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Abstract

The main subject of this thesis is devoted to studying the multiplicity and uniqueness of
solutions for the Yamabe-type equations, for that, we explore the geometric and topolo-
gical properties of the equation. Our most important assumption is the existence of an
isoparametric function on a Riemannian manifold. Indeed, we classify the isoparametric
functions on Rn×Mm , n,m ≥ 2, with compact level sets, where Mm is a connected, closed
Riemannian manifold of dimension m. Also, we classify the isoparametric hypersurfaces
in S2 × R2 with constant principal curvatures.

On the other hand, we study positive solutions of the equation −∆gu + λu = λuq,
with λ > 0, q > 1. If M supports a proper isoparametric function with focal varieties
M1, M2 of dimension d1 ≥ d2 we show that for any q < n−d2+2

n−d2−2
the number of positive

solutions of the equation −∆gu + λu = λuq tends to ∞ as λ→ +∞. When d2 > 0, this
result implies multiplicity for positive solutions of critical and supercritical equations.
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Chapter 1

Introduction

In the early of 20th century, H. Poincaré [36] and P. Koebe [28] gave a proof of the
celebrated Uniformization Theorem of Riemann Surface which, in particular, implies that
every closed Riemannian 2-manifold has a conformal metric of constant Gauss curvature.
In the subsequence years, different proofs appeared for this theorem both for its original
formulation and for generalizations of it. But all of them in the case of dimension two. It
was not until 1960 when H. Yamabe claimed in [49] the proof of a sort of generalization for
the last statement in all dimensions; every closed Riemannian n-manifold is conformally
equivalent to one of constant scalar curvature. Let us describe the main idea of Yamabe’s
approach.
Let (Mn, g) be a closed Riemannian manifold of dimension n ≥ 3. We denote by [g] the
conformal class of the metric g. Writing a conformal metric as h = upn−2g ∈ [g] (for a
positive function u) we have that h has constant scalar curvature λ if and only if u is a
positive solution of the Yamabe equation

− 4(n− 1)

n− 2
∆gu+ sgu = λupn−1, (1.0.1)

where pn = 2n
n−2

and sg is the scalar curvature of metric g.
In the case of sg = α ∈ R one can normalize the solution u by an appropriate constant l
such that v = lu is a solution of

−∆gv + βv = βvpn−1, β ∈ R.

Yamabe considered the total scalar curvature functional

S(h) =

∫
M
sh dvolh

vol(M,h)(n−2)/n
,

where dvolh is the volume element of h.
Expressing the metric h as upn−2g the functional S(h) take the following form:

S(h) = Yg(u) :=

∫
M
an‖∇u‖2 + sgu

2 dvolg

‖u‖2
pn

,
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where an = 4(n − 1)/(n − 2). The functional Yg (which can be defined in the Sobolev
space W 1,2(M)) is called the Yamabe functional.
Yamabe noted that the critical points u of this functional are solutions of equation (1.0.1)
for λ = Yg(u)‖u‖2−pn

pn . Therefore solutions of equation (1.0.1) correspond to critical points
of S restricted to the conformal class [g].
It is not hard to see that the Yamabe functional satisfy that Yg ≥ (inf sg)V ol(M, g)2/n if
inf sg ≤ 0, otherwise Yg ≥ 0 . So we can define:

Y (M, [g]) := inf
u∈C∞

Yg(u) = inf
h∈[g]

S(h).

This invariant of the conformal class [g] is called Yamabe constant and play an important
role in the analysis of equation (1.0.1).
The goal of Yamabe was to prove that this constant is realized. But his proof contained
a subtle error discovered by N. Trudinger in [44] given rise to the known nowadays as the
Yamabe problem. The solution of this problem was completed in several steps beginning
with Neil Trudinger in [44], Thierry Aubin [4] and finally by Richard Schoen in [40].
Guaranteed the existence of the problem it is very interesting to try to understand the
set of all solutions. In the case that Y (M, [g]) ≤ 0 the solutions are unique up to a
constant. Thereby the only appealing case is Y (M, [g]) > 0. By a result of M. Obata [34]
the uniqueness holds in the positive case when the Riemannian manifolds is Einstein dif-
ferent from the round sphere (Sn, g0). The trivial example with Y (M, [g]) > 0 completely
understood is (Sn, g0), where the set of solutions is a noncompact family in C2 topology
but all of them produce isometric metrics of constant scalar curvature n(n − 1). In [37]
D. Pollack proved that every conformal class with positive Yamabe constant can be C0

approximated by a conformal class with an arbitrary number of (non-isometric) metrics
of constant scalar curvature.
Another feature investigated per years in the positive case it is the compactness of solu-
tions for manifolds not conformally diffeomorphic to (Sn, g0). In [42] Schoen proved the
compactness for manifolds locally conformally flat and conjectured that it is true for the
general setting. However, in [8] S. Brendle showed a metric in Sn, 52 ≤ n for which
the compactness fails. After that, Brendle and Marques in [9] constructed examples in
dimension 25 ≤ n ≤ 51 where again the compactness fails. Surprisingly, the compactness
holds for all remaining dimensions (Brendle-Marques-Schoen [25]).
In general, it is a very difficult task to describe the space of solutions of the Yamabe equa-
tion. Only in some cases it is possible, one of them is the case of cylinders (Sn× S1, [g0 +
T 2dt2]) for T ∈ R. For instance in [26], [27] O. Kobayashi and Schoen in [41] pointed out
that all solutions are constant along the spheres Sn and therefore the Yamabe equation
reduces to an ordinary differential equation. They finally conclude that the number of
solutions increases with respect to T .
In [23] Q. Jin, YY. Li and H. Xu considered in (Sn, g0) the Yamabe type equation

−∆Snu = λ(uq − u),
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for λ ∈ R>0 and q < pn−1 (subcritical exponent). They were concerned about multiplicity
result of this equation restricted to the space of radial functions on Sn respect to a fixed
axis, which again, it turns out to be an ordinary differential equation.
In [22] G. Henry and J. Petean studied multiplicity results for solutions of the Yamabe
equation on the products (Sn × Sk, gn0 + T 2gk0) for 2 ≤ n, k. First, they considered the
Yamabe equation for functions that only depends on the factor (Sn, g0). Thus, if u :
Sn × Sk → R is a smooth function constant along Sk then solutions of the equation

−∆Snu =
1

an+k

(n(n− 1) + (1/T 2)k(k − 1))(upn+k−1 − u),

correspond to solutions of the Yamabe equation on (Sn × Sk, gn0 + T 2gk0) constant along
Sk.
Since pn+k < pn the last equation is subcritical on Sn. So, similar to [23] the authors in [22]
studied the ordinary differential equation associated to the Yamabe equation restricted
to special space of functions. In order to precise their statement, we need to introduce
the following definition.
Let (N, h) be a complete connected Riemannian manifold. A non-constant smooth func-
tion f : N → R is called isoparametric if there exist smooth functions a, b : R→ R such
that

(1) |∇f |2 = a(f) and (2) ∆f = b(f).

The smooth hypersurfaces Mt = f−1(t) for t regular value of f are called isoparametric
hypersurfaces.
Suppose now a positive function ϕ : R → R and function u of the form u = ϕ ◦ f for an
isoparametric function on Sn. By chain rule, −∆Snu is a function of f so that the Yamabe
equation for functions u = ϕ ◦ f become in an ordinary differential equation.

Theorem 1.0.1 ([22]). Let f be an isoparametric function on (Sn, g0). If

1

T 2
>

6(n+ 5)(n+ k − 1)− n(n− 1)

k(k − 1)
,

then there exists a solution u of the Yamabe equation on (Sn × Sk, gn0 + T 2gk0) with level
sets u−1(t) = (ϕ ◦ f)−1(t)× Sk.

In particular, this theorem produce infinitely many solutions for each isoparametric
hypersurface.
For this fact, it seems to be reasonable to look at solutions of this type in other manifolds.
In this direction, would be interesting to investigate the existence of isoparametric func-
tions in some family of manifolds. For example, in the case of a Riemannian product
(M × N, g + h) an isoparametric function on any of the factors gives an isoparametric
function in the product. However, there are examples of products with mixed isoparame-
tric functions. A trivial family are the radial functions on Rn, but there are also examples
for instance in S2 × S2 (see [45]).
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In this work, we first study isoparametric functions on Riemannian products with Eucli-
dean space, namely (M×Rn, g+dx2). The motivation to understand these are into study
of the finite energy solutions to the Yamabe equation in such products (see for instance
[1, 3]). Note that positive finite energy solutions (which have to vanish at infinity) must
have compact level sets. There is a well-known such solution which is a radial function
on Rn (see [1]). Are there other solutions? It is conjectured that the answer is NO under
certain conditions, for instance if g is Yamabe (the metric g realize the Yamabe constant
Y (M, [g])). This conjecture implies that

Y (M × Rn, [g + dx2]) := inf
u∈C∞0 (M×Rn)

u6=0

Yg+dx2(u) = inf
u∈C∞0 (Rn)−{0}

Yg+dx2(u).

The advantage of this equality is that the Yamabe invariant of M ×N is bounded below
by Y (M×Rn, [g+dx2]) for any closed Riemaniann n−manifolds N ([1]), and the constant

YRn(M × Rn, g + dx2) := inf
u∈C∞0 (Rn)

u6=0

Yg+dx2(u)

can be computed numerically in some cases.
The case when (M, g) = (Sm, g0) is particularly important. For instance, when n = m = 2
if the conjecture is true then one would prove that the Yamabe invariant of S2 × S2 is
strictly greater than the one of CP2.

Our first result says that such solutions could not be built by an isoparametric function:

Theorem 1.0.2. An isoparametric function on Rn ×Mm, n,m ≥ 2, with compact level
sets (where Mm is a closed Riemannian manifold) is a radial function of Rn.

Without the compactness condition on the level sets of the isoparametric function one
would still like to know if there could be examples which do not come from isoparametric
functions on M . We will only consider the case of S2 ×R2. Using the ideas developed by
F. Urbano in [45] for the case S2 × S2, we will prove

Theorem 1.0.3. The isoparametric hypersurfaces with constant principal curvatures in
S2 × R2 are of the form S2 × R, S2 × S1(r) (for r ∈ R+) or S1(t)× R2 (for t ∈ (0, 1)).

Note that in general, there are examples of isoparametric hypersurfaces with non-
constant principal curvatures, as in the examples in [46] for certain complex projective
spaces.

Another remark in the Henry-Petean results (Theorem 1.0.1) is about of the tools emplo-
ying in the study for subcritical Yamabe equation of (Sn, g0). They used the bifurcation
theory and properties of isoparametric hypersurfaces in the round sphere so as to describe
the global behaviour of nontrivial solution branches emanating from bifurcation points.
In this thesis, we generalize this description to closed Riemannian manifolds of constant
scalar curvature with an isoparametric function.
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We take a closed Riemannian manifold (Mn, g) of dimension n ≥ 3 and consider the
following Yamabe-type equation

−∆gu+ λu = λuq, (1.0.2)

with λ > 0 and q > 1. Also we will assume that there is an isoparametric function
f : M → [t0, t1] and look for solutions of equation (1.0.2) of the form u = ϕ ◦ f , where
ϕ : [t0, t1] → R>0. It is known from the general theory of isoparametric functions that
the only zeros of the function b : [t0, t1]→ R≥0 are t0 and t1. Moreover M1 = f−1(t0) and
M2 = f−1(t1) are smooth submanifolds and are called the focal submanifolds of f . We call
di the dimension of Mi. If d1, d2 ≤ n− 2 we call f a proper isoparametric function, as in
[19]. We will assume that f is proper. The most familiar case of isoparametric functions
comes from cohomogeneity one isometric actions. Assume that G acts isometrically on
(M, g) with regular orbits of codimension one and that the orbit space is an interval.
If f is a smooth function which is G-invariant and its only critical points are the two
singular orbits, then f is isoparametric. Note that in this situation the singular orbits
have codimension at least 2, and therefore the isoparametric function f is proper. In [22]
this situation was considered when (M, g) is the round sphere (Sn, gn0 ) and q is subcritical,
and multiplicity results were obtained in this case for f -invariant solutions of equation
(1.0.2). But there are proper isoparametric in much more general situations than the one
of cohomogeneity one isometric actions. For instance in [38] C. Qian and Z. Tang proved
that given a Morse-Bott function f on a closed manifold M (with appropriate conditions
on its critical set) there is a Riemannian metric g on M so that f is proper isoparametric
for (M, g).

