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Introduction

Algebra, topology and combinatorics are fundamental areas of mathematics. Although the objects of
study in each area seems different, historically they benefit from each other. For example, homology and
homotopy theory both define functors from topological spaces (and continuous maps) to groups (and
group homomorphisms). Furthermore, many concepts of the algebra are inspired by the combinatorics:
permutation groups. In this way, the study of algebra is better understood when associating it with
topology and combinatorics, and vice-versa.

In the beginning, the algebra was focus in the study of polynomial roots. Between the XVII
century and the XVIII century, the work of mathematicians such as Galois, Cauchy, Gauss, Jordan and
Grassmann focused in the study of permutations groups associated to roots of polynomials equations.

On 1871, Felix Klein and Sophus Lie published in Mathematische Annalen their famous article
“Ueber diejenigen ebenen Curven, welche durch ein geschlossenes System von einfach unendlich vielen
vertauschbaren linearen Transformationen in sich bergehen” in which developed the concept of closed
system. The goal of the work of Klein and Lie is study the intrinsic properties of the objects by studying
of their automorphism. In this way the properties that do not change under an automorphism are
called invariants of the object. These invariants are used to distinguish objects. The following questions
arise naturally: Do algebraic objects such as groups, rings and fields have invariants that characterize
their? Given a simplicial complex, does their exists some invariant that characterize it?

Stanley-Reisner theory provides the central link between combinatorics and commutative algebra.
Pioneered in the 1970s, the correspondence between simplicial complexes and square-free monomial
ideals has been responsible for substantial progress in both fields. Among the most celebrated results
are Reisner’s criterion for Cohen-Macaulayness [Rei76

.

], Stanley’s proof of the Upper Bound Conjecture
for simplicial spheres [Sta96

.

], and Hochster’s formula for computing multi-graded Betti numbers of
square-free monomial ideals via simplicial homology [Hoc77

.

]. The last statement is one of the goals of
this work and it is proven in the Chapter 4

.

.

Chapter 1

.

consist of background. We present the basic constructions, definitions and results of as-
sociated primes, square-free monomial ideals, free resolutions, Betti numbers, depth, Cohen-Macaulay
rings and local cohomology. Furthermore, we establish notation that we use in all this manuscript.

In Chapter 2

.

we give one of the most important definition for our work: simplicial complex. In
addition, we study basic invariants of simplicial complexes such as their f -vector and their h-vector.
Moreover, we start developing the Stanley-Reisner theory which relates simplicial complexes with
square-free monomial ideals. Afterwards, we discuss the Alexander duality. In its original form, it
formulates a relation between the Betti numbers and torsion coefficients of a subcomplex A of the
n-sphere Sn, and the Betti numbers and torsion coefficients of the complement Sn − A. We use this
theory to compute Betti numbers in Chapter 4

.

.



vi Introduction

Throughout Chapter 3

.

we study the Hilbert series and the Hilbert polynomial for simplicial com-
plexes. The degree of the Hilbert polynomial is one of the most important invariants in commutative
algebra, because it gives the dimension of a module and the degree of a projective variety. Although
we introduce the Hilbert series and the Hilbert polynomial for any finitely generated module, we focus
only in study the Hilbert series for Stanley-Reisner rings. Our goal is compute its Hilbert series and
its Hilbert polynomial using the f -vector and the h-vector of the correspondent simplicial complex.
Furthermore, we study simplicial complexes from the topological point of view using shelling order
and minimal faces.

In Chapter 4

.

we define the Koszul complex. It was introduced by Jean-Louis Koszul on 1950
[Kos50

.

]. Its homology can be used to characterize when a set of elements of a ring is a regular
sequence. It is used to prove basic facts about the depth of a module. We employ this homology to
study minimal free resolution for the residual field (Proposition 4.4

.

). We also compute Betti numbers
and relate them with the reduced homology of a simplicial complex (Theorem 4.12

.

). These results
are used to prove the dual form of the Hochster’s formula (Theorem 4.16

.

). This formula shows that
the multi-graded Betti numbers of a square-free monomial ideal I are encoded in the homology of
simplicial complexes.

Finally, in Chapter 5

.

, we prove the Terai’s Theorem

.

(Theorem 5.8

.

). This result establishes the
equality between the regularity of the Stanley-Reisner ideal and the projective dimension of its Alexan-
der dual. For that, it is necessary study more extensively the Betti numbers and its relate with local
cohomology. Moreover, in this chapter we use detph, regularity and projective dimension.



Chapter 1

Background

In this chapter we establish basic definitions and results about associated primes ideals, chain complex,
depth, Cohen-Macaulay rings, Betti numbers, projective modules and local cohomology. We also
establish notation that we use throughout the text. The acquainted reader with those topics can skip
this chapter.

Throughout the text K denotes an arbitrary field, S = K[x1, . . . , xn] the polynomial ring in n
indeterminates over K and m = 〈x1, . . . , xn〉 ( S its homogeneous maximal ideal. Some definitions and
theorems are written in general form, in those statements R is an arbitrary commutative Noetherian
ring with unit, and (R,m,K) (or simply (R,m)) is a local Noetherian ring with unit, m its maximal
ideal and K = R/m its residual field. The reason why we use R instead of S is because S has stronger
assumption that R, for example S has no zero-divisors, and it is Cohen-Macaulay. Therefore, some
definitions and results are satisfied by S but no by R.

Definition 1.1. A monomial in S is defined by xa1
1 xa2

2 · · ·xann and is denoted by xa where a =
(a1, a2, . . . , an) ∈ Nn. An ideal in S is called a monomial ideal if it is generated by monomials.
Furthermore, a monomial xa is square-free if a ∈ {0, 1}n. An ideal is square-free if it is generated
by square-free monomials.

Proposition 1.2. A square-free monomial ideal is a radical ideal.

Proof. Let I be a square-free monomial ideal such that I = 〈m1, . . . ,mr〉. Suppose that mi =
xj(i)1

· · ·xj(i)l(i) , for all i ∈ [r]. Then,

I =
⋂l(1)
k1=1〈xj(1)k1

,m2, . . . ,mr〉

=
⋂l(1)
k1=1

⋂l(2)
k2=1〈xj(1)k1

, xj(2)k2
, . . . ,mr〉

...

=
⋂l(1)
k1=1

⋂l(2)
k2=1 · · ·

⋂l(r)
kr=1〈xj(1)k1

, xj(2)k2
, . . . , xj(r)kr

〉.

Therefore, I is a finite intersection of prime ideals of type

Pk = 〈xk1
, . . . , xkt〉.

We write I = P1 ∩ · · · ∩ PN for some prime ideals Pi. Therefore,

rad(I) = rad(P1 ∩ · · · ∩ PN ) = rad(P1) ∩ · · · ∩ rad(PN ) = P1 ∩ · · · ∩ PN = I.



2 1. Background

Definition 1.3. Let M be an S-module. A prime ideal P of S is associated to M if P is the
annihilator of an element of M . The set of all associated primes of M is written AssS(M) or simply
Ass(M) when there is no confusion.

Let I ⊆ S be an ideal. If P ∈ Ass(I) and there is no Q ∈ Ass(I) such that I ⊆ Q ( P , then P is a
minimal prime of I. We write Min(I) for the set of all minimal primes of I.

Theorem 1.4. Let I be a radical ideal. Then Ass(I) = Min(I).

Since, we focus in study square-free monomial ideals, from Theorem 1.4

.

and Proposition 1.2

.

we
have the following properties for their associated prime ideals.

Theorem 1.5. Let I be a square-free monomial ideal. For a monomial prime ideal P the following
are equivalent:

(a) P is a minimal prime of I;

(b) I has a primary descomposition,
⋂n
i=1Qi, and P = rad(Qi) for some i;

(c) There is a monomial m /∈ I such that mx ∈ I if and only if x ∈ P , for some x ∈ S.

1.1 Chain Complex

Now, we study free resolutions and TorRi modules. The goal of this section is give us the tools to study
the Koszul complex and the Betti numbers in Chapter 4

.

.

Definition 1.6. A complex (or chain complex) is a sequence of modules and maps

· · · // Ci+1

di+1 // Ci
di // Ci−1

// · · · ,

such that di ◦ di+1 = 0 for all i ∈ Z. We denote the whole complex as C• or (C•, d•). The i-th
homology module of C• is

Hi(C•) = ker di/ im di+1

Definition 1.7. If (C•, d•) and (C ′•, d
′
•) are complexes, a chain map f : (C•, d•) −→ (C ′•, d

′
•) is a

sequence of maps fi : Ci −→ C ′i for all i ∈ Z, such that the following diagram commutes

· · · // Ci+1

di+1 //

fi+1

��

Ci
di //

fi

��

Ci−1
//

fi−1

��

· · ·

· · · // C ′i+1
d′i+1

// C ′i
d′i

// C ′i−1
// · · ·

Furthermore, we define Hi(f) : Hi(C•) −→ Hi(C
′
•) by Hi(f)([x]) = [fi(x)], which it is called the

map induced by f , and it is usually denoted by f∗.

Theorem 1.8. Let 0 //C ′•
f //C•

g //C ′′• //0 be a short exact sequence of complexes. For

each i, there is a homomorphism ∂i : Hi(C
′′
• ) −→ Hi−1(C ′•) defined by ∂i([x]) = [f−1

i−1 ◦ di ◦ g
−1
i (x)],

which is called connecting homomorphism.

From Theorem 1.8

.

, we have the next result for study homology modules through exact sequence.
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Theorem 1.9. Let 0 //C ′•
f //C•

g //C ′′• //0 be a short exact sequence of complexes. Then
we have a long exact sequence on homology:

· · · // Hi+1(C ′′• )
∂ // Hi(C

′
•)

f∗ // Hi(C•)
g∗ // Hi(C

′′
• )

∂ // Hi−1(C ′•)
f∗ // Hi−1(C•) // · · ·

Definition 1.10. Let M be an R-module. A free resolution of M is a complex

· · · // Fi+1

di+1 // Fi
di // Fi−1

// · · · // F1
d1 // F0

// 0,

where each Fi is a free module over R, and (F•, d•) is exact, i.e., im di+1 = ker di for all i. We say that
F• is minimal if each of the modules Fi has minimum possible rank.

Suppose that M is a graded S-module. Then F• is a graded free resolution of M if each Fi is
a twisted free graded module and each di is a graded homomorphism of degree zero. A graded free
resolution of a graded finitely generated S-module F• is minimal if di(Fi) ⊆ mFi−1 for all i.

Theorem 1.11. Every finitely generated S-module has a finite free resolution of lenght at most n.

Proposition 1.12. Let M be a finitely generated graded S-module. Then, any two minimal free
resolutions of M are isomorphic.

Definition 1.13. Let M,N be R-modules, and let F• be a free resolution of M . We define

TorRi (M,N) := Hi(F• ⊗R N).

Theorem 1.14. Let R be a commutative ring and let M and N be R-modules. Then for all i ∈ Z,
TorRi (M,N) ∼= TorRi (N,M).

1.2 Betti numbers

The minimal free resolutions are characterized by having the ranks of their free modules all simulta-
neously minimized, those ranks are called the Betti numbers of M .

