estimators corresponds to an actual difference in the
expected utility of the experiments and is not solely the result of the random
nature of the estimators.

We have an asymptotic distribution for ˆU(d1) and ˆU(d2). Hence, so long as
T1 is sufficiently large, we can consider the comparison of two expected utilities
to be a comparison of the means of two normally distributed random variables
with known variance. (Technically the variance is unknown, but if T1 is large
enough this is not a problem. Theoretically, errors in variance estimation can be
handled using a t statistic rather than a normal statistic, but the distribution
of the statistic depends on the sample size. Furthermore, for large samples, the
resulting t distribution is almost identical to a normal one anyway.) This is a
well-studied classical problem.

Assume, with no loss of generality, that U(d1) ≤ U(d2). Now we fix a value
0 < α < 1 and we wish to make sure that the probability of wrongly concluding
that U(d2) > U(d1) is at most α. This can be done by considering the variable

Z =
Û(d1)− Û(d2)√

var(Û(d1)) + var(Û(d2))
.

Z is asymptotically normally distributed with mean 0 an variance 1 (DeGroot
and Schervish, 2011), so we can conclude that U(d1) < U(d2) if Z is less than
the α/2 quantile of a standard normal distribution.

It is still possible that this problem will not be completely solved since test-
ing for U(d1) < U(d2) and also testing for U(d2) < U(d1) may both produce
inconclusive results. This does not necessarily mean that the two designs are
of equal (or even of approximately equal) expected utility, but rather that the
variance of our estimators is still too large to be able to choose with the re-
quired degree of certainty. In section 4.5 we discuss how this does not represent
a problem in our case, although in some other situations it might become an
issue.

If reaching decisive conclusions is required, then it is possible to increase
the sample size and test again. This presents a problem; the probability of
error when testing repeatedly is greater than the probability of error when
testing once since the error could have been committed at any of the tests.
However, it is possible to implement a sequential testing scheme in the style of
the Sequential Probability Ratio Test (Wald, 1945). The classical form of the
Sequential Probability Ratio Test requires knowledge of the power of the test,
which is unavailable in our situation, but it can be modified slightly to work in
this situation as well. We have explored some implementations of this idea, but
it is not yet clear how to accomplish this task efficiently.
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4.3.3 How the choice of T1 and T2 affects estimation

Note that when we perform sequential testing, the way we reduce the variance
of our estimator is to increase T1, but it is also possible to reduce the variance by
increasing T2. However, T1 and T2 have very different effects on the distribution
of Û(d).

Our first observation is that increasing T2 only reduces the variance of
û(y(i)|d)(ϑ(i)) by increasing the size of the sample ϑ(i), but even if we were
able to calculate u(y(i)|d) exactly for each i, that still will not reduce var(Û(d))
to zero, since y(i) is still random. In other words, T1 absolutely must be in-
creased to assure that one of the models is eventually selected. Increasing T2,
however is not strictly required. var(Û(d))→ 0 is assured so long as T1 →∞

Proof. var(Û(d)) = var
(

1
T1

∑
i ûi

)
= var(û1)

T1
→ 0

That is, remembering what T1 and T2 are, increasing the number T2 of
(MCMC) samples for each posterior given a simulated sample does not assure
that our estimator of the design utility Û(d) tends to zero. On the contrary,
only the number of simulated samples T1 for the design d needs to increase and
T2 could be kept fixed, and possibly low, as we discuss next.

The second observation is that if T2 is unchanged then it is possible to con-
tinue the algorithm, drawing more samples from the predictive prior. These can
be used to increase T1 without discarding the previous sample. It is not possible
to do this if we attempt to increase T2 for the new sample points since alter-
ing T2 changes the sample size from which û(y(i)|d) is calculated and therefore
alters the distribution of the estimator. These simple and useful observations
also apply to many similar algorithms but were overlooked by previous authors
(Christen and Buck, 1998; Anand et al., 2010).

In general, the effect of T1 and T2 to reduce var(Û(dk)) depends heavily
on the loss function and the model, but the previous two observations make
it seem reasonable to suppose that it is a good idea to have T2 be ”fast” (of
course, it must be a bare minimum large enough to obtain an unbiased estimator
û(y|d)(ϑ)) and allow T1 to increase dynamically.

Note that if û(y|d)(ϑ) is asymptotically unbiased – rather than unbiased
for finite sample size – then this does not work equally well. The central limit
theorem only states

P

 Û(d)− E(Û(d))√
var(Û(d))

< α

→ Φ(α)

where for unbiased estimators E(Û(d)) can be replaced by U(d). For asymp-
totically unbiased estimators, the usefulness of the approximation depends on
the quality of the approximation E(Û(d)) ≈ U(d). This in turn depends on
E(Y |d)D (ûi) ≈ u(y(i)), and the quality of this approximation depends on the
sample which is used to calculate it. That sample is of size T2. Hence, if we in-
tend to use an asymptotically unbiased estimator for the utility, then the quality
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of our estimation depends on T2. This is a strong reason to prefer an unbiased
estimator if one is available.

4.3.4 Special considerations for MCMC type samplers

The aforementioned method for hypothesis testing does not depend on the tech-
nique used to obtain a posterior sample, but in practice the most common
method is the use of MCMC algorithms such as the Gibbs Sampler or the
Metropolis-Hastings algorithm.

There are two issues which are of particular interest when using MCMC for
sampling. The first is the issue of obtaining a proper estimator û(y|d). It is
worth noting that proximal iterations of an MCMC chain are usually strongly
correlated. There has been much debate as to whether an MCMC sample should
be ”thinned” by taking only one iteration every so often (to avoid correlation
of proximal iterations) in the chain for posterior inference or if it is OK to treat
the full chain as the posterior sample of interest.