We consider the space C2,α
f of C2,α functions on M which are f -invariant and we

consider equation (1.0.2) as an operator equation on (u, λ) ∈ C2,α
f × (0,∞). We study

solutions bifurcating from the family of trivial solutions λ 7→ (1, λ). Using the well-known
theory of local bifurcation for simple eigenvalues [16], we prove :

Theorem 1.0.4. For any q > 1 there is a sequence of values λm(q) → ∞ and branches
t 7→ (u(t), λ(t)), t ∈ (−ε, ε), of f -invariant solutions of (1.0.2) so that λ(0) = λm,
u(0) = 1 and u(t) 6= 1 if t 6= 0.

Next we study the behavior of the local branches appearing at the bifurcation points.
We will apply the global bifurcation theorem of P. Rabinowitz [39]. To do so we will need
to impose conditions on q as it the analytical properties of the equation 1.0.2 depends
drastically on the value of exponent q. For instance, when q < pn − 1 (subcritical case)
the equation is easy to solve and it might be impossible to solve in the case q > pn − 1
(supercritical case). Recall that di is the dimension of the focal submanifold Mi of the
proper isoparametric function and let d = min{d1, d2} ≤ n− 2. Then we let pf = n−d+2

n−d−2
,

pf = ∞ in case d = n− 2. Note that if d > 0 then pf > pn − 1. For the next results we
will ask that q < pf . If d > 0 the results apply to some supercritical equations.

An interesting question that was raised for instance in [6, 10, 30] is to find conditions
under which for λ small the only solution of (1.0.2) is the trivial solution u = 1. In fact, in
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the subcritical case J.R. Licois and L. Veron proved in [30] that there exists some positive
constant λ0 = λ0(M, g, q) for which the equation (1.0.2) admits only the constant solution
for all 0 < λ < λ0. We will prove a similar result, restricting to f -invariant solutions but
allowing q to be supercritical:

Theorem 1.0.5. If q < pf there exists λ0 > 0 such that if λ ∈ (0, λ0) and u is a positive
f -invariant solution of (1.0.2) then u = 1.

Theorem 1.0.4 says that at each bifurcation point (1, λm) appears a branch Bm of
nontrivial solutions. Explicitly, let Bm be the connected component containing the non-
trivial solutions appearing close to (1, λm), in the space of nontrivial solutions of (1.0.2).
Theorem 1.0.5 says in particular that if (u, λ) ∈ Bm then λ ∈ [λ0,∞). This will allow us
to apply the global bifurcation theorem to prove:

Theorem 1.0.6. Let (Mn, g) be a closed Riemannian manifold of dimension n ≥ 3, and
f : M → R a proper isoparametric function. For any q ∈ (1, pf ) and any positive integer
k there exists λk > 0 such that the sequence (λk) is increasing, λk → ∞, and for any
λ ∈ (λk, λk+1] equation (1.0.2) has at least k different positive solutions.

The value of λk in Theorem 1.0.6 is the same as λk(q) appearing in Theorem 1.0.4.
The theorem is proved by showing that the branches Bm are disjoint to each other and
“bend to the right to∞”, meaning that for any λ > λk there exists a solution (u, λ) ∈ Bk.
We will prove in this thesis that for any fixed λ > 0 only a finite number of the branches
cut the “vertical” line C2,α

f × {λ}. This implies that for any K > 0 there exists k0 such

that if k ≥ k0 the branch Bk ⊂ C2,α
f × [K,∞).

Consider the isometric O(n)-action on the curvature one metric on the sphere, (Sn, g0),
fixing an axis. A linear function invariant by the action gives a proper isoparametric
function. In this case d = 0 and Theorem 1.0.6 applies to the subcritical case q < pn − 1.
In this case the theorem was proved by Jin - Li - Xu in [23] (note that in this case the
invariant functions are precisely the radial functions, with respect to the invariant axis).
In this case Theorem 1.0.5 was proved by M-F. Bidaut-Veron and L. Veron in [6], and the
constant λ0 is explicit: λ0 = n

q−1
. In [22] it is considered the case of any isoparametric

function on the sphere, but again only for the subcritical case.

The simplest example to apply Theorem 1.0.6 is to consider an isoparametric function
f on (S3, g0) invariant by the natural isometric cohomogeneity one action of S1×S1. Both
singular orbits have dimension 1, so f is proper and pf = ∞. Moreover the values of λk
in Theorem 1.0.4 and Theorem 1.0.6 are λk = µk

q−1
, where µk are the eigenvalues of −∆g

restricted to f -invariant functions (and are easily computed in the case of torus invariant
functions on the round S3). Therefore Theorem 1.0.6 says

Corollary 1.0.7. For any q > 1 the equation (1.0.2) on (S3, g0) has at least k positive

different torus invariant solutions if λ ∈ (4k(k+1)
q−1

, 4(k+1)(k+2)
q−1

).

Note that as q →∞ we obtain solutions with λ very close to 0. In (S4, g0) one could
consider an isoparametric function f invariant by the isometric cohomogeneity one action
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of O(3) × O(2). In this case the singular orbits have dimensions 1 and 2, respectively.
Then f is proper and pf = 5 (note that p4 = 3) and we obtain:

Corollary 1.0.8. For any q ∈ (1, 5) the equation (1.0.2) on (S4, g0) has at least k positive

different O(3)×O(2)-invariant solutions if λ ∈ (2k(2k+3)
q−1

, 2(k+1)(2k+5)
q−1

).

One can consider of course more general spaces. For instance one has isoparametric
functions invariant by cohomogeneity one actions on complex projective space (CPn, gFS),
where gFS is the Fubini-Study metric. The simplest is the action by U(n) for which
the singular orbits are a point and CPn−1. Theorem 1.0.6 then gives solutions in the
subcritical case. But one can consider other cohomogeneity one actions. For example
in the case of (CP2, gFS) there is a natural cohomogeneity one action by SO(3) which
has singular orbits of dimension 2: the real points RP2 ⊂ CP2 and {[z0, z1, z2] ∈ CP2 :
z2

0 +z2
1 +z2

2 = 0} = S2. Then an invariant isoparametric function f is proper and pf =∞.
It is well-known that the eigenvalues of −∆CP2 restricted to SO(3)-invariant functions
are 16k(k + 1). Therefore Theorem 1.0.6 says

Corollary 1.0.9. For any q > 1 the equation (1.0.2) on (CP2, gFS) has at least k positive

different torus invariant solutions if λ ∈ (16k(k+1)
q−1

, 16(k+1)(k+2)
q−1

).

There is also an action on (CPn, gFS) by U(m) × U(l) where m + l = n + 1 and
m ≥ l ≥ 2. We will see in section 3.4 that for an invariant isoparametric function f
one has pf = 2n−2l+4

2n−2l
> p2n and that the f -invariant eigenvalues are the same as the

eigenvalues of the full Laplacian, then applying Theorem 1.0.6 we obtain:

Corollary 1.0.10. For any q ∈ (1, 2n−2l+4
2n−2l

) the equation (1.0.2) on (CPn, gFS) has at

least k positive different U(m)× U(l)-invariant solutions if λ ∈
(

4k(k+n)
q−1

, 4(k+1)(k+1+n)
q−1

]
.

Finally, we give an application for SO(n + 1)-invariant solutions in (CPn, gFS) (by
cohomogeneity one isometric action of SO(n+ 1) ⊂ U(n+ 1))

Corollary 1.0.11. Let q ∈ (1, n+2
n−2

). Equation (1.0.2) on (CPn, gFS) has at least k

positive different SO(n+ 1)-invariant solutions if λ ∈
(

4k(4k+2n)
q−1

, 4(k+1)(4(k+1)+2n)
q−1

]
.

This thesis is organized in the following way. In chapter 2 we introduce the principal
tools from the nonlinear analysis that we will use in the next chapters. More precisely, we
recall the implicit function theorem and some consequences from it. Also, we explain the
Lyapunov-Schmidt reduction in order to prove the local bifurcation theorem for simple
eigenvalues. In chapter 3 the theory of isoparametric functions is explored. Using struc-
tural results of Wang [47] and minimal immersion into product Mm×Rn, we will show the
Theorem 1.0.2. Furthermore, we consider the Kähler structures on S2, R2 so as to describe
the behavior of isoparametric hypersurfaces with constant principal curvature in S2 ×R2

with respect to product structure on S2 × R2. This approach was made by Urbano [45]
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in the case of S2 × S2 and will allow us to prove Theorem 1.0.3. In chapter 4 we shall see
the proof of Theorem 1.0.4. Through of asymptotic behavior of mean curvature function
associated to isoparametric function f we obtain the conditions in order to apply Theorem
2.3.2 and get the local bifurcation result for Yamabe-type equation. Moreover, we built a
barrier for non-trivial f−invariant solution of equation (1.0.2) showing a priori estimate
for this solutions (Theorem 1.0.5). Finally, we use the Global Bifurcation Theorem so as
to prove theorem 1.0.6.
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Chapter 2

Elements of nonlinear functional
analysis

In this chapter, we give a brief review of some basic tool from nonlinear functional analysis
needed for our treatment of Yamabe-type equation in later chapters. For more details,
we recommend the books [2], [33] and references therein.

2.1 Calculus in Banach space

Let X, Y be Banach spaces, u ∈ X and consider a map F : X → Y . In the particular
case that Y = R, F is called a functional. The map F is called Fréchet differentiable at
u ∈ X if there exists a linear continuous map L : X → Y such that

‖F (u+ v)− F (u)− L(v)‖Y
‖v‖X

→ 0 as ‖v‖X → 0.

The linear map L is uniquely determined by F and u, so that we will denote dFu := L.
When X, Y are Euclidean spaces the Fréchet derivative coincides with the usual notion
of differential.
We say that F is continuously differentiable at u if F is Fréchet differentiable in an open
neighbourhood of u in X and w 7→ dFw ∈ L(X, Y ) is continuous at w = u.
Now we state two classical properties of Fréchet derivative.

Theorem 2.1.1 (Chain rule). Let X, Y, Z be Banach spaces. If F : X → Y and G : Y →
Z are Fréchet differentiable at u and F (u), respectively, then G ◦ F is differentiable at u
and the following holds:

d(G ◦ F )u = dGF (u) ◦ dFu.

The Fréchet derivative has also a version of implicit function theorem

Theorem 2.1.2. Let X, Y, T be Banach spaces. We consider a map F : T ×X → Y and
a fix point (t0, u0) ∈ T ×X which satisfies:

14



1. F (t0, u0) = 0

2. F continuously differentiable at (t0, u0)

3. Partial Fréchet derivative duF(t0,u0) is invertible.

Then there exists a neighbourhood U of u0 in X and a neighbourhood N of t0, such that
the equation F (t, u) = 0 has a unique solution u(t) for all t ∈ N . Moreover, the function
u(t) is continuously differentiable and

dut0 = −(duF(t0,u0))
−1 ◦ dtF(t0,u0).

In the particular case thatX = T = Y = R, for each real-valued function F ∈ C1(R2) with
F (t0, 0) = 0 if ∇F (t0, 0) 6= 0 then F satisfies the last theorem at (t0, 0). However, when
∇F (t0, 0) = 0 it is possible to give conditions on F in order to guarantee the existence
of an implicit curve t(u) of solutions for the equation F (t, u) = 0 in a neighbourhood of
(t0, 0). Indeed, we suppose that F ∈ C2(R2) and ∇F (t0, 0) = 0. If F (t, 0) = 0 for all t,

we can define a function h(t, u) of class C1 in a neighbourhood of (t0, 0) by h(t, u) = F (t,u)
u

for u 6= 0 and h(t, u) = ∂uF (t, 0) if u = 0.
Clearly h(t0, 0) = 0. On the other hand, one has

∂th(t0, 0) = lim
u→0

∂tF (t0, u)

u
= ∂2

t,uF (t0, 0).

Therefore, ∂2
t,uF (t0, 0) 6= 0 implies that there exists ε > 0 and function t(u) defined in

u ∈ (−ε, ε) such that

t(0) = t0, h(t(u), u) = 0, u ∈ (−ε, ε).