Definition 1.15. Given a minimal free resolution of a graded module M as

0 // Fl
dl // · · · // F1

d1 // F0
d0 // M // 0, (1.15.1)

We write,

Fi =
⊕
a∈Nn

S(−a)βi,a and Fi =
⊕
j∈N

S(−j)βi,j

in the Nn-graded case and in the N-graded case, respectively.
The i-th Betti number of M in degree a and in degree j are the numbers βi,a(M) = βi,a and

βi,j(M) = βi,j , respectively. For j ∈ N we observe that

βi,j(M) =
∑
|a|=j

βi,a(M),

where |a| = a1 + a2 + · · ·+ an. In particular, we have βi,a(M) = 0 for all i > n. The i-th total Betti
number of M , denoted by βi(M), is simply the rank of Fi, in other words

βi(M) =
∑
j∈N

βi,j(M).
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Definition 1.16. The Castelnuovo-Mumford regularity of M is defined by

reg(M) = max{j − i : βi,j(M) 6= 0}.

The initial degree of M is defined by

indeg(M) = min{j : β0,j(M) 6= 0}.

We now characterize the Betti numbers in terms of TorRi modules.

Proposition 1.17. Let M be a Nn-graded finitely generated S-module and a ∈ Nn. Then we have
βi,a(M) = dimK TorSi (M,K)a.

Proof. Let (F•, d•) be a minimal free resolution of M and let K = S/m. Since F• is minimal, we have
that the induced maps in the complex F• ⊗K are identically 0, i.e., we have the following complex

· · · //
(⊕

a∈Nn S(−a)βi+1,a
)
⊗K 0 //

(⊕
a∈Nn S(−a)βi,a

)
⊗K 0 //

(⊕
a∈Nn S(−a)βi−1,a

)
⊗K // · · · ,

and since
(⊕

a∈Nn S(−a)βi,a
)
⊗K ∼=

⊕
a∈Nn K(−a)βi,a , we have that

TorSi (M,K)a = Hi(F• ⊗K)a ∼= K(−a)βi,a .

Therefore, βi,a(M) = dimK TorSi (M,K)a.

Let I = 〈m1, . . . ,mr〉 be a monomial ideal. A way to compute a free resolution of I is using the Taylor
resolution. The Taylor resolution of I is constructed as follows.

For any subset σ of {1, . . . , r}, set mσ = lcm{mi : i ∈ σ}. For each such σ, define a basis vector eσ
in Nn-graded degree deg(mσ). For each i, set Ti equal to the free S-module with basis {eσ : |σ| = i}.
Note that T0 = S[∅] is a free module of rank one.

Define φ−1 : T0 −→ S/I by φ−1(f [∅]) = f ; otherwise, we construct φi : Ti+1 −→ Ti as follows.
Given σ with |σ| = i+ 1 and written in increasing order, take

φσ =
∑
i∈σ

sign(i, σ)
mσ

mσ−{i}
eσ−{i},

where sign(i, σ) = (−1)j−1 if i is the j-th element of σ. Define φi : Ti+1 −→ Ti by extending the
various φσ. The Taylor resolution of I is the complex

TI : 0 // Tr
φr−1 // Tr−1

// · · · // T1
φ0 // T0

φ−1 // S/I // 0.

Theorem 1.18. The Taylor resolution of I is a resolution of I.

Theorem 1.19. The Taylor resolution is minimal if and only if for all σ ⊆ {1, . . . , r} and all indices
i ∈ σ, the monomials mσ and mσ−{i} are different.

For the reader who is interested on the Taylor resolution, we recommend the classic readings on
this subjects: [Pee11

.

], [MS05

.

], and [Mer12

.

].

Remark 1.20. Let I = 〈m1, . . . ,mr〉 be a square-free monomial ideal. Using the notation from the
Taylor resolution of I we have that deg(mσ) ≤ n for all σ ⊆ {1, . . . , r}. Thus, all the entries of the
associated matrix to each φi are square-free monomials. This implies that βi,j(I) = 0 for all j > n.
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1.3 Depth

In this section we introduce the depth, which it is a tool to explore some basic facts about Cohen-
Macaulay rings in the next section. But first, we give the definition of regular sequence.

Definition 1.21. Let R be a ring and let M be an R-module. A sequence of elements f1, . . . , fl ∈ R
is called a regular sequence in M (or an M -sequence) if

(a) (f1, . . . , fl)M 6= M , and

(b) fi is a non-zero divisor on M/(f1, . . . , fi−1)M for all i ∈ [l].

By definition, we have the following two observations

(a) l ≤ dim(M), and

(b) x is an M -sequence if and only if M
x //M is an exact sequence.

Proposition 1.22. Let (R,m,K) be a local ring and let f1, . . . , fl ∈ m be an M -sequence. Then,
fσ(1), . . . , fσ(l) is an M -sequence, for every permutation σ on [l].

Corollary 1.23. Let (R,m) be a local ring. If f1, . . . , fl ∈ m is an M -sequence, then fα1
1 , . . . , fαl

l ∈ m
is an M -sequence for all αi ≥ 1.

Definition 1.24. Let I ⊆ R be an ideal and let M be a finitely generated R-module. The I-depth
of M , denoted by depthI(M), is defined as follows

(a) If IM 6= M , then depthI(M) = sup{l ∈ N : exists f1, . . . , fl ∈ I such that is an M -sequence},

(b) if IM = M we set depthI(M) =∞.

If (R,m) is a local ring we call depthm(M) simply the depth of M and write depth(M).

Lemma 1.25. Let (R,m,K) be a Noetherian local ring. Let M be a non-zero finitely generated
R-module. Then, depth(M) ≤ dim(Supp(M)).

Lemma 1.26. Let R be a Noetherian ring, I ⊆ R an ideal, and M a finitely generated R-module
such that IM 6= M . Then, depthI(M) <∞.

1.4 Cohen-Macaulay rings

The Cohen-Macaulay rings are one of the central definitions in commutative algebra. In this section,
we only give the definition and some important facts. For details, we refer the interested reader to the
book by Bruns and Herzog [BH93

.

].

Theorem 1.27. Let R be a ring such that depth(P ) = ht(P ) for every maximal ideal P ( R. If
I ( R is a proper ideal, then depth(I) = ht(I).

Definition 1.28. Let (R,m,K) be a local ring. R is called a Cohen-Macaulay ring if depth(R) =
dim(R).

Let I ⊆ (R,m) be an ideal, then

depthI(R) ≤ ht(I) ≤ ht(m) = dim(R).
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Definition 1.29. Let R be a Noetherian ring. R is called a Cohen-Macaulay ring if RQ is Cohen-
Macaulay for every prime ideal Q ⊆ R.

Theorem 1.30. Let R be a Noetherian ring. Then, R is Cohen-Macaulay if and only if depthI(R) =
ht(I) for every ideal I ⊆ R.

Proposition 1.31. Let R be a Noetherian ring. R is Cohen-Macaulay if and only if the polynomial
ring R[x] is Cohen-Macaulay.

1.5 Projective dimension

Definition 1.32. A module W is projective if for every epimorphism of modules f : M −→ N and
every map g : W −→ N , there exists a map h : W −→M such that g = f ◦ h.

Free modules are projective because if W is free on a set of generators pi, then we choose elements
qi of M that map to the elements g(pi) ∈ N , and take h to be the map sending pi to qi.

The definition of projectivity has several useful reformulations.

Proposition 1.33. Let W be an R-module. The following are equivalent:

(a) W is projective;

(b) For every epimorphism of modules f : M −→ N , the induce map Hom(W,M) −→ Hom(W,N)
is an epimorphism;

(c) For some epimorphism F −→W , where F is free, the induced map Hom(W,F ) −→ Hom(W,W )
is an epimorphism;

(d) P is a direct summand of a free module;

(e) Every epimorphism f : M −→ W splits: That is, there is a map g : W −→ M such that
f ◦ g = 1W .

Lemma 1.34. Let 0 //C ′• //C• //C ′′• //0 be a short exact sequence of complexes. If all
modules in C ′• and C ′′• are projective, so are all the modules in C•.

Definition 1.35. An R-module W is finitely presented if it is finitely generated and there exists a
surjection of some finitely generated free module onto W .

Proposition 1.36. Let W be a finitely presented R-mdoule. Then W is projective if and only if WQ

is projective for every prime ideal Q ⊆ R, and this holds if and only if Wm is projective for every
maximal ideal m ⊆ R.

Definition 1.37. Let M be an R-module. A projective resolution of M is a complex

· · · // Wi+1

di+1 // Wi
di // Wi−1

// · · · // W1
d1 // W0

// 0,

where each Wi is a projective module over R, and (W•, d•) is exact, i.e., im di+1 = ker di for all i.
We say that M has finite projective dimension if there exists a projective resolution

0 // Wi
// Wi−1

// · · · // W1
// W0

// 0

of M . The minimum such i for a given M is called the projective dimension of M , and is denoted
by pdR(M), or simply by pd(M) if the context is clear.

Theorem 1.38 (Auslander-Buchsbaum Formula). Let R be a local Noetherian ring and M a finitely
generated R-module with pd(M) <∞. Then

pd(M) + depth(M) = depth(R).

Corollary 1.39. If depth(R) = 0 and pd(M) <∞, then pd(M) = 0.



1.6. Local Cohomology 7

1.6 Local Cohomology

In order to prove one of ours main results (Terai’s Theorem

.

) we need to study local cohomology, and
for that its necessary introduce the definition of injective module.

Definition 1.40. Let R be a ring and E be an R-module. We say that E is injective if for every
monomorphism of R-modules α : N −→ M and every homomorphism of R-modules β : N −→ E,
there exists a homomorphism of R-modules γ : M −→ E such that β = γ ◦ α.

Proposition 1.41. Let R be a ring and let E be an R-module. Then the following are equivalent:

(a) E is injective;

(b) (Baer’s Criterion) Let I ⊆ R be an ideal. Every homomorphism from I to E extends to a
homomorphism from R to E;

(c) HomR(−, E) preserves short exact sequences (contravariantly).

Definition 1.42. If N ⊆M are R-modules, then M is said to be essential over N if every non-zero
submodule T of M has a non-zero intersection with N .

Proposition 1.43. Let R be a ring and M ⊆ E be R-modules. The following conditions are equiva-
lent:

(a) E is a maximal essential extension of M , i.e., if E ⊆ F and F is also essential over M , then
E = F ;

(b) E is a minimal injective containing M , i.e., if M ⊆ F ⊆ E and F is injective, then F = E;

(c) E is an injective module and is an essential extension of M .

Definition 1.44. A module E with any of the properties of Proposition 1.43

.

is called an injective
hull of M and is denoted by ER(M).

Definition 1.45. An injective resolution E• of an R-module M is an exact sequence:

0 // M // E0 d0
// E1 d1

// · · · // Ei
di // Ei+1 di+1

// · · · ,

where each Ei is an injective R-module. An injective resolution is called a minimal injective reso-
lution if E0 is an injective hull of M , Ei+1 is an injective hull of ker(di+1) = im(di) for all i ≥ 0.

Definition 1.46. Let I ⊆ R be an ideal and let M be an R-module. Set ΓI(M) = {x ∈ M :
xIn = 0 for some n ∈ N}. For a homomorphism f : M −→ N of R-modules, there is a mapping
ΓI(f) : ΓI(M) −→ ΓI(N) which agrees with f on each element of ΓI(M). We call ΓI the I-torsion
functor.

By definition, we have the following result.

Lemma 1.47. Let I, J be ideals of R and M be an R-module. Then,

(a) ΓI(ΓJ(M)) = ΓI+J(M);

(b) ΓI(M) = ΓJ(M) if and only if rad(I) = rad(J);

(c) The I-torsion functor ΓI is left exact.
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We now come to the basic definition of this section. We use it and its properties on the proof of
one of the most important result of the thesis: Theorem 5.7

.