The answer to the thinning question in general depends on what information
is desired from the posterior. In this particular case, what is needed is an
unbiased estimator for u(y|d). Common cases of unbiased estimators require an
iid sample, and hence, most of the time the MCMC chain must be thinned.

The second issue of interest in an MCMC algorithm relates to burn-in times.
When running an MCMC algorithm there are two parameters of note which af-
fect the running time for the posterior estimation: These are the autocorrelation
time and the burn-in time. When the reason to generate a posterior sample is
to perform inference, the time which is most important to reduce is autocor-
relation time, since for a size m sample the algorithm must run through the
autocorrelation time m− 1 times, and the burn-in time only once.

For this form of experimental design, however, large burn-in times can also
be very problematic since an MCMC chain must be run T1 times to obtain an
estimator of U(d) for a single design. If burn-in times are significant then this
can be a problem. Luckily in this situation it is possible to start the MCMC
chain close to regions of high posterior probability since the parameters used to
generate the sample of the predictive prior are known (the data were simulated;
see the algorithm in section 4.3). Since the chain can be started immediately at
the true values of the parameters, the burn in time is all but eliminated; the only
exceptions being rare cases where the data is very unusual for the parameters
which generated it.

4.4 Selecting πI and πD

Having developed a tool to compare designs, we return to the problem at hand:
Improving the design of OGTT tests.

We have discussed, in general, inference on OGTT data but we have as yet
to fix the joint prior distribution that is to be used for θ0, θ1, θ2, and G(0)
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We do not want misdiagnosed patients and we must make the best of avail-
able data to provide our inferences. An added difficulty is that the sample sizes
involved are quite small. Testing repeated blood samples from a patient requires
a significant amount of work from the laboratory staff, and requiring them to
test a large number of blood samples is not reasonable (this may sometimes
cause increased discomfort to the patient as well, although this is rare since the
most common practice is to use a cannula). In practice the typical sample size
is 3, although in some special research cases it may go up to 9. Consequently,
priors must be chosen with a small sample size in mind. In particular, when
performing inference, an informative prior is likely to overwhelm the data, and
may lead to a diagnosis that is based mostly on the prior, rather than on the
sample.

Assigning a prior distribution for inference which will serve for any patient
is difficult. To avoid misdiagnosis, we must resort to a relatively vague prior.
With this in mind, the priors chosen for πI are the same ones that were chosen
in chapter 2:

θ0 ∼ Gamma(2, 1)

θ1 ∼ Gamma(2, 1)

θ2 ∼ Gamma(10, 1/20) 1I{θ2 > 0.16}

G(0) ∼ N (80, 10000) 1I{G(0) ∈ [30, 400]}.

We consider these priors to be vague since their regions of high probability
extend well beyond any estimations performed with real patients. θ2 has been
truncated for mathematical reasons (if θ2 is too small, then from the system
of ODEs in section 2.2, in (2.4) and (2.5), it will be possible for the glucose in
the digestive system to begin with negative derivative, which is nonsense; see
Christen et al., 2016) and G(0) was truncated based on practical considerations:
Any patient with an initial measurement anywhere near or below 30 or above
400d/mL will not be tested but instead will be placed into emergency care
(a preliminary, instant, fingerstick blood test is conducted, for removal and
immediate treatment of such cases).

πI may be seen as an inadequate representation of our actual prior un-
certainty, but using anything more informative can result in misdiagnosis of
patients with unexpected glucose curves. Since this prior is needed to analyze
data arising from all patients, we must then settle for this relatively vague prior.

Now, if we set πD equal to this vague πI our predictive prior will assign
significant probability to regions that are not actually very likely scenarios.
Our chosen design will therefore be tuned to take into consideration common
situations as well as situations that occur infrequently, if they do. Our inference
prior (πI) was chosen for pragmatic reasons rather than based on an actual
reflection of our uncertainty. For similar pragmatic reasons, it is not reasonable
to use the same prior for design.

Moreover, as opposed to an informative inference prior, we do not expect the
experimental design to have such a severe impact on misdiagnosis (this should
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be tested of course, but we know that OGTTs have been used successfully with a
poor design for years), so we consider it less dangerous to use a more informative
design prior.

Choosing a prior for design is also a difficult issue. One practical alternative
is simply to pick a prior which represents the available data reasonably, use it
to select a good design, and then compare it to arbitrary designs. There are
several ways to pick the data in order to make comparisons, but one fair choice
is to generate the data from πI . If the design appears to work well for data
that is generated from the inference prior as well then we can conclude that this
design is a good choice regardless of the prior that was used to generate it.

We propose using an extremely informative prior for design. We have taken
a sample of patients which represent typical scenarios, and have set our design
prior to represent those specific patients. Our prior distribution gives an equal
probability to each of the parameter combinations of these exact patients, and
zero probability to anything else. This prior, of course, is not an adequate
representation of our prior uncertainty either. If the design that is obtained
when using our highly informative design prior proves to be useful for other
patients as well, then this extreme prior will have served its purpose. In section
4.5 we will carefully examine how robust our results are, and whether our design
proves suitable for other patients.

The reader might be inclined to take this approach of using a different prior
for design and inference purposes as perhaps eccentric or strange. However,
similar approaches have been studied in the context of reference priors, where
the priors used for inference are different from the priors used for model selection,
even when the context is the same (Pericchi, 2005). Discussions of the use of
different priors for design and inference - in different contexts - can also be found
in Berry and Kadane (1997) and also in Stone (1969). Of note, the circumstances
which lead us to the selection of different priors for inference and design are not
actually very unusual; inference priors are often selected with high entropy in
order to avoid overwhelming the information contained in the data, specially
when dealing with small sample sizes. In such a case, the use of a different prior
for design may be something to consider. The extreme case is seen when using
improper (reference) priors for inference, wherein there is really no choice at all
since design priors must be proper for U(d) to be well-defined. In such a case,
πI and πD must be different.