Thus, h(t(u), u) = 0 implies F (t(u), u) = 0.
We summarize this argument in the following statement.

Proposition 1. Let F be a real-valued function of class C2 in a neighbourhood of (t0, 0) ∈
R2. We assume that

1. F (t, 0) = 0 for all t,

2. ∇F (t0, 0) = 0,

3. ∂2
t,uF (t0, 0) 6= 0.

Then there exists ε > 0 and curve t : (−ε, ε)→ R such that F (t(u), u) = 0 for u ∈ (−ε, ε).
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Remark 1. This proposition gives us two curves of solutions for F (t, u) = 0 in a neigh-
bourhood of (t0, 0); the curve (t(u), u) and trivial one (t, 0). In virtue of Morse Lemma
we can see that these are the only ones. We consider the assumptions of proposition 1.
The Hessian of F at (t0, 0) has the form

HessF (t0, 0) =

(
0 ∂2

t,uF (t0, 0)
∂2
t,uF (t0, 0) ∗

)
.

From ∂2
t,uF (t0, 0) 6= 0 we have that det(HessF (t0, 0)) < 0 , so the critical point (t0, 0)

is non-degenerate with index 1. By Morse Lemma there exists a diffeomorphism ϕ on a
neighbourhood of (t0, 0) such that

F (ϕ−1(x, y)) = x2 − y2 = (x− y)(x+ y).

Thus the function F (up to diffeomorphisms) has only two curves of zeroes in a small
enough neighbourhood of (t0, 0).

2.2 Compact Operators

In this section we will recall some results about linear compact operators in Banach spaces.
We begin with the definition of compact operators.

Definition 2.2.1. A continuous map K : X → Y is compact if K(B) is a relatively
compact in Y for all B ⊂ X bounded.

In other words, the compact operators send bounded sequences to sequences with a
converging subsequence.
Compact operators are, in some sense, the generalization of the class of finite-rank opera-
tors in an infinite-dimensional setting. In fact, the class of these operators (defined from
a bounded subset Ω of Banach space X into X) are characterized by the following result.

Theorem 2.2.2. Let Ω be any closed, bounded subset of X. Then K : Ω→ X is compact
if and only if K is a uniform limit of mappings whose ranges lie in finite-dimensional
subspaces.

Sketch of proof. If K is compact then K(Ω) is compact in X. For ε > 0, there exist n(ε)
open balls Bε(xj) of radius ε and centers xj with j ∈ {1, . . . , n(ε)} such that

K(Ω) ⊂
n(ε)⋃
j=1

Bε(xj).

We take nonnegative ϕj(x) such that {ϕj} is a partition on unity on K(Ω) subordinate
by Bε(xj). Since

∑
ϕj = 1 we get,

‖K −
∑

ϕj(K(x))xj‖ = ‖
∑

ϕj(K(x))(k(x)− xj)‖.
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If ϕj(K(x)) 6= 0 then K(x) ∈ Bε(xj). Thereby ‖K −
∑
ϕj(K(x))xj‖ < ε.

Also, we note that the function Kε :=
∑
ϕj(K(x))xj belong to the convex hull of finite

set in X, i.e. the range of Kε is finite-dimensional.

Definition 2.2.3. A linear operator L : X → X is called a Fredholm operator if
dimKer[L] <∞ and Range[L] is closed and has finite codimension.

In this case, the index of L is dimKer[L]− codimRange[L].

Compact linear operators provide a especial family of Fredholm operators in the following
way

Theorem 2.2.4. Let X be a Banach space and let K : X → X be linear and compact.
Then:

1. Ker[I −K] is finite dimensional,

2. Range[I −K] is closed, has finite codimension and Range[I −K] = Ker[I −K∗]⊥,
where K∗ denotes the adjoint of K ,

3. Ker[I −K] = 0⇐⇒ Range[I −K] = X.

We remark some consequences from this theorem. One of them is that the index of
operator I−K is zero. The other is that either for all v ∈ X, there exist a unique solution
in X for the equation (I −K)u = v or else, the homogeneous equation (I −K)u = 0 has
nontrivial solution. This dichotomy is called the Fredholm alternative.

Another important subject in nonlinear analysis is devoted to the spectrum of compact
operators , we recall this definition.

Definition 2.2.5. Let K be a compact operator. The resolvent of K is the set

ρ(K) = {λ ∈ R/K − λI is bijective from X to itself}.

The spectrum λ(K) of K is defined as λ(K) = R� ρ(K) and λ is called an eigenvalue
of K if K − λI has non-trivial kernel.
The Riesz–Fredholm theory allows obtaining the next interesting assertion.

Theorem 2.2.6. Let K be linear and compact. Then λ(K) spectrum of K is compact
and λ(K) ⊂ [−‖K‖, ‖K‖]. Additionally, if X is infinite dimensional, it follows that:

1. 0 ∈ λ(K);

2. Every λ∗ ∈ λ(K)�{0} is an eigenvalue of K ;

3. Either λ(K) = {0}, or λ(K) is finite, or λ(K)�{0} is a sequence which tends to
zero.

Moreover, for every λ∗ ∈ λ(K)�{0}, there exists 1 ≤ m such that

Ker[(K − λ∗I)l] = Ker[(K − λ∗I)l+1], ∀m ≤ l
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2.3 Bifurcation from simple eigenvalues

We now turn to local bifurcation theory which is a prototype for nonuniqueness in non-
linear analysis. We will discuss the simplest situation, bifurcation points from a simple
eigenvalue by analytical methods.

Let S : R×X → Y be a continuously differentiable map.

Definition 2.3.1. A point (λ∗, 0) is called a bifurcation point for the equation S(λ, u) = 0
if S(λ∗, 0) = 0 and there exist sequences λn ∈ R , un ∈ X − {0} such that

1. S(λn, un) = 0,

2. (λn, un) −→ (λ∗, 0) as n→∞.

In other words, bifurcation points are accumulation points of the set of non-trivial
solutions.
From now on we assume that the line R is a trivial solution, i.e. S(λ, 0) = 0 for all λ ∈ R.
The first neccesary condition for the existence of bifurcation points is due to the implicit
function theorem

Proposition 2. If (λ∗, 0) is a bifurcation point then duS(λ∗,0) ∈ L(X, Y ) is not invertible.

Proof. If duS(λ∗,0) is invertible, by implicit function theorem, there exists ε > 0 and
neighbourhood U0 of 0 in X such that

∀(λ, u) ∈ (λ∗ − ε, λ∗ + ε)× U0, S(λ, u) = 0 if and only if u = u(λ).

But S(λ, 0) = 0 for λ ∈ R. Hence u = 0, and (λ∗, 0) can not be bifurcation point.

The rest of this section is devoted to give sufficient condition for existence bifurcation
points. We restrict our attention in the case L := duS(λ∗,0) not invertible. Additionally,
assume that S ∈ C2(R×X, Y ) and

� Ker(L) has topological complement W in X.

� Range(L) is closed and has a topological complement Z in Y .

For any u ∈ X there exist unique v ∈ Ker(L) and w ∈ W such that u = v +w. Also, we
can define projections P,Q on Y onto Z and Range(L), respectively. Writting u = v+w
and applying P and Q to S(λ, u) = 0 we get the following equations:

PS(λ, v + w) = 0, (2.3.1)

QS(λ, v + w) = 0. (2.3.2)

Near to (λ∗, 0) equation (2.3.2) satisfies the implict function theorem:
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Proposition 3. There exist neighbourhoods V0 of v = 0 in Ker(L), W0 of w = 0 in
W , ε > 0, and a function w(λ, v) ∈ C2((λ − ε, λ + ε) × V0,W0) such that ∀(λ, v, w) ∈
(λ∗ − ε, λ∗ + ε)× V0 ×W0, we have

QS(λ, v + w) = 0 if and only if w = w(λ, v).

Moreover
∀λ ∈ (λ∗ − ε, λ∗ + ε), w(λ, 0) = 0;

and
dvw(λ∗,0) = 0.

Proof. One has that QS ∈ C1(R×Ker(L)×W,Range(L)), and

T := dwQS(λ∗,0,0) = QduS(λ∗,0) = QL

is a linear map from W to Range(L). Therefore T is the restriction of L to W (so T is
bijective). Since that Range(L) is closed we conclude, by bounded inverse theorem, that
T is invertible. The proposition follows from implicit function theorem.

If we replace w = w(λ, v) into equation (2.3.1) the initial problem to find solutions of
S(λ, v + w) = 0 is reduced to the problem

PS(λ, v + w(λ, v)) = 0.

The procedure described above is known as Lyapunov-Schmidt reduction and the latter
equation is called the bifurcation equation.

Remark 2. The Lyapunov-Schmidt reduction implies that if (λ∗, v = 0) is a bifurcation
point for the bifurcation equation then (λ∗, u = 0) is of bifurcation for S(λ, u) = 0. More
precise, if a sequence of solutions for bifurcation equation satisfying that (λn, vn)→ (λ∗, 0)
with vn 6= 0. Then un = vn+w(λn, vn) 6= 0; un → 0 and S(λn, un) = 0 for n large enough.

Roughly speaking, the Lyapunov-Schmidt procedure allows us to splits the initial
equation S(λ, u) = 0 in a system of two equations, one of them is uniquely solved (by
implicit function theorem), while the other one ( bifurcation equation) possibly has no
non-trivial solutions. In the next theorem, we will impose some additional conditions on
operator S so as to get bifurcation points for the bifurcation equation.

Theorem 2.3.2. Let S ∈ C2(R×X, Y ) and λ∗ ∈ R such that

1. S(λ, 0) = 0 for all λ;

2. L := duS(λ∗,0) is not invertible;

3. Ker(L) is one dimensional (span(u∗) = Ker(L)) and has topological complement
W in X.
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4. Range(L) is closed and has a topological complement Z in Y .

5. codimRange(L) = 1 and there exists φ ∈ Y ∗ − {0} for which Range(L) = {y ∈
Y/〈φ, y〉 = 0}.

The value λ∗ is of bifurcation, provided that

d2
u,λS(λ∗,0)[u

∗] /∈ Range(L)

Proof. By conditions 1 to 4 and last Remark we have that if (λ∗, t = 0) is a bifurcation
point of bifurcation equation

PS(λ, tu∗ + w(λ, tu∗)) = 0,

then (λ∗, u = 0) is also bifurcation for S(λ, u) = 0.
On the other hand, condition 5 implies a correspondence between solutions of

PS(λ, tu∗ + w(λ, tu∗)) = 0

and solutions of,
β(λ, t) := 〈φ, S(λ, tu∗ + w(λ, tu∗))〉 = 0.

First, we note that β(λ, 0) = 0 since w(λ, 0) = 0 (proposition 3).
Now, we calculate the first derivative of β respect to t:

∂tβ(λ, t) = 〈φ, duS(λ,tu∗+w(λ,tu∗))[u
∗ + dvw(λ,tu∗)u

∗]〉.

Again proposition 3 says that dvw(λ∗,0) = 0 so that ∂tβ(λ∗, 0) = 0.
Finally we compute the second mixed derivative ∂2

t,λβ(λ, t)

∂2
t,λβ(λ∗, 0) = 〈φ, d2

u,λS(λ∗,0)[u
∗ + dvw(λ∗,0)u

∗]〉
+ 〈φ, duS(λ∗,0)[d

2
v,λw(λ∗,0)u

∗]〉
= 〈φ, d2

u,λS(λ∗,0)[u
∗]〉+ 〈φ, L[d2

v,λw(λ∗,0)u
∗]〉.

In virtue of the condition 5 we get

〈φ, L[d2
v,λw(λ∗,0)u

∗]〉 = 0.

Also we have that 〈φ, d2
u,λS(λ∗,0)[u

∗]〉 6= 0 by hypothesis.

From Proposition 1 we obtain ε > 0 and curve λ(t) such that β(λ(t), t) = 0 for t ∈ (−ε, ε).
Therefore the pair (λ(t), tu∗ + w(λ(t), tu∗)) are non-trivial solutions of PS = 0 such that
converge to (λ∗, 0).
Hence (λ∗, 0) is a bifurcation point of S(λ, u) = 0.