, which implies Terai’s Theorem

.

.

Definition 1.48. For i ∈ N, the i-th right derivated functor of ΓI is denoted by Hi
I and it is referred

to as the i-th local cohomology functor with respect to I.
For an R-module M , we refer to Hi

I(M), as the i-th local cohomology module of M with
respect to I, and to ΓI(M) as the I-torsion submodule of M . We say that M is I-torsion-free
precisely when ΓI(M) = 0, and that M is I-torsion when ΓI(M) = M .

To compute Hi
I(M), one proceeds as follows. Take an injective resolution

E• : 0 // E0 d0
// E1 d1

// · · · // Ei
di // Ei+1 di+1

// · · ·

of M , so that there is an R-homomorphism α : M −→ E0 such that the sequence

0 // M
α // E0 d0

// E1 d1
// · · · // Ei

di // Ei+1 di+1
// · · · ,

is exact. Apply the functor ΓI to the complex E• to obtain

0 // ΓI(E0)
ΓI(d0) // ΓI(E1)

ΓI(d1) // · · · // ΓI(Ei)
ΓI(di) // ΓI(Ei+1)

ΓI(di+1) // · · ·

and take the i-th cohomology module of this complex,

Hi
I(M) = ker(ΓI(d

i))/ im(ΓI(d
i−1)).

Since ΓI is left exact, we have that H0
I (M) = ΓI(M).

Lemma 1.49. Let M be an R-module and I, J be ideals of R such that rad(I) = rad(J). Then
Hi
I(M) = Hi

J(M) for all i ∈ N.

Theorem 1.50. Let (R,m) be a local ring, and let M be a finitely generated R-module. Let d =
dim(M), and let δ = depth(M). We have:

(a) Hi
m(M) = 0 for i < δ and for i > d;

(b) Hi
m(M) 6= 0 for i = δ and for i = d.

Of course it follows that δ ≤ d.

Definition 1.51. Let x = x1, . . . , xl ∈ R. Define the Čech complex on R with respect to x1, . . . , xl
by

C•(x1;R) : 0 // R // Rx1
// 0,

where r 7→ r
1 , and

C•(x1, . . . , xl;R) := C•(x1, . . . , xl−1;R)⊗R C•(xl;R)

= ⊕li=1C
•(xi;R)

Example 1.52. Lets compute C•(x, y;R). We get the sequence

0 // R⊗R
f // Rx ⊗R⊕R⊗Ry

g // Rx ⊗Ry // 0,

where f(1 ⊗ 1) = 1
1 ⊗ 1 ⊕ 1 ⊗ 1

1 , g( 1
1 ⊗ 1, 0) = (−1) 1

1 ⊗
1
1 , and g(0, 1 ⊗ 1

1 ) = 1
1 ⊗

1
1 . Simplifying this,

we get

0 // R // ⊕li=1Rxi
// ⊕i<jRxixj

// · · · // Rx1···xl
// 0,

where the differentials are the same as the maps in the Koszul co-complex with 1’s in the place of the
xi’s. ♦
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Definition 1.53. If M is an R-module, we define C•(x;M) := C•(x;R) ⊗R M . The i-th Čech
cohomology of M is Hi(C•(x;M)).

Remark 1.54. Let M be an R-module, x = x1, . . . , xl ∈ R and I = 〈x〉. From the above, C•(x;M)

starts out as 0 //M
∂0 //⊕li=1Mxi

. Now

m ∈ H0
x(M)⇐⇒ m ∈ ker ∂0

⇐⇒ m

1
= 0 in M for all i

⇐⇒ there exists t ≥ 0 such that xtim for all i

⇐⇒ there exists t ≥ 0 such that Itm = 0

⇐⇒ m ∈ H0
I (M).

Then, H0
x(M) ∼= H0

I (M).

Theorem 1.55. Let M be an R-module and x = x1, . . . , xl ∈ R. Then, Hi
〈x〉(M) = Hi(C•(x;M)).





Chapter 2

Simplicial Complexes

In this chapter we introduce the concept of simplicial complex which is a tool in algebra, topology and
combinatorics. The information carried by square-free monomial ideals can be characterized in many
ways, for example, using simplicial complexes. The main results of this chapter are Theorem 2.10

.

and
Proposition 2.20

.

.

Definition 2.1. A simplicial complex ∆ on a vertex set X = {x1, x2, . . . , xn} is a collection of
subsets of X, called faces or simplices, satisfaying that {xi} ∈ ∆ for every i ∈ [n] and, if F ∈ ∆ and
G ⊆ F then G ∈ ∆. A face of ∆ not properly contained in another face of ∆ is called a facet.

A face F ∈ ∆ of cardinality |F | = i+ 1 has dimension i and is called an i-face of ∆. We denote
fi as the number of i-faces of ∆. The dimension of ∆ is dim ∆ = max{dimF : F ∈ ∆}, or −∞ if
∆ = {} is the void complex, which has no faces. We say that ∆ is pure if all its facets have the
same dimension. The boundary of a simplex F is the union of its faces with dimension |F | − 1 and
it is denoted by ∂F .

Definition 2.2. For a simplicial complex ∆, its f -vector is f(∆) := (f−1, f0, f1, . . . , fd−1), where
dim ∆ = d − 1 and f−1 := 1 correspond to the empty face, whenever ∆ 6= {}. The f -polynomial is
the generating function of the f -vector,

f∆(t) = f−1t
d + f0t

d−1 + · · ·+ fd−2t+ fd−1.

The h-polynomial of ∆ is the polynomial

h∆(t) = f∆(t− 1) = h0t
d + h1t

d−1 + · · ·+ hd−1t+ hd,

the h-vector of ∆ is the sequence h(∆) = (h0, h1, . . . , hd).

Example 2.3. Consider the following simplicial complex on the vertex set X = {xi : 1 ≤ i ≤ 5}

∆ = {{x1, x2, x3}, {x1, x3, x4}, {x1, x2, x4}, {x2, x3, x4}, {x2, x3, x5}, {x1, x5}},

then dim ∆ = 2, f(∆) = (1, 5, 9, 5) and h(∆) = (1, 2, 2). We represent ∆ visually as show the following
figure

x1

x2

x3

x4

x5

♦
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Definition 2.4. Let ∆ be a simplicial complex and let Y ⊆ X. The induced subcomplex of ∆
with vertex set on Y is defined by

∆[Y ] := {F ∈ ∆ : F ⊆ Y }.

Example 2.5. Let ∆ be the simplicial complex from Example 2.3

.

and Y = {x1, x2, x3, x4}. Then,

∆[Y ] = {{x1, x2, x3}, {x1, x3, x4}, {x1, x2, x4}, {x2, x3, x4}}. ♦

2.1 Stanley-Reisner theory

The Stanley-Reisner correspondence arises from observations connecting the information in simplices
to that in square-free monomials. One observation is that these are in natural bijection.

Definition 2.6. Let A ⊆ X be a subset. Then the monomial supported on A is the square-
free monomial xA =

∏
xi∈A xi. Conversaly, if m is a square-free monomial, then its support is

suppm := {xi : xi | m}.

Definition 2.7. Let I be a square-free monomial ideal, then the Stanley-Reisner complex of I is
the simplicial complex consisting of the monomials not in I,

∆I := {F ⊆ X : xF /∈ I}.

Similarly, for a simplicial complex ∆ the Stanley-Reisner ideal of ∆ is the square-free monomial
ideal generated by monomials corresponding to non-faces of ∆

I∆ := 〈xF : F /∈ ∆〉.

The Stanley-Reisner ring is the quotient ring S/I∆.

Proposition 2.8. Let I be a square-free monomial ideal and let ∆ be a simplicial complex. Then,
I∆I

= I and ∆I∆ = ∆.

Proof. Let F ⊆ X such that xF ∈ I∆I
. Observe that

xF ∈ I∆I
⇐⇒ F /∈ ∆I ⇐⇒ xF ∈ I (2.8.1)

hence, I∆I
⊆ I. Now, let m ∈ gens(I) and G ⊆ X such that xG = m. Then by (2.8.1)

.

we have
m ∈ I∆I

, hence I∆I
⊇ I. Therefore, I∆I

= I. Analogously, ∆I∆ = ∆.

Notation 2.9. If A ⊆ X is a non-empty subset, then write PA for the prime ideal generated by the
elements of A, i.e., PA = 〈xi : xi ∈ A〉. If m is a monomial, write Pm for Psuppm.

Now, we establish the following correspondence between simplicial complexes and square-free mono-
mial ideals.

Theorem 2.10. There is a bijection between simplicial complexes on X and square-free monomial
ideals on S. Furthermore,

I∆ =
⋂
F∈∆

PF c .
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Proof. The bijection is the one from Proposition 2.8

.

. For the second claim, we prove the double
containment.

Suppose that
⋂
F∈∆ PF c = 〈m1, . . . ,mk〉 with mi be a square-free monomial for all i ∈ [k]. Fix

i ∈ [k], then F c ∩ (suppmi) 6= ∅ for all F ∈ ∆. Thus, (suppmi) /∈ ∆ and xsuppmi = mi ∈ I∆.
Therefore, I∆ ⊇

⋂
F∈∆ PF c .

Conversely, let xF ∈ I∆ with F /∈ ∆. Then, F ∩Gc 6= ∅ for all G ∈ ∆. This implies that xF ∈ PGc

for all G ∈ ∆. Hence, I∆ ⊆
⋂
F∈∆ PF c .

Example 2.11. Consider the simplicial complex from Example 2.3

.

, then we have

I∆ = 〈x4, x5〉 ∩ 〈x2, x5〉 ∩ 〈x1, x5〉 ∩ 〈x1, x4〉 ∩ 〈x2, x3, x4〉
= 〈x4x5, x1x2x5, x1x3x5, x1x2x3x4〉. ♦

Proposition 2.12. Let I be a square-free monomial ideal and let m be a square-free monomial. Then,

(a) I ⊆ Pm if and only if (suppm)c ∈ ∆I .

(b) Pm ∈ Ass(I) if and only if (suppm)c is a facet of ∆I .

Proof.

(a) Observe that

I ⊆ Pm ⇐⇒ (suppm) ∩ (suppµ) 6= ∅, for every µ ∈ gens(I)

⇐⇒ µ - x(suppm)c , for every µ ∈ gens(I)

⇐⇒ x(suppm)c /∈ I
⇐⇒ (suppm)c ∈ ∆I .

(b) First, suppose that Pm ∈ Ass(I) and let F ∈ ∆I such that (suppm)c ( F . Thus F c ( suppm
and from part (a)

.

, we have I ⊆ PF c ( Pm, which is a contradiction. Therefore, (suppm)c is a
facet.

Conversely, suppose that (suppm)c is a facet and suppose there exits a prime ideal P such that
I ⊆ P ( Pm. Since I and Pm are square-free monomial ideals, then P = PF for some F ⊆ X.
By part (a)

.

, F c ∈ ∆I . Furthermore, (suppm)c ( F c, which is a contradiction. Therefore,
Pm ∈ Ass(I).

2.2 Alexander Dual theory

The notion of Alexaner duality comes from algebraic topology (cf. Munkres, [Mun84

.