4.5 Implementation and Results

The algorithm in section 4.3 was used to select a design for OGTT diagnosis.
In order to calculate G(t), the forward map was solved numerically using the
LSODA package for ordinary differential equations and an MCMC was used to
sample from the posterior distribution using the t-walk package (Christen and
Fox, 2010). The t-walk is an MCMC algorithm which is designed to adjust to
continuous posterior distributions without tuning, which is particularly useful
for our purposes since it means the MCMC does not have to be tuned separately
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for each patient.

The utility function used was the negative mean squared error of G(t), in-
tegrated over the curve from t = 0 : 00 to t = 3 : 00 hours. The choice was
made so as not to attach significant preference to any particular time or param-
eter. The utility function is estimated by numerically estimating the integrated
squared error for each element of a posterior sample and averaging across the
estimators. One problem with this estimator is that it is only asymptotically
unbiased rather than unbiased for finite sample size (see section 4.3.3) so a large
T2 was used.

The selection of a design was done somewhat crudely, only comparing designs
chosen with times at 15 minute intervals over a 2 hour period. A finer tuned
selection would be significantly more expensive computationally, and it is not
clear that it would be of much practical use since health professionals might not
be able to take measurements at times which are specified with great precision
while also keeping up with their other duties.

In order to decide how many measurement times are required, comparisons
are not done sequentially but allowed to be inconclusive if the decision cannot
be made with a large T1. ”Large” in this case means 600. For such situa-
tions, where an experiment is to be performed several times, this number is
interpretable; each element represents a simulated patient. If a decision cannot
be reached with T1 = n then this means that no difference is detectable when
performing an OGTT test over a sample of n patients. The number of measure-
ments was deemed sufficient when adding another measurement resulted only
in inconclusive comparisons.

The Python 2.7 programming language was used, running the t-walk MCMC
algorithm for 1500 iterations for each patient. One such run takes between 5
and 10 seconds on an Intel processor running at 1.7GHz. To compare designs,
a sample of 600 patients is taken for each, (unless one of these designs already
has samples available from a previous comparison). One such comparison takes
about 15 minutes. The full process is computationally intensive, but not unrea-
sonably so, and can be parallelized for additional efficiency if needed. In this
particular case, considering 15 min intervals only, the full process took roughly
6 hours.

The resulting selection of times is t = 0 : 00, t = 0 : 45, t = 1 : 15, t = 1 : 45
and t = 2 : 00 hours. In table 4.1 we see the times from our newly proposed
design next to the times from the conventional design which measures every
hour. We also see a ”Full” design that is sometimes used for research purposes.
It is not practical to use this design in general, but it is used for validation
purposes in section 8.1.2

4.5.1 Validation

Comparison with arbitrary designs

In order to check how robust this design is across varying data structures, the
following experiment was performed: We selected sample sizes of 4, 5 and 6
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mins 0:00 0:15 0:30 0:45 1:00 1:15 1:30 1:45 2:00
Conventional x x x

Proposed x x x x x
Full x x x x x x x x x

Table 4.1: Conventional times for glucose measurement in OGTTs and our pro-
posed times. The ”Full” times are used for validation purposes in section 4.5.1

(a) (b) (c)

Figure 4.1: Histograms of differences between the quality of our proposed design
and of an arbitrary design on random data (arbitrary units). The vertical line
indicates a difference of zero. The arbitrary design has one point less (a), the
same number of points (b) and one more point (c) than our proposed design with
5 measuring points, seen in Table 4.1. Note that, with the considered sample
sizes, including bigger designs all of these histograms have right tails and none of
them have a left tail. This means that our proposed design is never significantly
worse than the arbitrarily chosen alternative, and is sometimes much better.

data points (including measurement upon arrival). 100 designs were generated
uniformly at random for each size. For each design a random “patient ” was sim-
ulated, drawing ϑ from πI . For each simulated patient a sample was simulated
for the random design and also for the proposed design. Inference was performed
on each sample and the utility as described in section 4.5 was estimated.

Figure 4.1 shows the histograms of the differences in utility between the
arbitrary design and our suggested design for each sample size (utility of sug-
gested design minus utlity of arbitrary design). We see a general trend: For
most values of the parameters, the design does not make a very big difference
in the quality of inference, thus the differences cluster around zero. All of the
histograms have a right tail, and none of them have a left tail: For some values
the design is more important; in these situations our design significantly outper-
forms the arbitrary design, even when the arbitrary design has a larger sample
size. We can therefore conclude that our design does appear to be a generally
good choice.
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Comparison with the conventional design

While it is a very good sign that our design outperforms random designs, it
is also important to compare our results with the conventional OGTT testing
design which is actually used in practice. In the conventional design measure-
ments are taken at t = 0, 1, 2 hours. This design has two fewer measurements
than our proposed design so it is reasonable to expect that our design will be
better for that reason alone, but it also means that the design is more costly.
Quantifying the improvement over the classical design is therefore necessary to
understand if and when this extra cost pays off.

To compare our new design to the conventional one, we have a sample of
17 real (healthy) patients, obtained by AM, for whom OGTT measurements
were taken every 15 minutes, resulting in information that is significantly more
complete than what is usually available from OGTT tests. The conventional
and proposed designs, as well as the full design were shown in table 4.1.

In order to compare the two designs, the utility function must be estimated,
but since these are real patients, the true value of the parameters is unknown.
It is therefore not possible to estimate the expected utility with the precision
which was used before, but a surrogate utility can be written which behaves
similarly using the inference from the full data. The true utility function can
be written as

U(d) = −
∫ ∫ 3

0

(Gθ(t)−Gθ̂(t))
2dt πI(θ̂|y, d)dθ̂.