20



Finally, we conclude this section with the celebrated global bifurcation theorem due
to Rabinowitz. For this, we consider equations of the form:

S(λ, u) := u− λAu− T (u) = 0, (2.3.3)

where A is a linear compact operator from X to in itself and T ∈ C1(X,X) is compact
such that T (0) = 0, dT0 = 0.
We denote by Σ the set of non-trivial solutions of 2.3.3.

Theorem 2.3.3 (Global bifurcation). Let 1/λ∗ be an eigenvalue of A with odd multipli-
city. Then (λ∗, 0) is a bifurcation point of (2.3.3) (i.e (λ∗, 0) ∈ Σ).
Furthermore, let Σλ∗ be the connected component of Σ containing (λ∗, 0). We have the
following dichotomy:

1. Σλ∗ is non-compact in the domain of S, or

2. Σλ∗ contain other bifurcation point λ+ 6= λ∗.

Our main purpose in Chapter 4 is to give, via this theorem, a global bifurcation
description of Yamabe-type equations for simple eigenvalues. In order to do that we rule
out the option 2. Explicitly, we will show that all bifurcation branches associated to
different bifurcation points are disjoint, so by an argument similar to Remark 1 we will
get only two curves of solutions in some neighbourhood of each bifurcation point, the
trivial one (λ, 0) and the respective bifurcation branch. Thus, Global bifurcation theorem
will imply that all bifurcation branch are unbounded.
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Chapter 3

Isoparametric functions

This chapter is devoted to the theory of isoparametric functions on general Riemannian
manifolds. We divided the chapter into four sections. In the first one, we begin with the
classical definition of isoparametric functions (as far as we know) and we describe the
main properties from it.
In the second section, we use some structural result of section 3.1 and classify the iso-
parametric functions on Rn × Mm, n,m ≥ 2, with compact level sets, where Mm is a
connected, closed Riemannian manifold of dimension m.
In the third section, we turn to the isoparametric hypersurfaces in S2×R2 with constant
principal curvatures. Through the product structure of S2 × R2 we prove that the unit
normal vector field of such isoparametric hypersurfaces has a constant position in the
tangent space T (S2×R2) and therefore the only families obtained are S2×R, S2×S1(r)
(for r ∈ R+) or S1(t)× R2 (for t ∈ (0, 1)).
Finally, in section 3.4 we will calculate the eigenvalues of Laplacian −∆g respect to some
isoparametric functions on a compact Riemannian manifold (M, g)

3.1 Background of isoparametric hypersurfaces

The first notion of isoparametric functions can be founded in the works of Carlo Somigliana
[43] about to the relations between the Huygens principle and geometric optics, in par-
ticular he claimed the following:
“According to the Huygens principle, one of the most simple models of what wave pro-
pagation in an isotropic media should be consists in a family of parallel surfaces that
are intersected perpendicularly at every point by a set of straight lines. The sequence of
parallel surfaces, each one of which can be considered as the envelope of a set of spheres of
radius equal to the distance between the surface and one of the previous ones, constitutes
the family of wavefronts.”

This work leads the following definition introduced (possibly) by T. Levi-Civita in [29]
for the case of Euclidean space R3. But for our purpose we will present it in the general
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Riemannian manifolds.

Definition 3.1.1. Let (N, h) be a connected Riemannian manifold. A non-constant
smooth function f : N → R is called isoparametric if there exist smooth functions
a, b : R→ R such that

(1) ‖∇f‖2 = b(f) and (2) ∆f = a(f).

The smooth hypersurfaces Mt = f−1(t) for t regular value of f are called isoparametric
hypersurfaces. The preimage of the maximum and minimum of the isoparametric function
f are denoted by M+ and M− (resp.); they are called focal varieties of f .
The main research line on this subject has been the problem of classification in Rieman-
nian manifolds, which started with the works of É. Cartan who proved in [11] that, when
the ambient manifold has constant sectional curvature (space form), a hypersurface is iso-
parametric if and only if has constant principal curvatures. A complete classification in
Euclidean and real hyperbolic spaces followed, but the case of the spheres was much more
difficult, and only recently a complete classification was obtained [15]. Cartan classified
the isoparametric hypersurfaces in the sphere with l ∈ {1, 2, 3} different principal curva-
tures. Later, H.F. Münzner [32] proved that, an isoparametric hypersurface in Sn ⊂ Rn+1

with l distinct principal curvatures is contained in a level set of a homogeneous polyno-
mial of degree l on Rn+1 satisfying certain equations known now as the Cartan–Münzner
differential equations. He used this to prove that the number l of distinct principal cur-
vatures can only be 1, 2, 3, 4, or 6. Then several authors worked on the difficult cases of
l = 4 or 6 distinct principal curvatures: see for instance [14, 12, 15]. For a more detailed
study of isoparametric hypersurfaces in space forms see for example [13].

Now, we will explain some basic properties of isoparametric functions.

Proposition 4. The isoparametric hypersurfaces of an isoparametric function are parallel
hypersurfaces of constant mean curvature.

Proof. Let f : N → R isoparametric and L = ∇f/‖∇f‖ a unit normal vector field to the
hypersurface M = f−1(c) (c regular value of f).
We suppose S(X) = −∇XL the shape operator with respect to L.
If {Ei} is an orthonormal frame on M , then the mean curvature H of M is given by

H = trS =
n−1∑
i=1

〈SEi, Ei〉 = −
n−1∑
i=1

1√
b
〈∇Ei

∇f, Ei〉 = − 1√
b

n−1∑
i=0

Hessf (Ei, Ei)

= − 1√
b
(∆f −Hessf (L,L)) = − 1√

b
(∆f − 1

2b
∇f(b)) = − 1

2
√
b
(2a− b′).

Hence each regular hypersurface f−1(c) has constant mean curvature.

The proposition follows if we show that the regular hypersurface Mt = expM(tL) parallel
to M is a regular level set of f . It is enough to show that integral curves of L are geodesics.
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Since ‖L‖ = 1 we get 〈∇LL,L〉 = 0.
On the other hand, for X ∈ Γ(TM) we have

−〈∇LL,X〉 = 〈∇LX,L〉 = 〈∇LX −∇XL,L〉 = 〈[L,X], L〉 =
1√
b
[L,X](f).

Therefore X(f) = 0 and X(L(f)) = X(
√
b) = 0 imply that ∇LL = 0.

Remark 3. The converse of this proposition is also true, that means, family of parallel
hypersurfaces of constant mean curvatures define an isoparametric function.

A natural family of examples of isoparametric hypersurfaces and hypersurfaces with
constant principal curvatures is provided by cohomogeneity one isometric actions on a
Riemannian manifold. These are the so-called homogeneous hypersurfaces:
We consider M = G·p a codimension-one orbit of an isometric action G×N → N through
a point p ∈ N . For any two points q, x ∈ M there exists h ∈ G such that h(M) = M
and h(q) = x. Then the shape operators of M at q and x are conjugated Sx = h∗Sqh

−1
∗

so that M has constant principal curvature.
Furthermore, Let σ be a geodesic normal to M at some point p ∈M . The tangent space
to any orbit of G is generated by Killing vector fields induced by G. If X is a Killing
vector field induced by G then 〈∇σ̇X, σ̇〉 = 0 (skew-symmetry). Thus 〈X, σ̇〉 is constant
along to σ and vanish at p. We conclude that σ is perpendicular to the other orbits
intersect it.

In the setting of Riemannian submersions we have the following elementary construction:

Claim 1. Let π : (E, ĝ) → (B, g) be a Riemannian submersion such that each fiber is
minimal. If f is an isoparametric function on (B, g) then F = f ◦ π is isoparametric on
(E, ĝ).

Proof. By definition F is a horizontal function on E, i.e. ∇ĝF is orthogonal to the fibers.
In particular this implies that

‖∇ĝF‖2 = ‖∇gf‖2.

Assume that L is a fiber of the submersion. In the case that X, Y ∈ Γ(TL) it follows that

HessĝF (X, Y ) = ĝ(∇ĝ
X∇

ĝF, Y ) = −ĝ(∇ĝF,∇ĝ
XY ).

Henceforth

∆ĝF = tr(HessF )|(TL)⊥ + tr(HessF )|(TL) = ∆gf ◦ π − 〈H,∇ĝF 〉,

where H is the mean curvature vector of L.
From our hypothesis, the function F is isoparametric.
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Isoparametric hypersurfaces allow reducing certain systems partial differential equa-
tions to ordinary differential equations, which can help to find explicit solutions. This is
one of the reasons for which it is important to investigate the existence of such functions.
For instance it has been applied to the study of the multiplicity of solutions to the Ya-
mabe problem on the Riemannian manifold (Mm, g) (see [22]), which consists of finding
metrics of constant scalar curvature conformal to g. If the scalar curvature of g (denote

sg) is constant, then writing a conformal metric as h = u
4

m−2 g (for a positive function u)
we have that h has constant scalar curvature λ if and only if u is a positive solution of
the Yamabe equation

−4(m− 1)

m− 2
∆gu+ sgu = λu

m+2
m−2 .

If there is an isoparametric function f on (M, g) then one can look for solutions of the
form u = ϕ ◦ f , where ϕ : R→ R+ is a positive smooth function. It follows that u solves
the Yamabe equation if ϕ solves the ordinary differential equation

−4(m− 1)

m− 2
(ϕ′′a+ ϕ′b) + sgϕ = λϕ

m+2
m−2 for a, b given by (1), (2) in 3.1.1.

In this thesis, we are especially interested in the relations between isoparametric functions
and Yamabe-type equations which, in turn, is related to the conformal geometry. For this
reason we would like to see, for instance, about isoparametricity of functions under special
conformal deformation.
By direct computation we have the following proposition

Proposition 5. Let f be an isoparametric function on (N, g). Then f is isoparametric
on (N, ĝ), where ĝ = e2u(f)g for smooth function u : R→ R.

Proof. Since ∇ĝf = e−2u(f)∇gf ,

‖∇ĝf‖2 = e−2u(f)b(f).

On the other hand, for X, Y ∈ Γ(TN)

Hessĝf(X, Y ) = ĝ(∇ĝ
X∇

ĝf, Y ) = −2u′(f)g(∇gf,X)g(∇gf, Y ) + e−2u(f)ĝ(∇ĝ
X∇

gf, Y ).

The koszul formula for ∇g tell us that,

2g(∇g
XZ, Y ) = X(g(Z, Y )) + Z(g(X, Y ))− Y (g(X,Z))

− {g(Z, [X, Y ]) + g(X, [Z, Y ]) + g(Y, [Z,X])}.

Hence, taking Z = ∇gf and the Koszul formula for ∇ĝ we get

2ĝ(∇ĝ
X∇

gf, Y ) = 2e2u(f)g(∇g
X∇

gf, Y ) +∇gf(e2u(f))g(X, Y )

+X(e2u(f))g(∇gf, Y )− Y (e2u(f))g(∇gf,X)
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= 2e2u(f)g(∇g
X∇

gf, Y ) +∇gf(e2u(f))g(X, Y )

= 2e2u(f){g(∇g
X∇

gf, Y ) + u′(f)b(f)g(X, Y )}.

Thereby

Hessĝf(X, Y ) = −2u′(f)g(∇gf,X)g(∇gf, Y ) + g(∇g
X∇

gf, Y ) + u′(f)b(f)g(X, Y )

= −2u′(f)X(f)Y (f) +Hessgf(X, Y ) + u′(f)b(f)g(X, Y ).

If we take an ĝ− orthonormal frame {Ei} then {eu(f)Ei} is g−orthonormal,
so that

∆ĝf = e−2u(f){a(f) + (n− 2)u′(f)b(f)},
and f is isoparametric on (N, ĝ).

Remark 4. There always exists infinite Riemannian metrics admitting isoparametric
functions on a fixed manifold once there exists one.

In general setting Q.M. Wang in [47] proved and conjectured several beautiful struc-
tural properties about isoparametric hypersurfaces. Here we remember the main results

Theorem 3.1.2 (Wang,[47]). Let M be a connected, complete, smooth Riemannian ma-
nifold and f an isoparametric function on M . Then

1. The focal varieties of f are smooth submanifolds of M ;
2. Each regular level set of f is a tube over either of the focal varieties (the dimensions
of the fibers may differ on different connected components).

Remark 5. The theorem is valid for a more general space of functions, i.e. functions
that only satisfy (1) in definition 3.1.1. These functions are known as transnormal.