]). The combina-
torial way of Alexander duality, which we discuss here, produces a dual complex ∆∨ from a simplicial
complex ∆, and relates this complex with the associated prime ideals of I∆ (Proposition 2.20

.

).

Definition 2.13. For a square-free monomial ideal I, the Alexander dual of I is

I∨ :=
⋂

m∈gens(I)

Pm.

If ∆ is a simplicial complex, then its Alexander dual is defined by

∆∨ := {F c : F /∈ ∆}.
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Example 2.14. Let ∆ be the simplicial complex from Example 2.3

.

, its Alexander dual is ∆∨ =
{{x1, x2, x3}, {x2, x4}, {x3, x4}, {x5}}, that has the following geometric realization

x1 x2

x3 x4

x5

♦

Lemma 2.15. Let ∆ be a simplicial complex on the vertex set X. If dim ∆ ≤ n− 3, then ∆∨ is also
a simplicial complex on the vertex set X.

Proof. By definition, ∆∨ is a simplicial complex. We need to prove that {y} ∈ ∆∨ for all y ∈ X. Fix
y ∈ X and set G = X − {y}. Hence |G| = n − 1. Then G /∈ ∆, because dim ∆ ≤ n − 3 implies that
|F | ≤ n − 2 for all F ∈ ∆. Thus, Gc ∈ ∆∨. Since {y} = Gc we conclude that {y} ∈ ∆∨. Therefore,
∆∨ is a simplicial complex on the vertex set X.

Example 2.16. Let Γ = {{x1, x2, x5}, {x3, x4, x5}} be a simplical complex on the vertex set X =
{xi : 1 ≤ i ≤ 5} such that dim Γ = 2. Then, Γ∨ = {{x2, x3, x5}, {x1, x4, x5}, {x2, x5, x4}, {x1, x3, x5}}
is a simplicial complex on the vertex set X. Their have the following geometric realization

x1

x2

x5

x4

x3

Figure 2.1: Simplicial complex Γ

x3

x1

x5

x2

x4

Figure 2.2: Simplicial complex Γ∨ ♦

Proposition 2.17. Let ∆ be a simplicial complex and I be a square-free monomial ideal. Then,

(a) (∆∨)∨ = ∆;

(b) (I∆)∨ = I∆∨ ;

(c) (I∨)∨ = I.

Proof.

(a) By definition,

F ∈ (∆∨)∨ ⇐⇒ F c /∈ ∆∨

⇐⇒ F c 6= Gc for all G /∈ ∆

⇐⇒ F 6= G for all G /∈ ∆

⇐⇒ F ∈ ∆.
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(b) By Theorem 2.10

.

, we have

(I∆)∨ =
⋂
F /∈∆

PF =
⋂

F∈∆∨

PF c = I∆∨ .

(c) By Theorem 2.10

.

, there exists a simplicial complex ∆ ⊆ X such that I = I∆. By part (a)

.

and
part (b)

.

we have
(I∨)∨ = ((I∆)∨)∨ = (I∆∨)∨ = I(∆∨)∨ = I∆ = I.

Example 2.18. Let ∆ be the simplicial complex from Example 2.3

.

. The Alexander dual of its Stanley-
Reisner ideal is give by

(I∆)∨ = I∆∨ = 〈x1x4, x2x3x4, x1x5, x2x5, x3x5, x4x5〉. ♦

Furthermore, we have the following properties relates to Alexander duality.

Proposition 2.19. Let ∆1,∆2 be simplicial complexes and I, J be square-free monomial ideals. Then,

(a) (∆1 ∩∆2)∨ = ∆∨1 ∪∆∨2 ;

(b) (∆1 ∪∆2)∨ = ∆∨1 ∩∆∨2 ;

(c) I∆1∪∆2
= I∆1

∩ I∆2
;

(d) I∆1∩∆2
= I∆1

+ I∆2
;

(e) (I + J)∨ = I∨ ∩ J∨;

(f) (I ∩ J)∨ = I∨ + J∨;

(g) If ∆1 ⊆ ∆2, then ∆∨2 ⊆ ∆∨1 .

Proof.

(a) By definition,

F ∈ (∆1 ∩∆2)∨ ⇐⇒ F c /∈ ∆1 ∩∆2

⇐⇒ F c /∈ ∆1 or F c /∈ ∆2

⇐⇒ F ∈ ∆∨1 or F ∈ ∆∨2

⇐⇒ F ∈ ∆∨1 ∪∆∨2

(b) Observe that,

F ∈ ∆∨1 ∩∆∨2 ⇐⇒ F ∈ ∆∨1 and F ∈ ∆∨2

⇐⇒ F c /∈ ∆1 and F c /∈ ∆2

⇐⇒ F c /∈ ∆1 ∪∆2

⇐⇒ F ∈ (∆1 ∪∆2)∨.

(c) By definition,

xF ∈ I∆1∪∆2
⇐⇒ F /∈ ∆1 ∪∆2

⇐⇒ F /∈ ∆1 and F /∈ ∆2

⇐⇒ xF ∈ I∆1 and xF ∈ I∆2

⇐⇒ xF ∈ I∆1
∩ I∆2

.
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(d) We prove the double containment.

Let xF ∈ I∆1∩∆2 with F /∈ ∆1 ∩ ∆2. Then F /∈ ∆1 or F /∈ ∆2. Without loss of generality,
suppose F /∈ ∆1. Then xF ∈ I∆1 , which implies xF ∈ I∆1 +I∆2 . Therefore, I∆1∩∆2 ⊆ I∆1 +I∆2 .

Conversely, without loss of generality, let xF ∈ I∆1
with F /∈ ∆1. Then, F /∈ ∆1 ∩ ∆2 which

implies that xF ∈ I∆1∩∆2 and I∆1 ⊆ I∆1∩∆2 . Analogously, I∆2 ⊆ I∆1∩∆2 . Therefore I∆1 +I∆1 ⊆
I∆1∩∆2 .

(e) Let Γ1,Γ2 ⊆ X be simplicial complexes such that I = IΓ1 and J = IΓ2 . Then,

I∨ ∩ J∨ = IΓ∨1 ∩ IΓ∨2 = IΓ∨1 ∪Γ∨2
= I(Γ1∩Γ2)∨ = (IΓ1

+ IΓ2
)∨ = (I + J)∨.

(f) Let Γ1,Γ2 ⊆ X be simplicial complexes such that I = IΓ1 and J = IΓ2 . Then,

(I ∩ J)∨ = (IΓ1 ∩ IΓ2)∨ = I∨Γ1∪Γ2
= I(Γ1∪Γ2)∨ = IΓ∨1 ∩Γ∨2

= IΓ∨1 + IΓ∨2 = I∨ + J∨.

(g) Observe that F ∈ ∆∨2 if and only if F c /∈ ∆2. Hence, F c /∈ ∆1. This implies that F ∈ ∆∨1 .
Therefore, ∆∨2 ⊆ ∆∨1 .

Now, we have enough tools to prove the following theorem. With it, we compute the Alexander
dual of an ideal using its associted prime ideals, and vice-versa.

Proposition 2.20. Let I be a square-free monomial ideal. Then I∨ = 〈m : Pm ∈ Ass(I)〉. Further-
more, Ass(I) = {Pµ : µ ∈ gens(I∨)}.

Proof. First, suppose that I = 〈m1, . . . ,mk〉. Then,

I∨ = ∩m∈gens(I)Pm = ∩m∈gens(I)〈xi : xi | m〉 = 〈m : (∀j)(∃xi(j)
∈ suppm)(xi(j)

| mj)〉
= 〈m : Pm ∈ Ass(I)〉.

Therefore, I∨ = 〈m : Pm ∈ Ass(I)〉.
Now, we prove the second claim. Let µ ∈ gens(I∨). By the first claim, we have that Pµ ∈ Ass(I).

Therefore, Ass(I) ⊇ {Pµ : µ ∈ gens(I∨)}.

Conversely, let P ∈ Ass(I). Since P is a monomial prime ideal, there exists a square-free monomial
m such that P = Pm. By the first claim m ∈ gens(I∨). Therefore, Ass(I) ⊆ {Pµ : µ ∈ gens(I∨)}.

Corollary 2.21. If I is a square-free monomial ideal, then ∆I∨ = (∆I)
∨.

Proof. By definition,

F ∈ ∆I∨ ⇐⇒ xF /∈ I∨ ⇐⇒ PF /∈ Ass(I)⇐⇒ xF
c

∈ I ⇐⇒ F c /∈ ∆I ⇐⇒ F ∈ (∆I)
∨.

Corollary 2.22. Let ∆ be a simplicial complex and let I be a square-free monomial ideal. Then,

(a) The facets of ∆∨ are (suppm)c, where m ranges over the generators of I∆.

(b) The generators of I∨ are the monomials x(suppm)c , where m rages over the facets of ∆I .
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Proof. By Proposition 2.12

.

part (b)

.

and Proposition 2.20

.

we have that

(a) Observe that m ∈ gens(I) if and only if Pm ∈ Ass(I∨) if and only if (suppm)c ∈ ∆I∨∆
= ∆∨ is a

facet.

(b) Observe that m ∈ gens(I∨) if and only if Pm ∈ Ass(I) if and only if (suppm)c ∈ ∆I is a facet.

Definition 2.23. A square-free monomial ideal is equidimensional if all its associated primes have
the same height.

Corollary 2.24. A square-free monomial ideal I is equidimensional if and only if ∆I is pure.

Proof. We know that

F ∈ ∆I is a facet ⇐⇒ xF
c

∈ gens(I∨)⇐⇒ PF c ∈ Ass(I).

Suppose that I is equidimensional. Let F1, F2 ∈ ∆I be facets, then PF1
c , PF2

c ∈ Ass(I). Since

n = dim(S) = ht(PF1
c) + |F1| = ht(PF2

c) + |F2| (2.24.1)

and ht(PF1
c) = ht(PF2

c), then dim(F1) = dim(F2).

Conversely, suppose that ∆I is pure. Let P,Q ∈ Ass(I), then P = PF1
c , Q = PF2

c for some facets
F1, F2 ∈ ∆I . Since dim(F1) = dim(F2), then by (2.24.1)

.

we have ht(PF1
c) = ht(PF2

c).

Corollary 2.25. Let I be a square-free monomial ideal. Then, the generators of I have the same
degree if and only if I∨ is equidimensional.

Proof. First, suppose that the generators of I have the same degree. Let P,Q ∈ Ass(I∨). By
Proposition 2.20

.

there exists m1,m2 ∈ gens(I) such that P = Pm1 and Q = Pm2 . By hypothesis,
| suppm1| = | suppm2|. Therefore, ht(Pm1) = ht(Pm2).

Conversely, assume that I∨ is equidimensional. Let m1,m2 ∈ gens(I). By hypothesis, ht(Pm1) =
ht(Pm2), which implies that | suppm1| = | suppm2|. Therefore, degm1 = degm2.





Chapter 3

Hilbert Series and h-vectors

In this chapter we study the Hilbert series for Nn-graded modules, and replacing indeterminates, the
Hilbert series in several variables becomes into the series only in one variable. The latter is the most
common way to study the Hilbert series. Afterwards, we relate the degree of the Hilbert polynomial
with the Krull dimension (Proposition 3.9

.

). Finally, we focus on compute the Hilbert series of the
Stanley-Reisner ring (Theorem 3.18

.

), and we compute the h-vector of some simplicial complexes using
shelling order (Theorem 3.23

.

).