Since in this case the true parameters θ are unavailable we use their posterior
distribution as calculated using the data from the full design. Our new surrogate
utility is now

Û(d) = −
∫ ∫ ∫ 3

0

(Gθ(t)−Gθ̂(t))
2dt πI(θ̂|y, d)dθ̂ πI(θ|yf )dθ

where πI(θ|yf ) is the posterior distribution of the parameters θ using the full
data yf , that is, with measurements every 15min. This surrogate utility can be
estimated using the available samples.

This was done for the available set of 17 patients and the estimates for the
surrogate utilities were compared using the conventional design and using our
proposal. It is not surprising that the new design is better than the conventional
design since, to start with, it has more measurements, but we want to know
how much better. In order to adequately represent the relative difference, a
histogram of the quotients of these utilities can be seen in figure 4.2. There are
two patients for whom the utility of the conventional design outperforms the
new one. For no patient did the new design result in an estimated utility of
less than 82% of the utility of the conventional design. For all other patients
the new design outperforms the conventional design, usually by a factor of 2 or
greater, and sometimes by a much wider margin.

As this example shows, the effect of choosing a better design can be dra-
matic. For the data tested, our proposed design has proven to be a significant
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Figure 4.2: Histogram of the quotients of the surrogate utility functions for 17
real patients using the conventional and proposed designs (conventional divided
by proposed: All values are negative, so large quotients mean the conventional
design yields larger errors). The vertical line indicates a quotient of 1.
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Figure 4.3: Simulated data for an extremely unusual situation where a patient’s
insulin response is 80 times stronger than the glucagon response. The true
curve is in green and the simulated data in red. Although the data is extremely
unusual, our design points yield the necessary information to obtain reasonable
information about this strange behavior.

improvement; raising the number of measurements from 3 to 5 achieved more
than twice the utility for most patients.

Simulation test to verify robustness

Another important test is to verify the behavior of this design when evaluating
a particularly unusual set of data. Since the design was trained using typical
scenarios, we should verify that highly unusual shapes can still be discovered.
Data was simulated using a very strange set of parameters: θ0 = 80, θ1 = 1,
θ2 = 1.5, G0 = 80. This represents a patient whose insulin response is extremely
violent, but whose glucagon production is not. We have never seen a patient
like this one, with such a dramatic difference between the production of the
two hormones. Data was simulated using the proposed design and a posterior
sample can be seen in figure 4.3 with the true curve seen in green. As we can
see, while the inference is imperfect, the design still works reasonably well in
performing inference even on this extremely strange patient.
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4.6 Discussion

In this chapter the model proposed in chapter 2 was used to suggest a better
analysis and improved sampling protocols for Oral Glucose Tolerance Tests.
The main objective was to use the model to redesign the OGTT test in a way
that improves the quality of the information gathered. The chosen technique
to achieve these purposes was Bayesian experimental design, in order to find an
alternative set of times at which to perform the glucose measurements on the
patient.

Although some techniques for Bayesian experimental design already exist,
the specific properties of this problem lead us towards developing a different tool
for comparison of experimental designs, which is computationally intensive, but
which provides a fine control of uncertainty in the design process itself.

We used this new tool to select a design for the OGTT and the resulting
choice was compared favorably both to the classical design (with real data) and
to hypothetical arbitrary designs. The result is very promising and may lead to
improved diagnosis techniques for patients who are at risk of type 2 diabetes.

From a mathematical perspective, there remains an issue regarding the al-
gorithm for comparing designs in those cases when a decision should be forced
(by increasing T1). In section 4.3.2 we briefly discuss the notion of sequential
comparisons in cases where the initial test proves inconclusive. While this was
not necessary in our case, in most other cases the value of T1 is not easily inter-
pretable. If our method is to be generally applicable, an efficient algorithm for
sequential testing should be developed. Although we performed some numerical
experiments in sequential design, we have not come to any clear conclusions
regarding how to do it efficiently.

The most innovative and potentially controversial issue in this chapter (and
perhaps the thesis in general) is of course the explicit use of two separate priors
over the parameter space, one for design and one for inference purposes. In sec-
tion 4.4 we have discussed some pragmatic reasons why this may be a desirable -
and in some cases necessary- option, but it may be possible to treat the subject
more formally. Prior selection is -after all- a decision, and it may be possible
to frame this instance of prior selection in the context of decision theory. The
use of decision theoretic constructions to select priors has been studied in the
context of reference analysis (see for example Bernardo and Smith, 1994) and a
similar approach may potentially shed light on this context as well.
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Capillary and venous blood

5.1 Capillary Glucose

In this chapter we investigate a change to the OGTT protocol which alters the
technology and infrastructure involved. In particular, we are interested in a
change which lowers costs and discomfort for patients. While in the previous
chapter we were interested in finding out whether our mathematical model could
be used to fine tune OGTT tests for greater precision, in this chapter we will be
interested in whether our model permits us to use equipment previously thought
to be insufficiently precise.

While the ODE model we have been working with works well for standard
OGTT tests, these tests are invasive and bothersome for the patient. They are
also slow, expensive, and take up valuable time for the laboratory staff. There
is, however, an alternative method for measuring blood glucose which is much
more practical. It consists of the use of an apparatus known as a glucometer.
A glucometer is an easily available device which measures blood glucose from
capillaries rather than veins. Glucometers were designed for diabetic patients
to measure their blood glucose at home. They are easy to use, yield instant
results, and only require a single drop of blood from the tip of the patient’s
finger. The reason that glucometers are not commonly used for OGTT tests is
that typically they are thought not to be accurate enough (Ginsberg, 2009).

While glucometer accuracy is indeed significantly less, and importantly, often
shows a systematic bias, the use of our mathematical model was able to drasti-
cally increase the information gained from an OGTT. It may be reasonable to
think that the gain in information from using our model might compensate for
the less accurate measurements from the glucometer. In this chapter we explore
whether or not this is the case.