Lemma 3.1.3. Let d the only critical value of f in [c, d] ⊂ f(M). Then the improper
integral ∫ d

c

dt√
b(t)

converges.

As a consequence of this lemma, we can obtain that: The interior of f(M) only has
regular values.
If we suppose that there exists d critical value of f such that [d− ε, d] ⊂ Intf(M) then,
b(d) = 0. Since 0 ≤ b in f(M) we have that b′(d) = 0. Thus there exists a constant C
such that 0 ≤ b(t) ≤ C(t− d)2 for t ∈ [d− ε, d].
Therefore ∫ d

c

dt

d− t
≤
∫ d

c

√
C√
b(t)

dt

diverges for c ∈ [d − ε, d] and ε > 0 small enough. This is a contradiction according to
the lemma.
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Another simple consequence of lemma and the argument above is: At the maximum (resp.
minimum) of f we get b′ < 0 (b′ > 0) if it exists.

Now, we recall two remarkable facts. Let f : N → R be an isoparametric function on a
complete connected Riemannian manifold N . It follows that

1. The focal varieties of an isoparametric function on a complete Riemannian manifold
are minimal submanifolds (Theorem 1.1, [20]);

2. The Hessian of f restricted to the focal variety M− (resp. M+) has only two eigen-
values: zero in direction of TM− (TM+) and b′(f(t−))/2 in direction (TM−)⊥ for
any t− ∈M− (Lemma 6, [47]).

Thanks to Wang’s result, the isoparametric hypersurfaces have a simple structure in
general Riemannian manifolds (are tubes over focal submanifolds) but this hypersurfaces
may be disconnected, which could lead to undesired behaviour. We conclude this section
with a brief description of a natural family of isoparametric functions with connected level
sets.

Definition 3.1.4. An isoparametric function is called proper if each component of focal
varieties does not have codimension less than 2.

This definition was introduced by J. Ge and Z. Tang in [19]. In this work, Ge - Tang
deduced very interesting properties of this special type of functions.

Proposition 6. If f : N → R is a proper isoparametric function then each level set
Mt = f−1(t) is connected.
Furthermore, when the ambient manifolds N is closed there exists at least one minimal
isoparametric hypersurface Mt0.

Proof. First, let [c, d] = f(N). The values c, d may be infinity.
If each component of M− (and M+) does not have codimension less than 2, then we have
that N−M−∪M+ = Mt0×(c, d) is connected (for some c < t0 < d) and thus each regular
level hypersurface is connected, therefore M− and M+ are connected. This implies the
first assertion.
We assume now that N is closed. As in the proof of proposition 4 we can obtain the mean
curvature function h(t) associated to hypersurfaces Mt by formula

h(t) =
1

2
√
b
(−2a(t) + b′(t)).

From the last result of latter section

a(c) = ∆f |M− = tr(Hessgf)|M− =
1

2
b′(c)codim(M−).

Hence
−2a(c) + b′(c) = b′(c)(1− codim(M−)).
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We know that b′(c) > 0, so that limt→c h(t) < 0.
By analogous argument, limt→d h(t) > 0.
Continuity of h implies that there exists t0 ∈ (c, d) such that h(t0) = 0.

Additionally, when the closed ambient manifold has positive Ricci curvature the minimal
isoparametric hypersurface given by the above proposition is unique. More precisely,
let L(t) := ∇f(t)/|∇f(t)| be the normal vector fields of isoparametric hypersurfaces Mt.
By radial curvature equation we have

∇LSt = S2
t +RL,

where St is the shape operator of Mt and RL(·) = R(·, L)L the curvature tensor of N .
The trace of this equation allow us to describe the monotonicity of h:

(n− 1)h′(t) = tr(S2
t ) +Ricc(L,L) ≥ Ricc(L,L) > 0.

Thereby h is strictly increasing so that there exists a unique minimal isoparametric hy-
persurface associated to f .

Remark 6. We consider a simple example of non-proper isoparametric function. Let
f : S3 → [0, 1] defined by f(x0, x1, x2, x3) = x2

0. The function f is isoparametric since
‖∇f(x)‖2 = 4f and ∆f = 2; and non-proper because f−1(0) = S2. For t ∈ (0, 1) we note
that the regular level hypersurfaces f−1(t) are disconnected and no minimal.

3.2 Compact isoparametric hypersurfaces in Rn×Mm

In this section, we will prove Theorem 1.0.2.
First, we start stating a structural result of R. Miyaoka, Theorem 1.1 in [31].

Theorem 3.2.1 (Miyaoka). Let M be a complete connected Riemannian manifold which
admits a transnormal function f . Then either one of the following holds:

1. M is diffeomorphic to a vector bundle over a submanifold Q of M .

2. M is diffeomorphic to a union of two disk bundles over two submanifolds Q and Q′

of M , where Q and/or Q′ may be hypersurface(s).

Now, Let Mm be a connected, closed Riemannian manifold. We consider a family
of compact isoparametric hypersurfaces Mt in Rn × Mm with n,m ≥ 2, i.e. exist an
isoparametric function f : Rn ×Mm → R such that each Mt = f−1(t) is compact.

If the focal varieties of f are empty (i.e. M− = M+ = φ) then, from Miyaoka’s Theorem
and the fact that Rn ×Mm can not be an S1 bundle over some Mt (since each Mt are
compact), Rn ×Mm is a rank one vector bundle over some Mt regular hypersurface.
It is well-known that exits a deformation retract of the total space over the base space of a
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vector bundle. This implies that the homology group of Mt and Rn×Mm are equivalent.
In particular, we obtain 0 = Hm+n−1(Mm) = Hm+n−1(Mt) since n − 1 > 0, which is a
contradiction. Therefore there is a non-empty focal variety.
In the case that f has M− 6= φ and M+ 6= φ, again by Miyaoka’s Theorem we have that
Mm × Rn is diffeomorphic to a union of two disk bundles over M+ and M−. Since that
M− and M+ are compact, Rn ×Mm would be compact.
Without loss of generality, we can assume that the set M− of minimum points of f it is
non-empty and M+ = φ.
Since Rn ×Mm cannot be the union of two disk bundles over compact submanifolds, we
have that Rn ×Mm is a vector bundle over M−.

Now, we point out a fact about minimal submanifolds. See [48] for more details.

Lemma 3.2.2. Let Φ : Ln → Rk be an isometric immersion with the mean curvature
vector H, then

∆Φ = nH,

where ∆Φ = (∆Φ1, · · · ,∆Φk).

Proof. Let {ei} be a local orthonormal frame field of L. Then

∆Φ =
∑
i

∇Rk

Φ∗ei
Φ∗ei − Φ∗∇L

ei
ei

=
∑
i

(∇Rk

Φ∗ei
Φ∗ei)

⊥ = nH.

On the other hand, let L → L̄ ⊂ ¯̄L be isometric immersions with connections ∇, ∇̄
and ¯̄∇ respectively. Denote H and H̄ to be the mean curvatures of L in L̄ and L in ¯̄L
respectively. Then

nH =
∑

(∇̄eiei)
⊥

= (
∑

( ¯̄∇eiei)
T L̄)⊥

= (
∑

( ¯̄∇eiei)
⊥)T L̄ = nH̄T L̄.

In our situation, Φ : M− → Rn ×Mm ⊂ Rn+k is minimal for some k. Thus

∆Φ ⊥ T (Rn ×Mm).

Hence, (∆Φ1, · · · ,∆Φn) = 0.
Since M− is compact it follows that the functions Φj are constant for all j = 1, . . . , n.
Thus, the focal variety of f is of the form M− = {p}×V , where V ⊆Mm is a submanifold
and p ∈ Rn.
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Since the submanifold V and Rn ×Mm are homotopy equivalent, we have

Hm(Mm) = Hm(V ).

Therefore, dim(V ) = m and
M− = {p} ×Mm.

But since the level sets Mt are tubes over M− this, of course, implies Theorem 1.0.2.

3.3 Isoparametric hypersurfaces with C.P.C. in S2 ×
R2

In this section, we will prove Theorem 1.0.3. For this, we follow some ideas of F. Urbano
[45] used into the study of homogeneous and isoparametric hypersurfaces in S2×S2. Since
that the curvature tensor of S2× S2 depends on product structure on it, the fundamental
equations (Gauss and Codazzi) for the theory of submanifolds might reflect on these
hypersurfaces some relations with such product structure. Indeed, Urbano proved that
the behavior of these types of hypersurfaces respect to product structure is very rigid, i.e.
the function associated to this behavior is constant. We will employ this program in the
case of isoparametric hypersurfaces with constant principal curvatures in S2 × R2.

Notation and background will be the same as in [45].
Let S2, R2 be space forms with curvatures 1 and 0 respectively. We define the complex
structures L1 and L2 by:

L1 : TS2 → TS2

v 7→ L1(v) := p ∧ v for p ∈ S2, v ∈ TpS2;

L2 : R2 → R2

(q1, q2) 7→ L2((q1, q2)) := (−q2, q1).

We consider S2 × R2 with the product metric and the complex structures J1 = (L1, L2),
J2 = (L1,−L2). We notice that the product structure P in S2×R2 defined by P (v1, v2) =
(v1,−v2) satisfies that P = −J1J2 = −J2J1, moreover, P is parallel with respect of the
Levi-Civita connection of S2 × R2.

Let M3 ⊂ S2 × R2 be an oriented hypersurface with N = (N1, N2) a unit normal vector
field to M3. We consider the function C and vector field X tangent to M3 given by:

C := 〈PN,N〉 and X := PN − CN.

Lemma 3.3.1. Let f : S2 ×R2 → R be an isoparametric function. If each regular hyper-
surface Mt = f−1(t) has constant principal curvatures, then the function Ct corresponding
to each Mt is constant.
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Proof. By condition (1) of the definition of isoparametric function the unit vector field
N = ∇f

|∇f | is a geodesic field. Since the product structure P is parallel, the function Ct is

independent of the regular hypersurfaces Mt (since N(Ct) = 〈∇NN,PN〉+〈N,P∇NN〉 =
0).
Now, we consider the open set U = {p ∈Mt/C

2(p) < 1}. If U is not empty then we can
consider on U the local orthonormal frame field,

B =

{
B1 =

X√
1− C2

, B2 =
J1N + J2N√

2(1 + C)
, B3 =

J1N − J2N√
2(1− C)

}
.

From the radial curvature equation (also called the Riccati equation) we have

−∇NSt + S2
t = −RN ,

where St is the shape operator of Mt corresponding to N and RN(·) = R(·, N)N .
Taking trace we obtain that

−tr(RN) = −tr(∇NSt) + tr(S2
t ) = −∇N trSt + tr(S2

t ) = −3H ′(t) + tr(S2
t ).

We are assuming that the principal curvatures µ1(t), µ2(t) and µ3(t) of Mt are constant,
then we have that tr(S2

t ) = µ2
1 +µ2

2 +µ2
3 is constant. Therefore tr(RN) is constant in Mt.

Now we compute tr(RN) in the frame B. Using the formula of the curvature tensor of S2

and R2 we obtain

RN(B1) =
1

8
√

1− C2
RS

2

(PX +X,PN +N)(PN +N)

= 0 (since PX +X = (1− C)(PN +N));

RN(B2) =
|PN +N |2

4
B2;

RN(B3) = RR
2

(B3, N2)N = 0.

Thus tr(RN) = 1+C
2

and the lemma follows.

Theorem 1.0.3 is equivalent to the following:

Claim 2. The isoparametric functions on S2 × R2 with regular level sets of constant
principal curvatures only depend on one factor, i.e. C2 = 1.

Proof. Let f be an isoparametric function on S2 × R2 with Mt = f−1(t) of constant
principal curvatures. The Lemma 3.3.1 implies that the function C is constant.
Assume that C ∈ (−1, 1).
We are going to express the shape operator S0 = S and the tangential component of
the product structure P T in the orthonormal frame field B considered inside the proof of
Lemma 3.3.1.
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Note that

〈∇C, Y 〉 = ∇Y 〈N,PN〉 = 〈∇YN,PN〉+ 〈N,P∇YN〉
= 2〈PN,−S(Y )〉 = 〈−2S(X), Y 〉

for Y ∈ Γ(TM). Then S(X) = −∇C/2 = 0 and we can write

S =

 0 0 0
0 σ22 σ23

0 σ23 σ33

 .