3.1 Hilbert Series

Definition 3.1. An S-module M is Nn-graded if M =
⊕

b∈Nn Mb and xaMb ⊆ Ma+b, where
Mb ⊆M is a K-vector spaces, for all b ∈ Nn. If the dimension dimK(Ma) is finite for all a ∈ Nn, then
the Hilbert series of M is

HS(M ; y) :=
∑
a∈Nn

dimK(Ma)ya.

Example 3.2. The Hilbert series of S is HS(S,y) =
∏n
i=1

1
(1−yi) . To show this, we proceed by

induction on n. For n = 1, then S = K[x1] has the basis {1, x1, x1
2, . . .} and its Hilbert series is

HS(S,y) = 1 + y1 + y1
2 + · · · = 1

1− y1
.

Suppose n > 1. Consider the following exact sequence

0 // Sxn // S // S/(Sxn) // 0,

since dimK is an additive function we have that

HS(S,y)−HS(Sxn,y) = HS(K[x1, . . . , xn−1],y).

By induction hypothesis

(1− yn) HS(S,y) =
1

(1− y1) · · · (1− yn−1)
=⇒ HS(S,y) =

n∏
i=1

1

(1− yi)
.

♦
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If M is a finitely generated Nn-graded S-module, then M has an N-grading as S-module and we
choose yi = t for each i ∈ [n]. In this case, the Hilbert series is

HS(M, t) := HS(M, t, . . . , t) =
∑
a∈Nn

dimK(Ma)ta1+···+an

=

∞∑
l=0

 ∑
a∈Nn, |a|=l

dimK(Ma)

 tl

=

∞∑
l=0

dimK(Ml)t
l.

Corollary 3.3. The Hilbert series of S on t is 1/(1− t)n.

Proof. Substituting yi by t in Example 3.2

.

, we have

HS(S, t) =

n∏
i=1

1

(1− t)
=

1

(1− t)n
.

The next statement, is one of the most common and basic results related to the Hilbert series.

Theorem 3.4 (Hilbert-Serre’s Theorem). Let M be a finitely generated N-graded S-module. Then,

HS(M, t) =
p(t)

(1− t)n
,

for some polynomial p(t) ∈ Z[t].

Corollary 3.5. Let M be a finitely generated N-graded S-module. Suppose that,

HS(M, t) =
h(t)

(1− t)d
,

where h(1) 6= 0. Then, there exists a polynomial HM (t) ∈ Q[t] of degree d − 1 such that HM (n) =
dimK(Mn) for all sufficiently large n.

Definition 3.6. With the notation of Corollary 3.5

.

, HM (n) is called the Hilbert polynomial of M ,
and h(t) is called the h-polynomial of M .

Theorem 3.7 (Krull’s principal ideal theorem). Let R be a Noetherian ring. If x ∈ R and P is
minimal among primes of R containing x, then dimRP ≤ 1.

Remark 3.8. Let M be a finitely generated S-module. Suppose that u1, . . . , uk generate M . Since
S is Noetherian we can find a finite filtration of M such that every Mi+1/Mi, 0 ≤ i ≤ k is a prime
cyclic module, i.e., has the form S/Pi for some prime ideal Pi of S. One first chooses u1 such that
AnnS(u1) = P1. Let M1 = u1S ⊆ M . Proceeding recursively, suppose that u1, . . . , ui have been
chosen in M such that, Mj = u1S + · · · + ujS for j ∈ [i], we have that Mj/Mj−1

∼= S/Pj with Pj
prime. If Mi = M we are done. If not, we can choose ui+1 ∈M such that the annihilator of its image
in M/Mi is a prime ideal Pi+1 of S. Then Mi+1/Mi

∼= S/Pi+1 and Mi ( Mi+1. The process must
terminate, since M is Noetherian. In others words, eventually we reach Ml such that Ml = M .

Now, we prove a result to relate the degree of the Hilbert polynomial with the Krull dimension, for
that we use a double process of induction.
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Proposition 3.9. Let M be a finitely generated N-graded S-module. Then degHM (t) = d−1, where
d is the Krull dimension of M .

Proof. We proceed by induction on d = dim(M). Observe that d = 0 if and only if M has finite
length, in which case Mn = 0 for all n� 0. Therefore, HM (t) = 0 and its degree is −1.

Suppose d > 0, then by Remark 3.8

.

we may construct a finite filtration of M

0 = M0 (M1 ( · · ·Ml−1 (Ml = M,

such that Mi/Mi−1
∼= S/Pi for all i ∈ [l], where Pi is a prime ideal. Therefore, we have that

dim(M) = max{dim(S/Pi) : 1 ≤ i ≤ l}.

We study the case where M has the form S/P for some prime ideal P . Since d > 0, it follows that
there exists xi such that xi /∈ P . Then we have the following exact sequence of graded modules

0 //M(−1)
xi //M //M/xiM //0,

by the additive of dimK we have that

HM (t)−HM (t− 1) = HM/xiM (t). (3.9.1)

By the Krull’s principal ideal theorem

.

, dim(M/xiM) = d − 1. Then, by induction hypothesis
degHM/xiM (t) = d− 2. Hence, by (3.9.1)

.

deg(HM (t))− 1 = d− 2 =⇒ degHM (t) = d− 1 (3.9.2)

Now, we proceed by induction on l to prove

HM (t) =

l∑
k=1

HS/Pk
(t) (3.9.3)

Suppose that l = 2, then we have the filtration

0 (M1 (M2 = M.

Consider the following exact sequence

0 //M1
//M2

//S/P2
//0,

and, since M1/M0
∼= M1

∼= S/P1 we have

HM2
(t) = HM1

(t) +HS/P2
(t) = HS/P1

(t) +HS/P2
(t).

Suppose that it holds for l > 2. By the following exact sequence and induction hypothesis

0 //Ml−1
//M //S/Pl //0,

we have

HM (t) = HMl−1
(t) +HS/Pl

(t)

=

l−1∑
k=1

HS/Pk
(t) +HS/Pl

(t)

=

l∑
k=1

HS/Pk
(t).

Therefore, it holds (3.9.3)

.

. Let l0 ∈ [l] such that dim(M) = dim(S/Pl0). Then, by (3.9.2)

.

and (3.9.3)

.

degHM (t) = degHS/Pl0
(t) = dim(M)− 1.
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Theorem 3.10. Let M be a finitely generated N-graded S-module. If M is Cohen-Macaulay, then
its h-polynomial has non-negative coefficients.

Proof. We proceed by induction on d = dim(M). When d = 0, by Hilbert-Serre’s Theorem

.

, we have

HS(M, t) =

∞∑
k=0

dimK(Mk)tk = h(t),

then h(t) ≥ 0.
Assume |K| =∞ and let x be a non-zero divisor of degree 1. Consider the following exact sequence

0 // xM // M // M/(xM) // 0,

then

(1− t) HS(M, t) = HS(M/(xM), t) =
h(t)

(1− t)d−1
=⇒ HS(M, t) =

h(t)

(1− t)d
,

and by induction hypothesis, h(t) ≥ 0.

3.2 The square-free Hilbert Series

Our next goal is compute the Hilbert series for the Stanley-Reisner ring. For that, we need to study
more the square-free monomials and the square-free monomial ideals, and related them with the Hilbert
series and the square-free Hilbert series.

Definition 3.11. Let I be a square-free monomial ideal. Then the square-free Hilbert function
of I is the function HFsqfree

I : Z→ Z such that

HFsqfree
I (d) = |{m ∈ I : m is a square-free monomial of degree d}|.

Similarly we define HFsqfree
S/I and the square-free Hilbert series HSsqfree(I, t) and HSsqfree(S/I, t) to

be the generating functions of the corresponding square-free Hilbert functions.

Definition 3.12. The square-free part of a monomial m is the square-free monomial defined by

sqfree(m) :=
∏
xi|m

xi.

Lemma 3.13. Let I be a square-free monomial ideal. A monomial m ∈ I if and only if sqfree(m) ∈ I.

Proof. Suppose that m ∈ I. Let m = x1
α1x2

α2 · · ·xnαn ∈ I and I = 〈m1, . . . ,mk〉. Since m is a
mononimial, then m = m′ ·mj for some monomial m′ and some j ∈ [k]. Set A = supp(sqfree(m′)) −
suppmj . Therefore, sqfree(m) = xA ·mj ∈ I.

Conversely, suppose that sqfree(m) ∈ I. Since sqfree(m) | m, then m = q · sqfree(m) for some
monomial q. Therefore, m ∈ I.

Notation 3.14. Let A ⊆ X be a non-empty subset and suppose that A = {xi1 , . . . , xik}, then define
the polynomial ring K[A] := K[xi1 , . . . , xik ].

Corollary 3.15. Let I be a square-free monomial ideal. Then, as K-vector spaces, I and S/I decom-
pose over the set of square-free monomials as

I =
⊕
m∈I

m ·K[suppm] and S/I =
⊕
m/∈I

m ·K[suppm].
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Proof. We prove the double containment.

Let m′ ∈ gens(I). Since m′ ∈ m′ · K[suppm′] then m′ ∈
⊕

m∈I m · K[suppm]. This implies,
I ⊆

⊕
m∈I m ·K[suppm].

On the other hand. Since m ∈ I we have that m ·K[suppm] ⊆ I. Let f ∈
⊕

m∈I m ·K[suppm]. We
write f as the finite sum of elements of

⊕
m∈I m ·K[suppm], say g1, . . . , gr where gi ∈ mi ·K[suppmi]

for some square-free monomial mi ∈ I. Hence gi ∈ I, this implies that f ∈ I. Therefore, I ⊇⊕
m∈I m ·K[suppm].

Analogously, since S/I = 〈m : m /∈ I〉 we have that S/I =
⊕

m/∈I m ·K[suppm].

Lemma 3.16. Let m be a square-free monomial. Then, HS(m ·K[suppm], t) =
(

t
1−t

)degm

.

Proof. Since m is a square-free monomial, we have | suppm| = degm. By Corollary 3.3

.

,

HS(K[suppm], t) =
1

(1− t)degm
.

Hence,

HS(m ·K[suppm], t) = tdegm HS(K[suppm], t) =

(
t

1− t

)degm

.

Theorem 3.17. Let I be a square-free monomial ideal. Then, HS(S/I, t) = HSsqfree(S/I, t
1−t ) and

HS(I, t) = HSsqfree(I, t
1−t ).

Proof. By Corollary 3.15

.

and Lemma 3.16

.

, we have

HS(I, t) =
∑
m∈I,

square-free

HS(m ·K[suppm], t) =
∑
m∈I,

square-free

(
t

1− t

)degm

=

n∑
k=1

 ∑
m∈I, degm=k

( t

1− t

)k
=

n∑
k=1

HFsqfree
I (k)

(
t

1− t

)k
= HSsqfree

(
I,

t

1− t

)
.

Similarly, HS(S/I, t) = HSsqfree(S/I, t
1−t ).

Theorem 3.18. Let ∆ be a (d−1)-dimensional simplicial complex and (f−1, f0, . . . , fd−1) its f -vector.
Then,

(a) HSsqfree(S/I∆, t) =
∑d
i=0 fi−1t

i;

(b) HS(S/I∆, t) =
∑d
i=0

fi−1t
i

(1−t)i = 1
(1−t)d

∑d
i=0 hit

i.
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Proof.