This chapter is organized as follows. Section 5.2 shows the results of at-
tempting to use the dynamic model directly with glucometer data. The results
are less than satisfactory, so section 5.3 describes the efforts that go into adjust-
ing the error model for glucometer data. The results of this investigation are
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very promising, so in section 5.4 we continue to develop this idea by revising
the model we were using for venous errors to begin with. This new revision
results in a model which we believe allows for the serious consideration of glu-
cometer measurements to perform OGTTs. Section 5.5 discusses the remaining
issues present in the model and its limitations. Finally, section 5.6 concludes
the chapter.

5.2 Testing Glucometer Data with the Dynamic
Model

In order to test the value of glucometer data, our medical collaborator collected
glucometer data from patients who were visiting the hospital for a normal OGTT
test. Along with the usual OGTT measurements, these patients also had their
blood tested with a glucometer at the same time as the blood sample used for
the normal tests. The glucometer measurements are - essentially - a duplicate
OGTT for the same patient, measured with a glucometer and capillary blood. In
order to ensure the patient’s safety, our medical collaborator also habitually tests
venous blood with a glucometer before giving patients the glucose concentrate
(this only takes a few seconds and ensures that if a patient’s glucose is too high
then he/she can be treated immediately). This is convenient because it provides
a measurement which differentiates the effect of the blood (venous vs capillary)
from the effect of the glucometer.

Attempting to directly use the initial model as-is with capillary glucose,
however, is a failure. In figure 5.1 we see inference curves for this procedure
for a real patient. The red curve represents the posterior using venous blood
the usual way and the blue curve represents the posterior using glucometer
measurements. As we can see, these results not only do not match, but they
exhibit wildly different behavior and would likely lead to different diagnoses
and mistreatment. It is clear that if capillary glucose is to be used, then some
change is required for the analysis of the data.

5.3 Glucometer Error Model

Our first improvement from simply using the preexisting model is to adapt our
error model for measurements. Since the device that is measuring is one that
is known to be imprecise, the model should be adjusted to reflect this error.
Literature about glucometer error indicates that the conditions of measurement
affect the reliability of glucometer measurements. OGTT conditions are quite
singular in that they are performed by a professional in a carefully controlled
environment, but with a patient whose body is undergoing an unusual kind of
stress.

From our collaborator’s dataset, the proportional differences between glu-
cometer and venous blood glucose measurements are charted in a histogram,
seen in figure 5.2 as well.
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Figure 5.1: Inference curves for the same patient, using the unaltered dynamic
model. Using venous data we obtain the magenta dots and red curves and
using capillary data we obtain the green dots and blue curves. As we see, these
curves do not match, and lead to very different inference about this patient. It
is because of cases like this one that the model must be revised for capillary
blood.
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Figure 5.2: Histogram of the relative differences between venous blood glucose
measurements and glucometer capillary blood measurements.

One important detail to note is that along with the wide spread of values,
there is also a clearly visible bias. This bias makes medical sense as well, since
blood in the capillaries delivers glucose to muscles before entering the veins. The
errors of the venous test are assumed to be negligible in comparison to the errors
of the glucometer test (this assumption is later confirmed when the errors of the
venous test are studied carefully in section 5.4 of this chapter), so modelling
the difference between the glucometer and the venous data is tantamount to
modelling glucometer error.

Since literature on glucometer errors usually works with proportional errors,
this version is chosen. A model was selected which gives the error as the sum
of a gamma distributed bias due to the loss of glucose in the capillaries, and a
normally distributed measurement error. Since the bias is driven by biological
processes in the patient’s body, it is assumed to be equal for all measurements
across a single OGTT, but different from patient to patient.

Point estimates are obtained for the bias and error parameters and the model
is updated. Our data now looks like

yi = G(ti) + b+ εi; b ∼ Gamma() εi ∼ N (0, )

The inference method was adapted to this error model, and the results can
be seen in figure 5.3 for the same patient as figure 5.1. The improvement is very
noticeable. Quite similar curves are obtained despite the data being extremely
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Figure 5.3: The same patient from figure 5.1, with the new error model. Al-
though the data are very different, it is possible to recover similar information.

different. There is an almost magical quality to the difference between the
glucometer measurements and the data obtained from them.

5.4 Venous Test Error Model

Although the patient whose data is in figure 5.3 is by no means unique, not
all patient’s data work quite as well. In figure 5.4 we see one patient where
the adjustment still is not sufficient to explain the difference between the two
methods for measuring the OGTT. Both curves still indicate approximately
the same general degree of health, but they nonetheless represent somewhat
different situations. If glucometer OGTTs are to be used for any any serious
purpose, even more must be done.

One idea is to revisit the error model for venous tests. While gaussian noise
with a five mg/dl standard deviation was the first proposed idea, it was accepted
mostly on the basis of providing good results and not subjected to close scrutiny.
Additional work might improve our model for venous test error, and hopefully
shed more light on the apparent flaw in our analysis of glucometer results.

For this purpose our medical collaborator produced a series of 10 duplicate
blood glucose measurements. For these measurements, a venous blood sample
was taken, split in half, and its glucose content was measured twice (These
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Figure 5.4: A case of a patient where the adjustment for capillary data was not
sufficient to achieve similar results from venous and capillary blood.

are not full OGTT results, but simply 10 blood samples). There is no medical
reason to run the same sample twice, so these data were collected for this purpose
only. The samples showed that the variance in measurements is actually quite
low, but they did include one outlier measurement which was more than two
standard deviations from zero. This outlier was found regardless of whether the
differences were treated as absolute differences or as proportional differences.