On the other hand,

PB1 =
1√

1− C2
(−CX +N(1− C2)) , PB2 = B2 , PB3 = −B3,

thus

P T =

 −C 0 0
0 1 0
0 0 −1

 .

By a direct computation, we obtain the Hessian of the function C:

∇2C(V,W ) = −2∇S(V,X,W )− 2C〈SV, SW 〉+ 2〈PSV, SW 〉.

Using the Codazzi equation of M = M0:

∇S(V,W,Z)−∇S(W,V, Z) =
1

4
〈V,X〉〈PW +W,Z〉 − 1

4
〈W,X〉〈PV + V, Z〉,

we compute the Laplacian of the function C in the frame field B.

∆C = tr(∇2C(·, ·)) = −2tr∇S(·, X, ·)− 2Ctr(S2) + 2tr(P TS2)

but

−2tr∇S(·, X, ·) = −2tr∇S(X, ·, ·)− 1

2
tr{〈·, X〉〈PX +X, ·〉 − 〈X,X〉〈P ·+·, ·〉}

= −2∇XtrS(·, ·)− 1

2
{〈PX +X,X〉 − 〈X,X〉(3− C)}

= −6〈X,∇H〉+ 〈X,X〉.

Hence
∆C = −6〈X,∇H〉+ |X|2 − 2Ctr(S2) + 2tr(P TS2).

Then we have

tr(S2)C − |X|2/2 = tr(P TS2) = σ2
22 − σ2

33 = 3H(σ22 − σ33).
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Assume now that H 6= 0.
From the expression

σ22 − σ33 =
1

3H
{tr(S2)C − |X|2/2} =

1

3H
{tr(S2)C − (1− C2)/2}

and the fact that tr(S2) is constant (M has constant principal curvatures) we see that
σ22 − σ33 must be constant.

Then σ2
22 + σ2

23 is also constant since tr(S2) + 3H{σ22 − σ33} = 2σ2
22 + 2σ2

23.
And since

tr(S2) + 9H2 = 2σ2
22 + 2σ2

23 + 2σ2
33 + 2σ22σ33,

we have that 2σ33(σ33 + σ22) is constant.
Since H 6= 0, σ33 must be constant, and hence σ22 is also constant. It follows that each
σij is constant.

Now, we compute X(σ22), X(σ33) and X(σ23).
Since Ji are parallel and S(X) = 0, we have ∇XBj = 0 for j = 1, 2, 3.
Thus,

X(σ22) = ∇S(X,B2, B2)

= ∇S(B2, X,B2) +
|X|2

2

=
|X|2

2
+ 〈PSB2, SB2〉 − C〈SB2, SB2〉

=
1− C2

2
+ (1− C)σ2

22 − (1 + C)σ2
23,

X(σ33) = ∇S(X,B3, B3)

= ∇S(B3, X,B3)

= 〈PSB3, SB3〉 − C〈SB3, SB3〉
= (σ2

23 − σ2
33)− C(σ2

23 + σ2
33)

= (1− C)σ2
23 − (1 + C)σ2

33,

X(σ23) = ∇S(X,B2, B3)

= ∇S(B2, X,B3)

= 〈PSB2, SB3〉 − C〈SB2, SB3〉
= (1− C)σ22σ23 − (1 + C)σ23σ33.

Therefore we get

1− C2

2
+ (1− C)σ2

22 − (1 + C)σ2
23 = 0, (3.3.1)
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(1− C)σ2
23 − (1 + C)σ2

33 = 0, (3.3.2)

(1− C)σ22σ23 − (1 + C)σ23σ33 = 0. (3.3.3)

Now, from equation

(σ2
22 + 2σ2

23 + σ2
33)C − (1− C2)/2 = tr(S2)C − |X|2/2 = 3H(σ22 − σ33) = σ2

22 − σ2
33,

we obtain

−2Cσ2
23 = (C − 1)σ2

22 + (C + 1)σ2
33 − |X|2/2 = −X(σ22) = 0.

If σ23 = 0 then σ2
22 = 1−C2

2(C−1)
(from the formula (3.3.1)) but this is a contradiction since

C2 < 1.
Therefore σ23 6= 0 and C = 0. But the formula (3.3.3) gives then that σ22 = σ33. Then
σ2

23 = σ2
33 (from (3.3.2)). Hence σ2

22 = σ2
23 and replacing these value in (3.3.1) gives a

contradiction.

The above argument means that the family of isoparametric hypersurfaces with constant
function C ∈ (−1, 1) are all minimal.
But, if we assume that the family Mt are all minimal, then from the trace of the radial
curvature equation (Riccati equation) we have

0 = 3H ′(t) = tr(S2
t ) + tr(RN) = tr(S2

t ) +
1 + C

2
> 0.

This argument allow us to conclude that C2 = 1.

In contrast to Urbano’s work we obtain only two family of hypersurfaces C = 1 or
C = −1 while Urbano’s classification three family C = 1, C = −1 and C = 0.

3.4 Eigenvalues of restricted Laplacians

In order to apply our global Theorem in the next chapter we need to understand the
eigenvalues of ∆g restricted to f -invariant functions and the dimension of the focal sub-
manifolds. While the dimension of the focal submanifolds is usually simple to understand,
to compute the eigenvalues of the restricted Laplacian might be lengthy.

The situation we will consider is a Riemannian submersion with totally geodesic fibers
π : (M1, g1) → (M2, g2). In this situation the corresponding Laplacians commute: for
any function f : M2 → R, ∆g2(f) ◦ π = ∆g1(f ◦ π). And it is easy to check that f
is isoparametric for (M1, g1) if and only if f ◦ π is isoparametric for (M2, g2). Actually
‖∇f‖2 = a◦f and ∆f = b◦f if and only if ‖∇(f◦π)‖2 = a◦(f◦π) and ∆(f◦π) = b◦(f◦π).
Then it follows easily that h = α ◦ f is an eigenfunction of ∆g2 with eigenvalue λ if and
only if h ◦ π is an eigenfunction of ∆g1 with eigenvalue λ. So it is equivalent to study
f -invariant eigenfunctions or (f ◦ π)-invariant eigenfunctions.
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Another fact we will use is that the problem is easy to solve in the case of the round
sphere. In general if f is an isoparametric function then one can consider the family
of isoparametric functions of the form α ◦ f , where α is a monotone function. These
isoparametric functions are in certain sense equivalent: they have the same level sets and
the spaces of f -invariant functions and (α ◦ f)-invariant functions are the same. In the
case of the round sphere, (Sn, g0), there is a canonical way to pick a representative of these
families of equivalent isoparametric functions. Namely, in any such family H. F. Münzner
([32]) proved that there is a Cartan-Münzner polynomial. This is a homogeneous harmonic
polynomial F (in Rn+1 ) of degree k which solves the Cartan-Münzner equations:

‖∇F (x)‖2 = k2‖x‖2k−2

∆F (x) =
1

2
ck2‖x‖k−2,

for some integer c. But then one can easily see by studying the resulting linear ordinary
differential equation that the F -invariant eigenvalues are exactly µi = λki, i ≥ 1, where
λj = j(n+ j − 1) are the eigenvalues of −∆(Sn,g0) (see [22, Lemma 3.4]).

Let us now consider the case of the complex projective spaces with the Fubini-Study
metric (CPn, gFS). Recall that the positive eigenvalues of −∆gFS

are 2i(2i + 2n), i ≥ 1.
There is a Riemannian submersion (the Hopf fibration) S2n+1 → (CPn, gFS), obtained
by considering the canonical diagonal S1-action on S2n+1. It has totally geodesic fibers
(which are circles, the orbits of the S1-action) so we can apply the previous ideas. An
isoparametric function f on (CPn, gFS) lifts to an isoparametric function f : (S2n+1, g0)→
[t0, t1]. And we can look for the corresponding Cartan-Münzner polynomial.

We will consider the three simplest examples of isoparametric functions on (CPn, gFS).
These are given by cohomogeneity one actions.

1) Let us consider first the action of U(n) ⊂ SO(2n). This action lifts to a coho-
mogeneity one action on S2n+1 which commutes with the diagonal S1-action (the action
on S2n+1 ⊂ R2n+2 is given by A.(x1, x2, y1, ....y2n) = (x,Ay). We consider on R2n+2 the
homogeneous harmonic polynomial F (x, y) = ‖x‖2−‖y‖2. It is invariant by the action of
S1×O(2n) and therefore projects to an isoparametric function f on (CPn, gFS) invariant
by the U(n)-action. F is a Cartan-Münzner polynomial of degree 2. Then it follows that
the f -invariant eigenvalues of −∆gFS

are λ2i = 2i(2i + 2n). Note that these are actu-
ally the eigenvalues of the full Laplacian −∆gFS

. Also note that the action of U(n) on
(CPn, gFS) has a fixed point.

2) Let us now consider the action of U(m) × U(l) ⊂ U(n + 1) on (CPn, gFS), where
we ask n ≥ 3, m + l = n + 1 and m ≥ l ≥ 2. Similarly to the previous case we can
easily lift the action to S2n+1 ⊂ R2n+2, commuting with the diagonal S1-action. The
action looks like (A,B).(x, y) = (Ax,By). Again F (x, y) = ‖x‖2 − ‖y‖2 is an invariant
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Cartan-Münzner polynomial of degree 2 which projects to an isoparametric function f on
(CPn, gFS). It follows that the f -invariant eigenvalues of −∆gFS

are λ2i = 2i(2i + 2n).
But now note that the critical orbits are CPm−1 and CPl−1.

3) There is a cohomogeneity one isometric action of SO(n+1) ⊂ U(n+1) in (CPn, gFS)
given by considering the natural action on Cn+1(in the introduction we considered the case
n = 2). This action can be lifted to S2n+1 ⊆ R2n+2. The corresponding isoparametric
polynomial on the sphere S2n+1 is given by F (x, y) = (‖x‖2 − ‖y‖2)2 + 4〈x, y〉2, which
is invariant under the action of SO(n + 1). It follows that the f -invariant eigenvalues
of −∆gFS

are λ4i = 4i(4i + 2n). The singular orbits for this action are RPn and the

Grassmanian of oriented two-planes G̃r(2,Rn+1), which have dimensions n and 2n − 2,
respectively.
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Chapter 4

Global bifurcation technique for
Yamabe-type equation

In this chapter, we consider a closed Riemannian manifold (Mn, g) of dimension n ≥ 3
and study positive solutions of the equation −∆gu + λu = λuq, with λ > 0, q > 1. In
the case that M admits a proper isoparametric function with focal varieties M1, M2 of
dimension d1 ≥ d2 we show that for any q < n−d2+2

n−d2−2
the number of positive solutions of

the equation −∆gu + λu = λuq tends to ∞ as λ → +∞. We apply this result to prove
multiplicity results for solutions of the Yamabe equations.

4.1 Yamabe-type equations for f-invariant functions

Next, we consider geodesics which are transversal to the level sets of f :

Definition 4.1.1. A geodesic γ : [l1, l2] → M is called an f−segment if f(γ(l)) is an
increasing function of l and γ′(l) = ∇f/

√
b wherever ∇f 6= 0.

Note that f -segments are parametrized by arc-length. It is also easy to see that the
integral curves of ∇f (parametrized by arc-length) are f -segments, and that f -segments
realize the distance between the level sets Ms, Mt (see [47, Lemma 1]). If γ : [0, s]→ M
is an f segment then s = length(γ) = d(Mf(γ(0)),Mf(γs)), and (f ◦ γ)′(t) =

√
b(f(γ(t)).

By reparametrizing γ by l = (f ◦ γ)−1(s) for s ∈ [f(γ(0), f(γ(s))] is easy to obtain the
formula for dg(Mc,Md) for any t0 ≤ c < d ≤ t1:

dg(Mc,Md) =

∫ d

c

1√
b(t)

dt,

Let t∗ = dg(Mt0 ,Mt1) and d : M → [0, t∗], d(x) = dg(Mt0 , x).

We will consider functions which are constant on the level sets of f :

Definition 4.1.2. A function u : M → R is called f -invariant if u(x) = φ(d(x)) for
some function φ : [0, t∗]→ R.
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We will denote by B = {φ ∈ C2,α([0, t∗]) : φ′(0) = 0 = φ′(t∗)}.