(a) Let k ∈ Z. There is a bijection between the square-free monomials of degree k in S/I∆ and the

(k − 1)-dimensional faces of ∆. Therefore, HFsqfree
S/I∆

(k) = fk−1, which implies that

HSsqfree(S/I∆, t) =

d∑
i=0

fi−1t
i.

(b) Observe that
d∑
i=0

hit
d−i =

d∑
i=0

fi−1(t− 1)d−i.

Replacing t by 1/t, we have

d∑
i=0

hi
td−i

=

d∑
i=0

fi−1

(
1− t
t

)d−i
.

Multiplying by td we get
d∑
i=0

hit
i =

d∑
i=0

fi−1t
i(1− t)d−i. (3.18.1)

By Theorem 3.17

.

and part (a)

.

we have that

HS(S/I∆, t) =

d∑
i=0

fi−1t
i

(1− t)i
=

1

(1− t)d
d∑
i=0

fi−1t
i(1− t)d−i (3.18.1)

.

=
1

(1− t)d
d∑
i=0

hit
i.

From Theorem 3.18

.

, knowing f∆(t) is equivalent to knowing h∆(t).

Example 3.19. For the simplicial complex in Example 2.3

.

we have f(∆) = (1, 5, 9, 5) and d = 3.
Then by Theorem 3.18

.

, its Hilbert series is

HS(S/I∆, t) =
2t2 + 2t+ 1

(1− t)3
.

♦

3.3 Shellable complexes

To end this chapter, we introduce the definition of shelling. Shellable complexes occur frequently
throughout combinatorics. We uses the shellability condition to compute the h-vector without having
to know the f -vector.

Definition 3.20. Let ∆ be a simplicial complex and F1, F2, . . . , Ft its facets. For each j ∈ [t], we
say that A ⊆ Fj − (F1 ∪ · · · ∪ Fj−1) is the minimal face associated to Fj if for every face B ⊆
Fj − (F1 ∪ · · · ∪ Fj−1) we have that A is the unique element such that A ⊆ B.

An ordering F1, F2, . . . , Ft of the facets of a simplicial complex ∆ is a shelling if, for each j ∈ [t],
the intersection (

j−1⋃
i=1

Fi

)
∩ Fj ,

is a non-empty union of facets of ∂Fj . If there exists a shelling of ∆ then ∆ is called shellable.
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Example 3.21. Let ∆ be the simplicial complex from Example 2.3

.

, then a shelling for ∆ is {x1, x2, x3},
{x1, x2, x4}, {x1, x3, x4}, {x2, x3, x4}, {x2, x3, x5}, {x1, x5} and the associated minimal faces are, ∅, {x4},
{x3, x4}, {x2, x3, x4}, {x5}, {x1, x5}, respectively. ♦

Proposition 3.22. Let ∆ be a simplicial complex and F1, F2, . . . , Ft its facets. This order is a shelling
of ∆ if and only if for each j ∈ [t], Fj has a minimal face.

Proof. Suppose that F1, F2, . . . , Ft is a shelling. Fix j > 1 and define A = {a ∈ Fj : Fj − {a} ⊆
∪j−1
i=1Fi}. Let B ⊆ Fj be a face. Since Fj ∩ (∪j−1

i=1Fi) is a union of facets of ∂Fj , we have B ⊆ ∪j−1
i=1Fi

if and only if B ⊆ Fj − {a}, for some a ∈ A. Therefore,

B 6⊆ ∪j−1
i=1Fi ⇐⇒ @ a ∈ A such that B 6⊆ Fj − {a} ⇐⇒ A ⊆ B.

Therefore, A is the minimal face associated to Fj .

On the other hand, fix j > 1. Let A be the minimal face associated to Fj . Since the empty set ∅
is a face of ∪j−1

i=1Fi, we have that A 6= ∅.

Let B ⊆ Fj be a face. Since A is minimal, we have that B ⊆ Fj ∩ (∪j−1
i=1Fi) if and only if ∃ a ∈ A

such that a /∈ B. This implies that B ⊆ Fj − {a} for some a ∈ A. Hence, B ⊆ ∪a∈A(Fj − {a}).
Therefore, ∪a∈A(Fj − {a}) ⊇ Fj ∩ (∪j−1

i=1Fi).

Conversely, fix a ∈ A and suppose that Fj − {a} 6⊆ ∪j−1
i=1Fi. For be minimal, A ⊆ Fj − {a}. This

implies that a /∈ A, which is a contradiction. Therefore, Fj − {a} ⊆ ∪j−1
i=1Fi, for all a ∈ A. Then

∪a∈A(Fj −{a}) ⊆ Fj ∩ (∪j−1
i=1Fi). We conclude that ∪a∈A(Fj −{a}) = Fj ∩ (∪j−1

i=1Fi). Thus, the order
is a shelling.

Theorem 3.23. Let ∆ be a pure (d − 1)-dimensional complex with shelling F1, . . . , Fr. Then the
h-vector is given as follows: For each i,

hi = |{j : dimAj = i− 1}|,

where Aj is the minimal face associated to Fj , for all j ∈ [r].

Proof. We proceed by induction on r to prove f∆(t) =
∑r
j=1(t+ 1)d−|Aj |. Since dimF1 = d− 1 and

A1 = ∅ is the associated minimal face to F1, we have that

fF1
(t) = (t+ 1)d = (t+ 1)d−|A1|.

Let r = 2. Since the order is a shelling, F1 ∩ F2 6= ∅. To compute fF1∪F2
(t) we need to known

the faces B ⊆ F2 − F1. Let A2 be the associated minimal face to F2, then B ⊆ F2 − F1 if and only if
A2 ⊆ B. Observe that |B| = k + |A2| for some 0 ≤ k ≤ d− |A2|, hence

fF1∪F2(t) = fF1(t) + td−|A2| +

(
d− |A2|

1

)
td−|A2|−1 + · · ·+

(
d− |A2|

d− |A2| − 1

)
t+ 1

= fF1
(t) + (t+ 1)d−|A2|.

Suppose the result holds for r > 2. Using that ∆ = F1 ∪ F2 ∪ · · · ∪ Fr and the same argument for
the previous case, we have that

f∆(t) = fF1∪F2∪···∪Fr−1 + td−|Ar| +

(
d− |Ar|

1

)
td−|Ar|−1 + · · ·+

(
d− |Ar|

d− |Ar| − 1

)
t+ 1

= fF1∪F2∪···∪Fr−1
+ (t+ 1)d−|Ar|

=

r∑
j=1

(t+ 1)d−|Aj |. (3.23.1)
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By definition

h∆(t+ 1) = f∆(t) = h0(t+ 1)d + h1(t+ 1)d−1 + · · ·+ hd−1(t+ 1) + hd,

by the previous equation and (3.23.1)

.

, we have that

hi = |{j : dimAj = i− 1}|.

Example 3.24. Consider the following simplicial complex on the vertex set X = {xi : 1 ≤ i ≤ 8}

∆ = {{x1, x2, x3}, {x2, x3, x4}, {x1, x3, x5}, {x3, x5, x7}, {x2, x4, x8}, {x2, x6, x8},
{x3, x4, x8}, {x3, x7, x8}, {x5, x6, x8}, {x5, x7, x8}, {x1, x2, x5}, {x2, x5, x6}, }

which is represent visually as show the following figure

x1 x2

x3 x4

x5 x6

x7 x8

Since f(∆) = (1, 8, 18, 12) then h(∆) = (1, 5, 5, 1). Now consider the following shelling for ∆

{x5, x7, x8}, {x3, x7, x8}, {x5, x6, x8}, {x2, x6, x8}, {x3, x4, x8}, {x2, x4, x8}, {x3, x5, x7}, {x2, x5, x6},
{x1, x3, x5}, {x1, x2, x5}, {x2, x3, x4}, {x1, x2, x3}

and the associated minimal faces are

∅, {x3}, {x6}, {x2}, {x4}, {x2, x4}, {x3, x5}, {x2, x5}, {x1}, {x1, x2}, {x2, x3}, {x1, x2, x3} (3.24.1)

respectively. Then by Theorem 3.23

.

and (3.24.1)

.

we have that h0 = 1, h1 = 5, h2 = 5 and h3 = 1.
This check our previous results. ♦



Chapter 4

Hochster’s formula

We start this chapter defining the Koszul complex. We use some homological tools to prove that
Koszul complex is a minimal free resolution of the residual field (Proposition 4.4

.

). After, we study the
Betti numbers for a graded module. In Theorem 4.12

.

, we compute the Betti numbers for square-free
monomial ideals and related them with the homology of the Koszul complex. Using these results, we
prove the main theorem of this chapter; the Hochster’s formula

.

(Theorem 4.17

.

). This formula shows
that the multi-graded Betti numbers of a square-free monomial ideal I are encoded in the homology
of induced subcomplexes of ∆I .

4.1 The Koszul complex

The goal of this section is prove that the Koszul complex is a minimal free resolution of S/m. With
that restul, we compute homology modules and Betti numbers.

Remark 4.1. Given two chain complexes C• and C ′•, we tensor their as follows: (C•, d•) ⊗ (C ′•, d
′
•)

is a complex with i-th graded pieces
⊕

k+l=i(Ck ⊗ C ′l) and an endomorphism

Ck ⊗ C ′l −→ (Ck−1 ⊗ C ′l)⊕ (Ck ⊗ C ′l−1)

defined by
x⊗ y 7→ (dk(x)⊗ y)⊕ ((−1)kx⊗ d′l(y)).

Definition 4.2. Let x ∈ R. The Koszul complex of x is

K•(x;R) : 0 // R1
x // R0

// 0,

where R0 = R1 = R and the map labeled x is the multiplication by x. For x1, . . . , xl ∈ R, the Koszul
complex of x1, . . . , xl is defined inductively as

K•(x1, . . . , xl;R) := K•(x1, . . . , xl−1;R)⊗R K•(xl;R)

where Ki = ∧i(Rl) and the map di : Ki −→ Ki−1 is defined by

di(ej1 ∧ · · · ∧ eji) =

i∑
k=1

(−1)k+1xk(ej1 ∧ · · · ∧ êjk ∧ · · · ∧ eji).

Let M be an R-module. The Koszul complex of M with respect x1, . . . , xl is defined by

K•(x1, . . . , xl;M) := K•(x1, . . . , xl;R)⊗RM.
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Let (C•, d•) be a complex over R and let K• = K•(x;R) be the Koszul complex of x ∈ R, by
Remark 4.1

.

we have

(C• ⊗K•)i = (Ci ⊗R0)⊕ (Ci−1 ⊗R1) ∼= Ci ⊕ Ci−1.

Therefore, we have the short exact sequence of complexes

0 // C•
α // C• ⊗K•

β // C•(−1) // 0

defined by α(a) = (a, 0), β(a, b) = b, (C•(−1))i = Ci−1 and the differential δ on C• ⊗K• is δi(a, b) =
(di(a) + (−1)i−1xb, di−1(b)).

Observe that Hi(C•) ∼= Hi+1(C•(−1)). By Theorem 1.9

.

, we have the following long exact sequence
of homology

· · · x // Hi+1(C•) // Hi+1(C• ⊗K•) // Hi(C•)
x // Hi(C•) // Hi(C• ⊗K•) // Hi−1(C•)

x // · · ·

This breaks up into short exact sequences

0 // Hi(C•)

xHi(C•)
// Hi(C• ⊗K•) // AnnHi−1(C•)(x) // 0 (4.2.1)

for all i.