A second series of 5 duplicates was produced and it contained a second
datum more than two standard deviations from the mean. While the amount
of data available is still somewhat small, there is reason to believe that the
variance of the error is even smaller than previously believed (our estimates
show a standard deviation of around 0.027∗G), but the errors have heavy tails.

For this reason, an alteration to the original venous blood model was pro-
posed, replacing the Gaussian errors with a scaled t distribution with 4 degrees
of freedom. Hence, our new error distribution for venous measurements has
density function:

p(x|sigma) =
Γ( 5

2 )

Γ 5
2

√
4πσ2

(
1 +

x2

4σ2

) 5
2

with σ = 0.021.
Using this error distribution for venous blood, the original capillary and

venous OGTTs were recalculated. Figure 5.5 shows the same patient from
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Figure 5.5: The same patient from figure 5.4 with the new adjustments for
venous blood. The new model causes the venous posterior to become bimodal,
and one of the modes matches the capillary inference quite closely.

figure 5.4. In this case we see that the posterior distribution for venous blood is
bimodal, and that one of these modes matches well with the posterior obtained
using capillary blood. This particular patient is by no means the only example
of this phenomenon. In fact, the agreement between the two improves with this
adjustment almost across the board. This is a clear indication that a heavy
tailed error distribution improves the model used for venous blood. It is also
an indication that the model used for capillary blood is better than it seemed
previously.

5.5 Shortcomings

After the aforementioned adjustments, our model for capillary glucose is dras-
tically improved, but it still does not quite manage the same power as venous
OGTT tests. There are three main issues, the first of which is illustrated in
figure 5.6 where we see a venous and capillary OGTT for the same patient, but
although the capillary test produces a posterior which overlaps the posterior
from the venous test, the posterior from the capillary OGTT has so much vari-
ance that it is very difficult to draw any conclusions about what it indicates
about the patient. This is not too big of a problem. If a patient’s results from
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Figure 5.6: In this data set, the capillary inference (blue curves) has an enormous
variance. In such a situation, although the information does match the venous
test, it is so vague that it is impossible to draw any definite conclusions from
it. This sort of situation is not such a big issue because if results are too vague
then a second venous OGTT can be performed to increase certainty.

a glucometer test have too much variance then a second venous test can be
performed to gain certainty.

The second issue is illustrated by figure 5.7. In this case, the glucometer tests
produce a single wild outlier which completely skews the data. Changing the
error model for capillary tests to a heavy tailed model does fix these issues, but
the results from other tests suffer greatly. This is not such a big problem either
since wild outliers of this kind can be easily spotted, and handled accordingly.

The third issue is illustrated by figure 5.8. In this case neither is there
enormous variance in the glucometer OGTT nor is there a wild oulier. The
issue is that the posteriors simply do not match. In figure 5.8 this is visible
even directly from the data, since the data from the capillary OGTT and the
venous OGTT simply exhibit different behavior. No adjustment to the error
model will solve this issue. From 65 patients for whom this test was performed,
only 3 of them produced this sort of unacceptable error.

Of note, upon first examination, 4 unacceptable cases were found, but the
raw data for these cases was reviewed. After reviewing the raw data, one case
was found to be an error when reading the output of the venous test. The way
this patient was handled initially was incorrect, and without this careful study
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Figure 5.7: For this patient, we see that the capillary curves have a single
wild outlier 30 minutes from the start of the test. This causes the curve to
vary wildly from the venous data. This single outlier is fairly easy to spot,
however, and can be handled. There are several known factors that can cause
single extreme glucometer measurements, but our collaborator believes that this
particular case is simply one of incorrectly transcribed data when performing
the OGTT. Changing the glucometer error distribution to a heavy tailed one
does solve this, but it worsens inference in most other cases.
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Figure 5.8: A case where no matter what model is used the venous and capillary
curves do not match. This behavior is predictable simply by looking directly at
the data, since they exhibit different behavior.
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of the capillary data the error would not have been detected.

5.6 Conclusions

While the intent of this study was merely to investigate the possibility of using
the ODE model to study capillary OGTTs, the investigation also led us to
propose changes to the model for venous OGTTs as well. That improving the
venous model made the results match the capillary model more closely makes a
strong case for the value of capillary tests.

The new capillary model has produced unacceptable results in nearly 5% of
the tested patients. While this does seem like an alarmingly high rate of error, it
is worth noting that the original venous technique produced at least one patient
with equally unacceptable results, and that it was precisely the capillary model
which allowed the detection of this problem.

The practical gains to using capillary blood and glucometers are significant:
Not only are venous tests expensive and bothersome, but for many people they
may simply be unavailable because of lack of access to a medical facility with
the proper equipment. Glucometers, on the other hand, are frequently sold
in pharmacies, intended for home use, and are relatively inexpensive. With
the analytical tools to infer from capillary tests, it is now possible for a health
practitioner to perform an OGTT test using only a glucometer; the data could
be analyzed using our model, and relevant software.

While data on error rates in diagnosis from classical OGTT analysis (with-
out the ODE model) are not readily available, there is reason to suspect that
errors may well occur even more often than with tests using the capillary model
(Davidson et al., 2000). It is therefore worth considering capillary OGTT as a
reasonable alternative for situations when venous OGTT tests are impractical.
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Chapter 6

Conclusions

The primary purpose of this thesis is to thoroughly analyze various changes and
improvements to the OGTT test for type 2 diabetes. The resulting contribu-
tions in this thesis are of two main kinds. The first class of contributions are
those which are specifically related to the medical issue of OGTT tests. The
second class of contributions are applicable to more general statistical theory,
and these arise throughout the course of the study. While this second class of
contributions were not the primary focus of the thesis, they add substantially
to the significance of the research.