Lemma 4.1.3. If we denote by C2,α
f (M) the set of C2,α functions on M which are f -

invariant, then the application φ 7→ u(x) = φ(d(x)) identifies B with C2,α
f (M).

Proof. Let φ ∈ B and u(x) = φ(d(x)). By a direct computation we get

∇u(x) =
φ′(d(x))√
b(f(x))

∇f(x),

and

∇2u(X, Y ) =
φ′(d)√

b
∇2f(X, Y ) +

1

b
〈∇f,X〉〈∇f, Y 〉

(
φ′′(d)− φ′(d)√

b
· b
′

2

)
,

for X, Y vector fields on M .
It is clear that the function u ∈ C2,α(f−1(c, e)) for t0 < c < e < t1.

Now, we choose a curve γ : [0, l] → M such that γ(0) ∈ Mt0 and γ(l) ∈ Mf(x). By mean
value theorem there exists tl1 ∈ (0, l) that satisfies

φ′(d(γ(l))) = φ′(d(γ(l)))− φ′(d(γ(0))) = 〈∇(φ′ ◦ d), γ′(tl1)〉(l − 0),

thus
φ′(d(γ(l))) = φ′′ ◦ d(γ(tl1))〈∇d(γ(tl1)), γ

′(tl1)〉l.
If γ is an f−segment, we conclude that

φ′ ◦ d(γ(l)) = φ′′ ◦ d(γ(tl1))l.

Similary, there exists tl2 ∈ (0, l) such√
b(f(γ(l))) =

b′(f(γ(tl2)))

2
l.

By taking l close to 0 we prove that

lim
x→Mt0

φ′(d)√
b(f)

=
2φ′′(0)

b′(t0)
.

This fact allow us to show that the function u ∈ C2,α(f−1([t0, e)) :

Since φ′′ ∈ C0,α and φ′′ − φ′(d)√
b
· b′

2
→ 0 when x→Mt0 ,

φ′′ − φ′(d)√
b
· b
′

2
∈ C0,α

in a neighborhood of Mt0 .
Using that

1

b
〈∇f,X〉〈∇f, Y 〉
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is bounded for x close to Mt0 ,

1

b
〈∇f,X〉〈∇f, Y 〉

(
φ′′(d)− φ′(d)√

b
· b
′

2

)
∈ C0,α(f−1([t0, e)).

Therefore u ∈ C2,α(f−1([t0, e)).
A similar argument in the other focal variety Mt1 shows that

u ∈ C2,α(M).

Now we obtain the expression of the Yamabe-type equations of (M, g) for f -invariant
functions.

Lemma 4.1.4. Let u ∈ C2,α
f (M), u(x) = φ(d(x)), with φ ∈ B. Then u is a solution of

equation (1.0.2) if and only if the function φ satisfies

− (φ′′ + (−h)φ′) + λφ = λφq. (4.1.1)

on [0, t∗]. For t ∈ (0, t∗) h(t) is the mean curvature of Mt.

Proof. With the notation f(x) = tx we have

∆(u(x)) = ∆(φ(d(x))

= φ
′′
(|∇d(x))|2) + φ′(∆(d(x))).

But

|∇d|2 = 1 and,

∆d(x) = ∆

(∫ tx

t0

df√
b(f)

)
=
−b′

2b
√
b
|∇f |2 +

∆f√
b

=
1

2
√
b
(−b′ + 2a) = −h(tx),

where h(tx) is the mean curvature of the hypersurface Mtx .

Hence φ is a solution of the ordinary differential equation

−(φ′′ + (−h)φ′) + λφ = λφq.
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The function h is smooth away from the focal varieties. However, the well-known fact
about the structure of regular hypersurfaces Mt over Mt0 allows getting the asymptotic
behaviour of h close to Mt0 . Since each Mt is a tube over either Mt0,t1 a coordinate
system centered in Mt0 or Mt1 appropriate for this study are Fermi coordinates, which
are the generalization of normal coordinates that arises when the center of the normal
neighborhood is replaced by a submanifold.
Indeed, in [20] the authors used this coordinates to compute the power series expansion
formula for the shape operator of Mt with respect to the distance to Mt0 .
More explicitly, corollary 2.2 in [20] implies that,

h(t) = −codim(Mt0)− 1

t
+ t(trace(A) + trace(B)) + o(t2),

where A,B are matrices independent of t. In particular we have the following asymptotic
behaviour of h close to the focal varieties, which we will need later:

Lemma 4.1.5.

lim
t→0
−t h(t) = n− d1 − 1 , lim

t→t∗
−t h(t) = n− d2 − 1.

4.2 Bifurcation points

In this section we will use local bifurcation theory (as can be found for instance in [2, 33]) to
prove Theorem 1.0.4. We fix a proper isoparametric function f on the closed Riemannian
manifold (M, g). As in the previous section, we denoted by t∗ the distance between the
two focal varieties. It follows from the previous section that positive f -invariant solutions
of (1.0.2) are given by positive solutions of the problem

φ′′ − hφ′ + λ(φq − φ) = 0,

φ′(0) = 0 = φ′(t∗).

For all positive constant λ the function φ ≡ 1 is a trivial solution of the equation.
We will prove Theorem 1.0.4 by studying bifurcation from this path of trivial solutions
λ 7→ (λ, 1).

Proof. (Theorem 1.0.4) We define S : R+ × B → C0,α([0, t∗]) by

S(λ, φ) = φ′′ − hφ′ + λ(φq − φ).

Then we are trying to solve the operator equation S(λ, u) = 0.

It is easy to compute that

dφS(λ,φ)(u) = u′′ − hu′ + λ(qφq−1u− u),
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and in particular
dφS(1,λ)(u) = u′′ − hu′ + λ(q − 1)u.

Bifurcating branches will appear at the values of λ for which the kernel of linear operator
dφS(λ,1) is nontrivial. Note that since the asymptotic behavior of h in 0 is −n−d1−1

t
, the

standard contraction map argument implies that the following initial value problem has
a unique solution

u′′ − hu′ + λ(q − 1)u = 0,

u(0) = 1,

u′(0) = 0.

The equation dφS(λ,1)(u) = 0 for u ∈ B, is of course the eigenvalue equation for the
Laplacian restricted to f -invariant functions. One can see (for instance in [22, Proposition
3.2]) the existence of infinite eigenvalues of the Laplacian operator in the set of f -invariant
functions. This means that there is a sequence 0 < λ1 < λ2 < · · · < λk < · · · < ∞ and
solutions uk of the above initial value problem (with λ = λk) such that u′k(t

∗) = 0.
Therefore ker dφS(λk(q−1),1) 6= 0, and it has dimension one.

We can normalize uk so that
∫
M
u2
k = 1. Since the operator L = dφS(λk(q−1),1) is self-

adjoint we have

Range(L) = {u ∈ C0,α(0, t∗)/
∫
M
uuk = 0}.

On the other hand we have that d2
φ,λS(λk(q−1),1)[uk] = (q − 1)uk /∈ Range(L).

Therefore from the well-known theory of local bifurcation for simple eigenvalues (see for
instance Theorem 2.3.2, [2, Theorem 2.8], or the original article by M. G. Crandall and P.
H. Rabinowitz [16]) we can see that for all k ≥ 1, (λk(q− 1), 1) is a bifurcation point and
moreover all nontrivial solutions in a neighborhood of (λk(q − 1), 1) are given a branch
t 7→ (λ(t), u(t)), t ∈ (−ε, ε), such that λ(0) = λk(q − 1), u(0) ≡ 1, and u(t) 6= 1 if t 6= 0.
This proves Theorem 1.0.4.

Later we will need the following result about the number of simple zeros nk of the
functions uk:

Lemma 4.2.1. The sequence nk is strictly increasing.

Proof. Let uk, uk+1 be solutions (resp.) of

u′′k − hu′k + λk(q − 1)uk = 0,

u′′k+1 − hu′k+1 + λk+1(q − 1)uk+1 = 0.

Recall that we have set uk(0) = 1 = uk+1(0). In particular these solutions are non-trivial
and therefore if for any t ∈ (0, t∗), uk(t) = 0 then u′k(t) 6= 0.
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Let 0 < t1 < t2 < · · · < tnk
< t∗, be the points such that uk(ti) = 0, i = 1, . . . , nk.

Since
u′k+1(0)

uk+1(0)
= 0 =

u′k(0)

uk(0)
,

and λk+1 > λk, if uk+1 does not have zeros in (0, t1) then by Sturm’s comparison theorem
(and since the functions uk and uk+1 are linearly independent in any open interval)

u′k+1

uk+1

<
u′k
uk

in (0, t1).

Therefore there must be at least one value s ∈ (0, t1) such that uk+1(s) = 0. We can
also apply the same argument to show that uk+1 must have another zero in (tnk

, t∗). Also
by standard Sturm’s comparison we can see that the function uk+1 has at least one zero
in the interval (ti, ti+1), for each i = 1, . . . , nk − 1. Therefore uk+1 has at least nk + 1
zeroes in (0, t∗), proving the lemma.

4.3 Auxiliary results

We assume we have a proper isoparametric function f on a closed Riemannian ma-
nifold (M, g). The dimension of the focal submanifolds are d1, d2 ≤ n − 2: we call
d = min{d1, d2} ≤ n − 2. And we let pf = n−d+2

n−d−2
, pf = ∞ in case d = n − 2. We

consider equation (4.1.1) with q < pf . The main goal of this section is to prove the next
proposition which we will need in the following sections.

Proposition 7. Let q ∈ (1, pf ) and fix positive numbers ε < λ∗. The set C = {φ ∈ B : φ
is positive and solves equation (4.1.1) with λ ∈ [ε, λ∗]} is compact in B.

We first consider the case when λ is fixed:

Lemma 4.3.1. Consider equation (4.1.1) with q ∈ (1, pf ) and λ = λ0 > 0 fixed. If φα
is the solution of the initial value problem with φ′(0) = 0, φ(0) = α, then there exists
A = A(λ0) > 0 such that if α ≥ A then there exists t ∈ (0, t∗) such that φα(t) = 0.
Similarly, if ϕα is the solution of (4.1.1) with ϕ′(t∗) = 0, ϕ(t∗) = α, then there exists
B > 0 such that if α ≥ B then there exists t ∈ (0, t∗) such that ϕα(t) = 0.

Proof. We consider the first statement, the proof of the second statement is similar.
Equation (4.1.1) can be written as

φ′′(r) +
H(r)

r
φ′(r) + λφq(r)− λφ(r) = 0. (4.3.1)

where H(r) = −rh(r) and H(0) = n − d1 − 1 by Lemma (4.1.5). If d1 = n − 2 then
H(0) = 1. If d1 < n− 2 then
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H(0) + 1

2
=
n− d1

2
≤ n− d

2
=
pf + 1

pf − 1
<
q + 1

q − 1
.

Then we can apply [18, Theorem 3.1] which says that under the previous conditions
on H(0) and q there exists A > 0 such that if α ≥ A then the solution φα has a zero.

Corollary 4.3.2. Fix λ = λ0 > 0 in equation (4.1.1). There exits A > 0 such that if
φ ∈ B is a positive solution of equation (4.1.1) then φ ≤ A.

Proof. It follows from the previous lemma that we can find C > 0 such that any positive
solution in B is bounded by C in 0 and in t∗. But then for any ε > 0 there exists a constant
A > 0 such that the solution must be bounded by A in [0, t∗ − ε] and in [ε, t∗].

Corollary 4.3.3. Fix λ = λ0 > 0 in equation (4.1.1). The set of φ ∈ B such that φ is a
positive solution of equation (4.1.1) is compact.

Proof. Let φi ∈ B be sequence of positive solutions of equation (4.1.1). Then it follows
from the lemma that we can take a subsequence so that the sequences φi(0), φi(t

∗) are
convergent. Let limi→∞ φi(0) = a, limi→∞ φi(t

∗) = b. But then we consider the solutions
φ1, φ2 of equation (4.1.1) with φ1(0) = a, φ1′(0) = 0, φ2(t∗) = b, φ2′(t∗) = 0. Then for
any ε > 0 small, φi converges in [0, t∗ − ε] to φ1 and φi converges in [ε, t∗] to φ2. Then
φ1 = φ2 and give a function in B which is a positive solution of equation (4.1.1). And (for
the subsequence) limi→∞ φi = φ1 = φ2.