Theorem 4.3. Let M be an R-module and x1, . . . , xl ∈ R. Then, H0(K•(x1, . . . , xl;M)) is isomorphic
to M/(x1, . . . , xl)M . Moreover, if x1, . . . , xl is an M -sequence, then Hi(K•(x1, . . . , xl;M)) = 0 for all
i ≥ 1.

Proof. We proceed by induction on l. If l = 1, then K•(x1;M) is the complex

0 // M
x1 // M // 0.

Thus, H0(K•(x1;M)) ∼= M/x1M .
For l > 1, let C• = K•(x1, . . . , xl−1;M). Then, by (4.2.1)

.

with i = 0 and x = xl, we have

0 // H0(C•)

xlH0(C•)
// H0(C• ⊗K•(xl;R)) // 0 // 0.

By induction hypothesis we have

H0(K•(x1, . . . , xl;M)) ∼=
H0(C•)

xlH0(C•)
∼= (M/(x1, . . . , xl−1)M)/(xl(M/(x1, . . . , xl−1)M))

∼= M/(x1, . . . , xl)M.

For the second claim we proceed again by induction on l. If l = 1, then x1 is an M -sequence if and
only if the complex

0 // M
x1 // R // 0

is exact. This happens if and only if H1(K•(x1;M)) = 0. For l > 1, let C• = K•(x1, . . . , xl−1;M).
Then by induction hypothesis, Hi(C•) = 0 for all i ≥ 1. Thus Hi(C•⊗K•(xl;R)) = 0 for all i ≥ 2, by
(4.2.1)

.

.
Since xl is a non-zero divisor on M/(x1, . . . , xl−1) ∼= H0(C•), we have AnnH0(C•)(xl) = 0. Then by

induction hypothesis and (4.2.1)

.

with i = 1, we have

0 // 0 // Hi(C• ⊗K•(xl;R)) // 0 // 0

Therefore, Hi(C• ⊗K•(xl;R)) ∼= Hi(K•(x1, . . . , xl;M)) = 0.
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Proposition 4.4. The Koszul complex K• = K•(x1, . . . , xn;S) is a minimal free resolution of K =
S/m .

Proof. Since x1, . . . , xn is an S-sequence. By Theorem 4.3

.

, we conclude that K• is a free resolution
of K. By definition of di on K•, di(Ki) ⊆ mKi−1, i.e., K• is a minimal free resolution.

Remark 4.5. The above complex looks as

0 // S(n
n) // S( n

n−1) // · · · // S(n
1) // S // S/m // 0.

Let V the subspace of degree one forms of S. This implies that ∧dV ∼= K(n
d) ⊗K S = S(n

d). Then we
write K• as

0 // ∧nV // · · · // ∧1V // ∧0V // 0,

4.2 Simplicial homology

Let ∆ be a simplicial complex on X. Let Fi(∆) denote the set of i-faces and let KFi(∆) be the free
K-vector space on Fi(∆).

Definition 4.6. The (augmented or reduced) chain complex of ∆ over K is the complex C̃•(∆;K):

0 KF−1(∆)oo · · ·δ0oo KFi−1(∆)oo KFi(∆)δioo · · ·oo KFn−1(∆)
δn−1oo 0oo

where the boundary maps δi are defined by setting sign(j, σ) = (−1)r−1 if xj is the r-th element of
the set σ ⊆ X, written in increasing order, and

δi(eσ) =
∑
xj∈σ

sign(j, σ)eσ−{xj}.

For all i ∈ Z, the i-th (reduced) homology of ∆ over K is the K-vector space

H̃i(∆;K) = ker δi/ im δi+1.

We write (−)∗ for vector space duality HomK(−,K).

Definition 4.7. The (reduced) cochain complex of ∆ over K is the vector space dual C̃•(∆;K) =

(C̃•(∆;K))∗ of the chain complex, with coboundary maps δi = δ∗i . For all i ∈ Z, the i-th (reduced)
cohomology of ∆ over K is the K-vector space

H̃i(∆;K) = ker δi+1/ im δi.

Although we do not study cohomology, it is in general useful in order to have other way to study
homology, as the following two results show.

Theorem 4.8 (cf. [Mun84

.

, Theorem 53.5]). Let ∆ be a simplicial complex and let K be a field. Then

dimK H̃i(∆;K) = dimK H̃
i(∆;K).

Theorem 4.9 (Alexander duality (cf. [Mun84

.

, Theorem 71.1])). Let ∆ be a simplicial complex on l

vertices. Then H̃i(∆
∨;K) ∼= H̃ l−i−3(∆;K).

Notation 4.10. Now, we establish a bijection between the elements of Nn and the subsets of X. Let
a = (a1, . . . , an) ∈ Nn. Then its correspondent subset on X is defined by Fa := {xi ∈ X : ai 6= 0}.
Analogously, if F ⊆ X. Then its correspondent n-tuple is defined by VF := (f1, . . . , fn) ∈ Nn, in which
fi = 1 if xi ∈ F or fi = 0 if xi /∈ F . For the rest of the text, we abuse notation by writing a instead
of Fa and F instead of VF .
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Definition 4.11. The upper Koszul simplicial complex of a monomial ideal I in multi-degree
b ∈ Nn is defined by

Kb(I) = {F ⊆ X : xb−F ∈ I}.

Theorem 4.12. Let b ∈ Nn and let I be a monomial ideal. Then

βi,b(I) = βi+1,b(S/I) = dimK H̃i−1(Kb(I);K).

Proof. For the first equality let

F• : 0 // Fl // · · · // F2
// F1

// F0
// I // 0

be a minimal free resolution of I. Then, we generate a minimal free resolution for S/I from F•:

0 // Fl // · · · // F2
// F1

// F0
// S // S/I // 0.

Hence, βi,b(I) = βi+1,b(S/I) for all i ≥ 0.
Now, we prove the second equality. Let K• = K•(x1, . . . , xn;S) be the Koszul complex of S. Then

by Proposition 1.17

.

and Theorem 1.14

.

βi,b(I) = dimK TorSi (I,K)b = dimK TorSi (K, I)b (4.12.1)

By Remark 4.5

.

we have

I ⊗K• : 0 // I ⊗ ∧nV // · · · // I ⊗ ∧1V // I ⊗ ∧0V // 0.

Then, I ⊗ ∧iV = span{m⊗ (xj1 ∧ · · · ∧ xji) : m ∈ gens(I)}. If x ∈ V , then

x(m⊗ (xj1 ∧ · · · ∧ xji)) = xm⊗ (xj1 ∧ · · · ∧ xji) = m⊗ (x ∧ xj1 ∧ · · · ∧ xji).

Let b ∈ Nn and observe that

xb ∼= xb−F ⊗ (xj1 ∧ · · · ∧ xji),

where F = {xj1 , . . . , xji}.
Now from the previous observations, (I⊗∧iV )b has a basis consisting of all expressions of the form

xb−F ⊗ (xj1 ∧ · · · ∧ xji)

if and only if xb−F ∈ I, where F = {xj1 , . . . , xji}. These expressions are on bijection with the (i− 1)-
faces F of Kb(I). This, one recognizes (I ⊗K•)b as the augmented chain complex used to compute

H̃i−1(Kb(I);K). Therefore by (4.12.1)

.

, βi,b(I) = dimK TorSi (I,K)b = dimK H̃i−1(Kb(I);K).

Furthermore, by Theorem 4.12

.

we have the following equality

βi,j(I) =
∑
|a|=j

βi,a(I) =
∑
|a|=j

βi+1,a(S/I) = βi+1,j(S/I). (4.12.2)

Definition 4.13. The link of F inside the simplicial complex ∆ is defined by

link∆(F ) = {G ∈ ∆ : G ∪ F ∈ ∆ and G ∩ F = ∅}.

Example 4.14. Let ∆ be the simplicial complex from Example 2.3

.

. Then,

link∆({x2, x4}) = {{x1}, {x3}} and link∆({x5}) = {{x1}, {x2, x3}}. ♦
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Proposition 4.15. Let ∆ be a simplicial complex and Y ⊆ X. Then,

(a) ∆∨ = K1(I∆);

(b) KY (I∆) = linkK1(I∆)(Y
c);

(c) KY (I∆) = (∆[Y ])∨.

Proof.

(a) By definition,

F ∈ K1(I∆)⇐⇒ x1−F ∈ I∆ ⇐⇒ 1− F = F c /∈ ∆⇐⇒ F ∈ ∆∨.

(b) We use part (a)

.

to prove the equality. By definition,

F ∈ KY (I∆)⇐⇒ xY−F ∈ I∆
⇐⇒ Y − F /∈ ∆ and F ( Y

⇐⇒ Y ∩ F c = Y − F /∈ ∆ and F ( Y

⇐⇒ Y c ∪ F ∈ ∆∨ and F ∩ Y c = ∅
⇐⇒ F ∈ link∆∨(Y c).

(c) By definition,

F ∈ KY (I∆)⇐⇒ xY−F ∈ I∆ ⇐⇒ F ( Y and Y − F /∈ ∆⇐⇒ F ∈ (∆[Y ])∨.

Therefore if b ∈ {0, 1}n by Proposition 4.15

.

, we conclude that link∆∨(bc) = Kb(I∆) = (∆[b])∨.

The next result is called the “dual version” of Hochster’s formula because it gives Betti numbers
of I∆ by working with the Alexander dual complex ∆∨, and because it is dual to Hochster’s original
formulation (Theorem 4.17

.

).

Theorem 4.16 (Hochster’s formula, dual form).Let ∆ be a simplicial complex and let b ∈ {0, 1}n.
Then,

βi,b(I∆) = βi+1,b(S/I∆) = dimK H̃i−1(link∆∨(bc);K).

Proof. By Theorem 4.12

.

and Proposition 4.15

.

we have

βi,b(I∆) = βi+1,b(S/I∆) = dimK H̃i−1(Kb(I∆);K) = dimK H̃i−1(link∆∨(bc);K).

An immediate consequence of dual form of Hochster’s formula is the Hochster’s original formulation.

Theorem 4.17 (Hochster’s formula). Let ∆ be a simplicial complex and let b ∈ {0, 1}n. Then,

βi−1,b(I∆) = βi,b(S/I∆) = dimK H̃
|b|−i−1(∆[b];K).

Proof. By the dual form of Hochster’s formula, by Theorem 4.9

.

and Proposition 4.15

.

βi−1,b(I∆) = βi,b(S/I∆) = dimK H̃i−2(link∆∨(bc);K)

= dimK H̃i−2((∆[b])∨;K)

= dimK H̃
|b|−i+2−3(∆[b];K)

= dimK H̃
|b|−i−1(∆[b];K).





Chapter 5

Terai’s Theorem

The goal of this chapter is prove the Terai’s Theorem

.

(Theorem 5.8

.

) which relate the regularity of I∆
with the projective dimension of S/I∆∨ . For this work it is necessary to study more extensively the
Betti numbers. We also need to relate them with the simplicial homology and cohomology.

5.1 The Betti polynomial

Before we prove Terai’s Theorem

.

is necessary study more the Betti numbers and its properties.

Theorem 5.1 (Hochster’s formula on the Betti numbers). Let ∆ be a simplicial complex. Then,

βi,j(S/I∆) =
∑
F⊂X,
|F |=j

dimK H̃j−i−1(∆[F ];K).

Proof. Fix j and let F ⊆ X such that |F | = j. By the Hochster’s formula

.

βi,F (S/I∆) = dimK H̃
|F |−i−1(∆[F ];K) = dimK H̃|F |−i−1(∆[F ];K).