There are four main contributions of the first class. The first of these is
the dynamic model itself, as seen in chapter 2. In general, diagnosis of type
2 diabetes is done based on full clinical histories rather than on the basis of
any single test. While tests such as the OGTT are important indicators, they
typically do not constitute the basis for diagnosis. This may in large part be due
to the fact that the full information from OGTT tests is not put to good use by
common methods of analysis. While the idea of using a dynamic model is not
new, we are unaware of any serious attempts to fit other models to the data from
real patients and to use the models as a means for analysis. We believe that the
results from fitting the model to data make it self-evident that there is far more
information in a typical OGTT test than what the usual analysis techniques
can take advantage of. Whether or not this specific model is eventually used
in practice, we are certain that some sort of similar idea should replace the old
guidelines.

The second contribution to type 2 diabetes is the investigation of the data
from the new breath tests, as seen in chapter 3. The contribution in this case
did not result in any improvement in methods for diagnosis of type 2 diabetes,
but the investigation is nonetheless worthwhile since the technique did appear
promising at first.

The third contribution to type 2 diabetes is the design of proper times for
testing, as studied in chapter 4. The times chosen depend significantly on the
model, so this experimental protocol is only really recommended if the use of
the model is adopted. Nonetheless, if the model is adopted, the implementation
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of the change is almost trivial. We investigated the gain which results from
using our design in contrast with ones that are in common use, and found that
our design sometimes makes great improvements on the quality of the resulting
information. As a result, if our dynamic model is adopted for regular use, the
experimental design is an adaptation that has some significant advantages and
which comes at almost no cost.

The fourth contribution to OGTT tests is our analysis of glucometer data,
as studied in chapter 5. From a practical standpoint, this may be the most
significant contribution to OGTT tests in the sense that it allows tests to be
performed in situations where it may previously have been thought to be im-
possible. These adaptations do require some form of dynamic model, but the
method for choosing them is independent of the model, so they can be used
regardless of the specific analytical technique being used. This work does not in
any way contest the previously common notion that glucometer measurements
are insufficiently precise, and in fact we gather some further evidence to sup-
port this belief. On the other hand, however, we find that this belief is true for
individual glucometer measurements, while through our model, the joint use of
several of them – as in the context of an OGTT – can make great strides to
improve the information, and in some cases to resolve both the imprecision and
the bias inherent in this kind o data.

There are two contributions to statistical theory in general. One of them
is found in the investigation of the breath test (chapter 3) and the other is in
the selection of measurement times (chapter 4). They are fundamentally very
different in nature. The breath test was a contribution to the methodology of
variable selection. This is a broad and well explored topic, and our contribution
comes not from the unavailability of applicable methods, but rather somewhat
accidentally, from ideas which came up when deciding which method to use. The
methodology developed is in line with the philosophy of Bayesian statistics, but
it extends beyond the boundaries of Bayesian statistics and is useful in many
situations. On the other hand, the other contribution - to the theory of Bayesian
experimental design, is one that arises out of necessity. The available literature
is sparse, and most of the available techniques rely on certain assumptions about
the problem that we did not believe were met in our situation. The problem
as described – and the related methods – are problems specifically related to
Bayesian analysis.

Variable selection is a common problem, and one that has been studied
extensively. That said, there are a multitude of subtle differences between the
various scenarios where variable selection is desirable. We do not, in general,
believe in a one size fits all approach to the problem, and the FATSO operator
developed in chapter 3 is a good solution for situations when we wish to make
use of a certain kind of external information. In general, the p > n regression
problem is one in which the necessary information is not found entirely in the
data. All regularization techniques are ways in which - in one sense or another -
subjective information is used to select one solution. This subjective information
is typically not explicit, and usually interpretable only in the sense of very
abstract guidelines, but these regularization methods are still tuned by the user
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in some sense. FATSO can be thought of as a way to make the information more
explicit and easier to interpret. When appropriate information is available, it
would be ideal to tune regularization parameters in a way that uses it. In these
situations, FATSO is recommendable.

Besides linear regression, where some common expected utilities are treat-
able, Bayesian experimental design seems to be an under-explored topic in gen-
eral. The problems are typically computationally very complex, involving great
amounts of calculation. They are also conceptually difficult, with some very
subtle issues relating to the selection of utility functions, and several sources
of error. Most of the prior work had been either applicable only under narrow
circumstances, or had insufficient theoretical justification. The main objective
of our work on experimental design was primarily to obtain a mathematically
sound way to design Bayesian experiments without making any unreasonable
demands on the behavior of the problem. Our resulting algorithm is slow, but
it has received proper mathematical treatment and works under very general
conditions. We also propose an unusual handling of utility functions and priors.
While the idea is unconventional, we believe it makes good pragmatic sense.
Fundamentally, inference and design are two different problems, and different
problems sometimes require different models, which express different parts of
the issue. Since priors are - at heart - models for our uncertainty, it should make
a lot of sense to adjust them to properly model the problems at hand.

Overall, our primary objective was to make suggestions that improve the
power of techniques for diagnosing diabetes, particularly in the context of OGTT
tests. In this sense, our purpose was to provide a framework on which to build a
clinical protocol for OGTT tests which may greatly improve the existing meth-
ods. Certainly, our approach has been centered around our dynamic model.
While the latter is the backbone of the research, however, we are more inter-
ested in the idea of using a dynamic model in general than we are in insisting
very strongly on this particular one. The model does provide significant im-
provements to the understanding of OGTT data, but some other similar models
may also do so. The main point is that the use of a dynamic model in general
is a good idea, capable of creating large improvements in OGTT analysis.

To the extent that was possible, some of our contributions in the analysis of
the model have been tailored to be useful independent of exactly what specific
model is being used. While the times selected in the design problem are model
dependent, the method used for selecting those times is very general. We expect
the algorithm, as well as the utility function, to be plausible options for finding
good times regardless of what the model is. The adaptations for capillary glu-
cose go beyond this, and while they were tested using the dynamic model, the
adaptations themselves were generated without using the model at all, and we
believe that the results will probably work well with any reasonable dynamic
model.