Remark 7. If φ ∈ B is a non-trivial positive solution of equation (4.1.1), then #{t :
φ(t) = 1} < ∞, and there is an open neighborhood U of φ ∈ B such that for any ϕ ∈ U ,
#{t : ϕ(t) = 1} = #{t : φ(t) = 1}. Also if φ ∈ B is a non-trivial positive solution of
equation (4.1.1) close to the trivial solution then #{t : ϕ(t) = 1} is equal to the number
of zeroes of the linearized equation at the trivial solution (which is finite).

Corollary 4.3.4. Fix λ = λ0 > 0 in equation (4.1.1). There exits k0 > 0 such that if
φ ∈ B is a positive solution of equation (4.1.1) then #{t : φ(t) = 1} ≤ k0.

Proof. Any sequence of positive solutions φi ∈ B of equation (4.1.1) must have a conver-
gent subsequence. Then by the remark #{t : φi(t) = 1} is bounded (independently of
i).

Now as in the proposition we will fix positive numbers ε < λ∗ and consider the equation
(4.1.1) with λ ∈ [ε, λ∗].

Lemma 4.3.5. For any 0 < ε < λ∗ there exists A > 0 such that if λ ∈ [ε, λ∗] and φα
is the solution of equation (4.1.1) with φ′α(0) = 0, φα(0) = α > A then φα has a zero in
(0, t∗). Similarly, there exists B > 0 such that if ϕα is the solution of equation (4.1.1)
with ϕ′α(t∗) = 0, ϕα(t∗) = α > B, then ϕα has a zero in (0, t∗).
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Proof. We will prove the first statement, the proof of the second statement is similar. For
each λ ∈ [ε, λ∗] let Aλ = inf{A : φα has a zero in (0, t∗) for α > A}. It follows from the
previous lemma that Aλ < ∞ for any λ ∈ [ε, λ∗]. Assume that there exists a sequence
λi ∈ [ε, λ∗] such that Aλi → ∞. We can asume that λi → λ0 ∈ [ε, λ∗]. Then we have

a solution φi of equation (4.1.1) with λ = λi, such that φi(0) = α
2

q−1

i → ∞, and φi is
positive in [0, t∗). Then we argue as in [18, Theorem 3.1] (see also [21, Proposition 3.8]):
We let

wi(t) = α
2

1−q

i φi

(
t

αi
√
λi

)
.

Then wi solves

w′′i (t) +
H
(

t
αi
√
λi

)
t

w′i(t) + wqi (t)−
wi(t)

α2
i

= 0,

where H(r) = −rh(r), wi(0) = 1 and w′i(0) = 0. Note that wi is defined in [0, αi
√
λit
∗),

and limi→∞ αi
√
λit
∗ =∞.

Then one can see that for any fixed K > 0 wi converges uniformly on [0, K] to the
solution w of

w′′ +
H(0)

t
w′ + wq = 0,

with w(0) = 1, w′(0) = 0. The proof is the same as in [18, Lemma 3.2]), where the proof
is detailed in the case λi = λ > 0, instead of λi → λ as in our case (but this does not
affect the proof of the statement given in [18]).

It is proved in [21, Proposition 3.9] that by picking K large we can assume that w has
any number of zeroes in [0, K] and by the uniform convergence it follows that wi must
have a zero in [0, K] and therefore φi has in zero in (0, K

αi
√
λi

). This is a contradiction,
and therefore A = supλ∈[ε,λ∗] Aλ <∞, proving the lemma.

We can now prove Proposition 4.1:

Proof. Let φj ∈ B be a sequence of solutions of equation(4.1.1) with λ = λj ∈ [ε, λ∗].
φj is determined by αj = φj(0) and by βj = φj(t

∗). From the previous lemma we know
that we can take a subsequence and assume that (λj, αj, βj) → (λ0, α0, β0), where α0,
β0 > 0. Let φ1 be the solution of equation (4.1.1) with λ = λ0 such that φ1(0) = α0 and
φ1′(0) = 0. Let φ2 be the solution of equation (4.1.1) with λ = λ0 such that φ2(t∗) = β0

and φ2′(t∗) = 0. Then for any δ > 0 φj converges on [0, t∗ − δ] to φ1 and on [ε, t∗] to
φ2. It follows that on (0, t∗) φ1 = φ2 and therefore they define a function φ ∈ B which is
positive, solves equation (4.1.1), and verfies φ(0) = α0, φ(t∗) = β0. And φi → φ.
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4.4 f-invariant solutions for parameter close to zero

In this section, we will prove Theorem 1.0.5 i.e. we will show that all non-negative
f−invariant solutions of 1.0.2 are constant for λ close to zero. In order to get this result,
we will give a priori estimate for f−invariant solutions of the equation. First, consider
the equivalent equation:

−∆gw = wq − λw. (4.4.1)

Note that u is a solution of equation (4.4.1) if and only if λ
−1
q−1u is a solution of equation

(1.0.2). Also as in section 4.1, u ∈ C2,α
f (M), u(x) = φ(d(x)), with φ ∈ B is a solution of

equation (4.4.1) if and only if the function φ satisfies

− (φ′′ + (−h)φ′) + λφ = φq. (4.4.2)

on [0, t∗].

Similar problems have been considered before, for instance in [30]. We denote λ1

the first non-zero eigenvalue of −∆g. We will make use of the following result from [30,
Theorem 2.2]

Theorem 4.4.1 ([30]). Assume 0 < λ and q > 1. If w is a solution of (4.4.1) which
satisfies

q‖w‖
1

q−1

L∞ ≤ λ+ λ1,

then w = λ
1

q−1 .

Similarly, if u is a solution of (1.0.2) which satisfies

q‖u‖
1

q−1

L∞ ≤
λ+ λ1

λ
1

(q−1)2

,

then u = 1.

We first find an appropriate bound for positive f -invariant solutions:

Lemma 4.4.2. There exist constants ε, c > 0 such that for λ ∈ (0, ε] any positive
f−invariant solution w of (4.4.1) satisfies

w ≤ cλ
1

q−1 .

If u is a positive solution of equation (1.0.2) then u ≤ c.

Proof. We follow a similar treatment of [30, Theorem 2.3]. Suppose that the lemma is
not true. Then we have a sequence of positive numbers λm → 0, a sequence of positive
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numbers cm → +∞, and a sequence pm ∈ M , such that there exists a positive solution
wm of (4.4.1) which satisfies that

max
M

wm = wm(pm) = cmλ
1

q−1
m . (4.4.3)

By taking a subsequence we can assume that wm(pm)→ a ∈ [0,∞].

Note that if a = 0 then the solutions wm satisfies the conditions on Theorem 4.4.1 and

therefore we would have wm = λ
1

q−1
m for m large. This would say that cm = 1, which is a

contradiction (we were assuming that cm →∞).

Assume now that a ∈ (0,∞). Let vm = wm

wm(pm)
. Note that vm solves the equation

∆gvm − λmvm + wm(pm)q−1vqm = 0,

with ‖vm‖L∞ = 1. Recall that λm → 0 and wm(pm) → a. Therefore, from the theory
of elliptic operators we get that the sequence vm converges to a function v which is a
non-negative solution of

∆gv + aq−1vq = 0

on M . Since M is closed, v is equal to zero, but this is a contradiction since ‖vm‖L∞ = 1.

Therefore we can assume that wm(pm) → ∞. In this case we will need to use our
hypothesis that the functions wm are f -invariant. Then wm is determined by a function
φm ∈ B which solves equation (4.4.2). The function φm is determined by αm = φm(0) and
by βm = φm(t∗). If the sequences αm and βm are bounded then φm would be uniformly
bounded, which is not the case. We can therefore assume for instance that αm →∞.

We call H(t) = −th(t). Then

φ′′m(t) +
H(t)

t
φ′m(t) + φqm(t)− λmφm(t) = 0.

We let δm = α
2

q−1
m and

ϕm(t) := δ
2

1−q
m φm

(
t

δm

)
.

Then ϕm solves

ϕ′′m(t) +
H( t

δm
)

t
ϕ′m(t) + ϕqm(t)− λm

δ2
m

ϕm(t) = 0,

and satisfies ϕm(0) = 1 and ϕ′m(0) = 0.
Since δm →∞ and λm → 0 we can argue as in the proof of Lemma 4.3.5, or [18, Lemma
3.2], to prove that the sequence ϕm converges uniformly on any compact interval [0, K]
to the solution w of

w′′ +
H(0)

t
w′ + wq = 0,
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with w(0) = 1, w′(0) = 0. We recall that it is proved in [21, Proposition 3.9] that by
picking K large we can assume that w has any number of zeroes in [0, K] and by the
uniform convergence it follows that for m large enough ϕm must have a zero in [0, K].
This implies that φm has in zero in (0, K

δm
). This contradicts our assumption that the

solution wm(x) = φm(d(x)) was positive, finishing the proof of the lemma.

We are now ready to prove Theorem 1.0.5

Proof. By the previous lemma there exists ε > 0 such that if λ ∈ (0, ε] then any positive
f−invariant solution w of (4.4.1) satisfies

w ≤ cλ
1

q−1 ,

for some positive constant c independent of λ. Then there exists λ0 ∈ (0, ε) such that if

λ ∈ (0, λ0] then q(cλ
1

q−1 )
1

q−1 ≤ λ + λ1. Then it follows from Theorem 4.4.1 that w must
be constant.

4.5 Global bifurcation

In this section, we will prove Theorem 1.0.6.

LetD = {(φ, λ) ∈ (B−{1}×(0,∞) : φ ∈ B is a positive nontrivial solution of (4.1.1)}.
Let D be the closure of D in B and Di the connected component of D containing the
bifurcation point (1, λi(q − 1)) (as in Section 4.2).

It follows from Theorem 1.0.5 that there exists ε > 0 such that for any i Di is contained
in {B × [ε,∞)}.
Now we shall see that each Di is not compact, using the global bifurcation theorem of P.
Rabinowitz ( Theorem 2.3.2, see also [33, Theorem 3.4.1], [2, Theorem 4.8] or [39]) .

It follows from Rabinowitz’s theorem that either

a) Di is not compact in O = {(φ, λ) ∈ C2,α
f × R+/ φ > 0}

or

b) Di contains a point (1, λj(q − 1)) for j 6= i .

For each 1 ≤ i, we let

Zi := {φ ∈ B /φ− 1 has exactly ni simple zeros in (0, t∗) },

where we recall from Section 4.2 that ni is the number of zeroes of the solution of the
linearized equation at (1, λi(q − 1)).

Each Zi is an open set in B. Note also that if φ ∈ B is a nontrivial solution of (4.1.1)
then the zeros of φ − 1 are simple (since it solves a second order ordinary differential
equation for which the constant function 1 is a solution).
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Recall from Section 4.2 (the proof of Theorem 1.0.4, using [16]) that the points in D
near to (1, λi(q − 1)) can be parametrized by a curve s 7→ (ki(s), µi(s)), |s| < ai with ai
sufficiently small, where µi(0) = λi(q− 1). The map ki is of the form ki(s) = sui + sQ(s)
and Q(0) = 0, where, as in Section 4.2, ui ∈ Zi is an eigenfunction of −∆ associated to
λi(q − 1) (see again [33, Theorem 3.2.2], for instance).

Therefore, ki(s) ∈ Zi for s sufficiently small, s 6= 0. Then it follows that Di−{(1, λi(q−
1))} ⊆ Zi. And in particular it follows that Di∩Dj = ∅ if i 6= j. This says that alternative
(b) in the global Theorem of Rabinowitz does not happen and therefore Di is not compact,
for any i.

If there exists a constant λ0 > λi(q− 1) such that for any (φ, λ) ∈ Di we have λ ≤ λ0.
Then Di would be a closed set of {(φ, λ) ∈ B × [ε, λ0] : φ is a positive solution of (4.1.1)
}. Then it follows from Proposition 7 that Di is compact. Therefore such an λ0 does not
exist and since Di is connected it follows that for any λ ≥ λi(q−1) there exists (φ, λ) ∈ Di.
Then for λ ∈ [λi(q − 1), λi+1(q − 1)) and for each k ≤ i there exists (φ, λ) ∈ Dk and this
proves Theorem 1.0.6.
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