Then by definition,

βi,j(S/I∆) =
∑
F⊂X,
|F |=j

βi,F (S/I∆) =
∑
F⊂X,
|F |=j

dimK H̃j−i−1(∆[F ];K).

Definition 5.2. Let ∆ be a simplicial complex. The Betti polynomial of S/I∆ is defined by

Ti(S/I∆, t) :=
∑
a∈Nn

dimK TorSi (S/I∆;K)ata.

Hochster gave the following formula for these Betti polynomials.

Theorem 5.3. Let ∆ be a simplicial complex. Then

Ti(S/I∆, t) =
∑
F⊆X

dimK H̃|F |−i−1(∆[F ];K)tF .

Proof. By Proposition 1.17

.

and the proof of Hochster’s formula

.

Ti(S/I∆, t) =
∑
F⊆X

βi,F (S/I∆)tF =
∑
F⊆X

dimK H̃|F |−i−1(∆[F ];K)tF .
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Proposition 5.4. Let ∆ be a simplicial complex and i ≥ 1. Then,

Ti(S/I∆, t) =
∑
F∈∆∨

dimK H̃i−2(link∆∨(F );K)tX−F .

Proof. If G ∈ ∆ then ∆[G] = {G} and hence has no reduced homology. Therefore we only need to
consider G ⊆ X such that G /∈ ∆. Let F = Gc ∈ ∆∨. By the proof of Hochster’s formula

.

we know
that dimK H̃i−2(link∆∨(F );K) = dimK H̃|G|−i−1(∆[G];K). Then by Theorem 5.3

.

,

Ti(S/I∆, t) =
∑
F∈∆∨

dimK H̃i−2(link∆∨(F );K)tX−F .

5.2 Regularity

Theorem 5.5 (Hochster’s formula on the local cohomology modules (cf. [Sta96

.

, Theorem 4.1])). Let
∆ be a simplicial complex, then

HS(Hi
m(S/I∆), t) =

∑
F∈∆

dimK H̃i−|F |−1(link∆(F );K)

(
t−1

1− t−1

)|F |
,

where Hi
m(S/I∆) denote the i-th local cohomology module of S/I∆ with respect to the homogeneous

maximal ideal m.

We need to study some basic properties about regularity and initial degree, which are used to prove
Theorem 5.7

.

.

Lemma 5.6. Let I be a square-free monomial ideal. Then, we have the following properties:

(a) indeg(I) = min{deg(m) : m ∈ gens(I)};

(b) reg(I) ≥ deg(m) for all m ∈ gens(I);

(c) reg(I) ≥ indeg(I);

(d) reg(I) ≤ n;

(e) reg(S) = 0;

(f) If m is a square-free monomial of degree d, then reg(〈m〉) = d;

(g) reg(S/I) = reg(I)− 1.

Proof.

(a) Set l1 = min{deg(m) : m ∈ gens(I)} and l2 = max{deg(m) : m ∈ gens(I)}. Then, we have the
minimal free resolution

· · · // S(−l1)β0,l1 ⊕ · · · ⊕ S(−l2)β0,l2 // I // 0,

this implies that indeg(I) = l1.

(b) We have that β0,deg(m) 6= 0 for all m ∈ gens(I). Then by definition reg(I) ≥ deg(m).

(c) Since reg(I) ≥ deg(m) for all m ∈ gens(I). Then, reg(I) ≥ indeg(I).



5.2. Regularity 35

(d) Since βi,j(I) = 0 for all i > n and βi,j(I) = 0 for all j > n, Remark 1.20

.

. Then, we only need to
consider the Betti numbers βi,j(I) with i, j ∈ {0, . . . , n}. Hence, reg(I) ≤ n.

(e) Observe that

0 // S // S // 0,

is a minimal free resolution of S. Then, reg(S) = 0.

(f) Since

0 // S(−d)
m // 〈m〉 // 0,

is a minimal free resolution of 〈m〉. Hence, reg(〈m〉) = d.

(g) By (4.12.2)

.

, βi,j(I) = βi+1,j(S/I) for all i ≥ 0. Then by definition, reg(I) = reg(S/I) + 1.

In the rest of this chapter, we always assume dim(S/I∆) = d and dim(S/I∆∨) = d∗.

Theorem 5.7 (Terai). Let ∆ be a (d − 1)-dimensional simplicial complex on the vertex set X. If
d ≤ n− 2, then

reg(I∆)− indeg(I∆) = dim(S/I∆∨)− depthm(S/I∆∨).

Proof. Since d ≤ n− 2, then dim ∆ ≤ n− 3. Thus by Lemma 2.15

.

, ∆∨ is a simplicial complex on the
vertex set X. This implies that I∆ and I∆∨ are ideals on S.

Let depthm(S/I∆∨) = δ∗. By Hochster’s formula on the local cohomology modules

.

, we have

HS(Hi
m(S/I∆∨), t) =

∑
F∈∆∨

dimK H̃i−|F |−1(link∆∨(F );K)

(
t−1

1− t−1

)|F |
.

If l < δ∗, then H l
m(S/I∆∨) = 0. This implies that H̃l−|F |−1(link∆∨(F );K) = 0 for all F ∈ ∆∨.

Let F ⊆ X. If F ∈ ∆, then ∆[F ] = {F}. Hence, there is no reduced homology. Suppose that,
F /∈ ∆, then F c ∈ ∆∨. Hence,

H̃n−l−2(∆[F ];K) ∼= H̃l−|F c|−1(link∆∨(F c);K) = 0.

Therefore, H̃n−l−2(∆[F ];K) = 0 for all F ⊆ X. Then, by Hochster’s formula on the Betti numbers

.

βi,i+n−l−1(S/I∆) =
∑

|F |=i+n−l−1

dimK H̃n−l−2(∆[F ];K) = 0

for all i ≥ 1 and 0 ≤ l ≤ δ∗ − 1. Thus, by (4.12.2)

.

we have

βi,i+n(I∆) = βi,i+n−1(I∆) = · · · = βi,i+n−δ∗+1(I∆) = 0 (5.7.1)

for all i ≥ 0. Similarly, since Hδ∗

m (S/I∆∨) 6= 0 we deduce that

H̃n−δ∗−2(∆[F c];K) ∼= H̃δ∗−|F |−1(link∆∨(F );K) 6= 0

for some F ∈ ∆. This implies,

βi,i+n−δ∗(I∆) = βi+1,i+n−δ∗(S/I∆) =
∑
G⊆X,

|G|=i+n−δ∗

dimK H̃n−δ∗−2(∆[G];K) 6= 0 (5.7.2)

for some i ≥ 0. Hence, by Remark 1.20

.

, (5.7.1)

.

and (5.7.2)

.

we conclude that reg(I∆) = n− δ∗.
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Set l1 = min{deg(m) : m ∈ gens(I∆)}. Since I∆∨ =
⋂
m∈gens(I∆) Pm, we obtain that

dim(S/I∆∨) = max{dim(S/Pm) : m ∈ gens(I∆)}
= max{n− deg(m) : m ∈ gens(I∆)}
= n− l1.

Hence, indeg(I∆) = n− d∗ = l1. Therefore,

reg(I∆)− indeg(I∆) = d∗ − δ∗.

Theorem 5.8 (Terai’s Theorem). Let ∆ be a (d − 1)-dimensional simplicial complex on the vertex
set X. Suppose d ≤ n− 2. Then,

reg(I∆) = pd(S/I∆∨).

Proof. By the Auslander-Buchsbaum Formula

.

pd(S/I∆∨) = depthm(S)− depthm(S/I∆∨).

Furthermore depthm(S) = dim(S), because S is Cohen-Macaulay. By Theorem 5.7

.

we have that

reg(I∆) = dim(S/I∆∨)− depthm(S/I∆∨) + indeg(I∆)

= dim(S)− depthm(S/I∆∨).

Therefore, reg(I∆) = pd(S/I∆∨).

Definition 5.9. Let M be a finitely generated graded S-module. We say that M has a q-linear
resolution, if M is generated by homogeneous elements of degree q and reg(M) = q.

Proposition 5.10. Let I be a square-free monomial ideal generated by square-free monomials of
degree q. Then, I has a q-linear resolution if and only if βi,j(I) = 0 for all j 6= i+ q with i ≥ 0.

Proof. Suppose that reg(I) = q. Let

0 // Fl
dl // · · · // F1

d1 // F0
d0 // I // 0,

be a minimal free resolution of I. Since I is generated by square-free monomials of degree q we have
that F0 = S(−q)β0,q . We proceed by induction on l to prove that βl,j(I) = 0 if j < l + q. Let l = 1
and suppose that F1 = S(−b1) ⊕ · · · ⊕ S(−br) and F0 = S(−c1) ⊕ · · · ⊕ S(−cs) with cj = q. Since
d1 is a graded homomorphism of degree zero, then d1 is a matrix of size s × r where the non-zero
uv-entry au,v ∈ m is homogeneous of degree bv − cu, i.e., deg au,v = bv − cu ≥ 1. This implies that
bv ≥ cu + 1 = q + 1.

Suppose that it holds for l > 1 and consider the following graded homomorphism of degree zero
dl : Fl −→ Fl−1. By the induction hypothesis we have Fl−1 = ⊕j∈Z≥q+l−1

S(−j)βl−1,j . If Fl = S(−b1)⊕
· · · ⊕S(−br) and Fl−1 = S(−c1)⊕ · · · ⊕S(−cs). Then by the previous arguments, bv ≥ cu + 1 = q+ l.
This implies that Fl = ⊕j∈Z≥q+l

S(−j)βl,j . Now, suppose exists βi,j(I) 6= 0 for some j 6= i + q. If
j < q + i then βi,j(I) = 0 by the previous observations. If j > q + i, then reg(I) ≥ j − i > q which is
a contradiction. Therefore, βi,j(I) = 0 for all j 6= q + i.

Conversely, suppose that βi,j(I) = 0 for all j 6= q + i. Then I has the following minimal resolution

0 // S(−q − l)βl,q+l
dl // · · · // S(−q − 1)β1,q+1

d1 // S(−q)β0,q
d0 // I // 0.

Hence by definition, reg(I) = q.
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Corollary 5.11. Let ∆ be a (d − 1)-dimensional simplicial complex on the vertex set X. Suppose
d ≤ n − 2. Then, I∆ has a q-linear resolution if and only if S/I∆∨ is Cohen-Macaulay of dimension
n− q.

Proof. Suppose that I∆ has a q-linear resolution. This implies that reg(I∆) = indeg(I∆) = q. By
Auslander-Buchsbaum Formula

.

and Terai’s Theorem

.

we have that

depthm(S/I∆∨) = depthm(S)− pd(S/I∆∨)

= n− pd(S/I∆∨)

= n− reg(I∆)

= n− q
= dim(S/I∆∨).

Hence, S/I∆∨ is Cohen-Macaulay of dimension n− q.
Conversaly, suppose that S/I∆∨ is Cohen-Macaulay. Then by Auslander-Buchsbaum Formula

.

and
Terai’s Theorem

.

we have that

reg(I∆) = pd(S/I∆∨) = n− depthm(S/I∆∨) = n− d∗ = indeg(I∆).

Thus I∆ is generated by square-free monomials of degree n − d∗, because indeg(I∆) ≤ deg(m) ≤
reg(I∆) for all m ∈ gens(I∆). Therefore, I∆ has a (n− d∗)-linear resolution.
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