Overall, this thesis propose a new framework for OGTT analysis. In the
process, we have developed some new statistical techniques, and examined an
alternative to OGTT tests. The proposed framework has been thoroughly ex-
amined and we have proposed several adaptations for practical use. While the

85



CHAPTER 6. CONCLUSIONS

implementation of our proposal is a question for medicine rather than statistics,
we believe that this thesis provides the backbone for a testing protocol worthy
of consideration for widespread use.
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Appendix A

Easy plotting of posterior
distributions for functions
using transparencies with a
KDE justification

The graphs of OGTT inference in this thesis were produced using a simple and
easy method which has an interesting theoretical justification. It can be used for
Bayesian regression problems for which inference was performed by a posterior
sampling algorithm, where the regressor is a function of a single variable (such
as time) and where the object of interest is the posterior distribution of the
regressor itself rather than any of the associated parameters.

Write the model as Y = fθ(X) + ε. Once posterior inference has been
performed using a Monte Carlo method, we have a posterior sample {θi}Ti=1.
Essentially all that is required is to overlay graphs of fθi(x) for each element
i of the posterior sample of θ, adjusted with some degree of transparency α.
The resulting graph, in tones of grey, displays an estimate of the posterior
distribution of the regressor in the following sense. For any vertical slice x = c,
in tones of grey, the opacity of each pixel is proportional to a kernel density
estimate (Silverman, 1986) of π(f(c)|Y ). In fact, a kernel density estimate
using a uniform kernel with the bandwidth h equal to the width of the graphed
line.

This is easy to see. If we write out the opacity of each pixel as

O(y) ∝
∑
i

1I(|fθi(c)− y| < h/2)

and note that the kernel density estimator is

l̂(x) =
1

nh

∑
i

K

(
x−Xi

h

)
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APPENDIX A. EASY PLOTTING OF POSTERIOR DISTRIBUTIONS
FOR FUNCTIONS USING TRANSPARENCIES WITH A KDE
JUSTIFICATION

and if we write K(x) = 1I(|x| < 1
2 ) then we note that the opacity is proportional

to the appropriate kernel density estimate.
Of course, not all kernel density estimates are equally good. In particular,

the selection of h greatly affects the quality of the estimate, and the selection of
α affects the visibility and legibility of the resulting outcome. In some situations,
it may be reasonable to tune these values by hand, but in our case we made
a very large number of these graphs. For this reason, an automated way of
selecting these values in some reasonable sense is desirable.

We set α = 1
n where n is the size of the posterior sample. This assures us

that no pixel will ever be at over 100% opacity. Since opacity is truncated at
this point, any pixel at higher opacity would not be displaed correctly in the
graph. It is frequently the case that no pixel actually reaches such high opacity,
so a less stringent bound is theoretically plausible, but visual examination of
the graphs indicates that -at least in our case- no graphs are ever too light to
read, so this simple rule of thumb is effective.

The problem is harder in the case of h. In particular, the optimum band-
width for a kernel density estimate is known to depend on the density, and
within one graph, there is a different density of f(c) for each value of c. Since
varying the thickness of the lines throughout the graph defeats the purpose of
having this very simple method, we choose to select the line width uniformly.
This may produce some cases where some kernels are over or under-smoothed,
but the objective is a visual representation, so subtle differences are acceptable.
In our case, the disparity in distribution is not big enough to matter. We choose
to use the distribution at G(t) for t = 3 hours to select h and then apply this h
throughout.

To select h, we use Silverman’s rule of thumb (Silverman, 1986). This is
the optimum h for estimating a gaussian distribution with a uniform kernel.
Silerman’s rule selects

h =

(
4σ̂5

3n

) 1
5

≈ 1.06σ̂n−1/5

where σ̂ is the sample standard deviation. It is well known that this rule some-
times over-smooths, particularly for multimodal or heavy tailed distributions,
but once again, the intent is only to find a reasonable automated selection which
produces easily interpretable graphs, and in practice we have found that Silver-
man’s rule is sufficient to achieve this.

Figure A.1 shows an example of the best possible case scenario for this
technique. The sample is a linear model where the slope is known and the
posterior for the intercept is a gaussian. In this case the variance of the posterior
of f(c) does not depend on c and Silverman’s rule calculates the exact optimum
bandwidth. This particular situation makes the technique almost unnecessary.
For more organic examples of good cases to use this technique, see the rest of
this thesis.

Figure A.2 shows an example of this technique failing badly. In this case
it is also a simple linear model, but the intercept is fixed and the slope varies.
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Figure A.1: The best case scenario for this technique has a uniform variance
accross the window and has an exactly gaussian posterior. The illustrated sit-
uation is so simple that this technique is hardly necessary, but the resulting
graph is very clear.

In this case the variance of the posterior of f(c) at the c = 0 is exactly 0
and grows linearly with c. Silverman’s rule was calculated midway through the
window. Not only is the distribution drastically oversmoothed at c = 0 and
undersmoothed at c = 3, but the great overlapping of curves near the origin
produces graphical artifacts and interferes with the observed transparency of
the lines in the graph.
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APPENDIX A. EASY PLOTTING OF POSTERIOR DISTRIBUTIONS
FOR FUNCTIONS USING TRANSPARENCIES WITH A KDE
JUSTIFICATION

Figure A.2: A situation where the technique fails. The variance of f(c) changes
greatly with c. Silverman’s rule was calculated towards the center of the region.
Not only is the origin oversmoothed and the edges undersmoothed, but the
overlapping of lines at the origin causes graphical artifacts whcih interfere witht
he transparency of the lines.
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