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Abstract

In this thesis we study the speed of convergence in the Boolean and monotone central limit
theorems. We also investigate some ergodic properties for certain transformations on the real
line.

In the Boolean central limit theorem, we obtain a bound of order 1
3√n of the speed of conver-

gence for measures with finite fourth moment. The proof is based on the Boolean cumulants.
When the measures have bounded support, we get a bound of order 1√

n
of the speed of con-

vergence, and we show that this bound is sharp. We derive this result from a more general
theorem describing very explicitly the convergence in the Boolean central limit theorem. These
results are in terms of the Lévy metric.

For the monotone central limit theorem, we obtain a bound of order 1
8√n of the speed of

convergence for measures with finite fourth moment. We improve this bound for the case of
measures with finite sixth moment. We get a bound of order 1

4√n , and we prove that this

bound is sharp. The proofs of these results are based on the complex analysis methods of
non-commutative probability.

Finally, the F -transform of measures singular to the Lebesgue measure induces a transfor-
mation on the real line which preserves the Lebesgue measure. We prove that for measures
of zero mean and unit variance these transformations are pointwise dual ergodic with return
sequence

√
2n
π

, extending a previous result of Aaronson.
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Saúl, Isáıas y Viridiana por apoyarme en distintas situaciones.

Agradezco infinitamente a mi hermosa novia Thaĺıa por darme su apoyo, paciencia y com-
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Chapter 1

Introduction

This thesis fits into the areas of non-commutative probability and infinite ergodic theory.
In non-commutative probability theory, we obtain some Berry-Essen type estimates for the
Boolean and monotone central limit theorems. On the side of infinite ergodic theory, we
improve a result of Aaronson about the ergodicity of a class of transformations on the real
line. This class includes most of the known transformations on the real line that preserve the
Lebesgue measure.

Non-Commutative Probability

Non-commutative (or quantum) probability has its origins in the works of Cushen and
Hudson [14], Hudson [20], Giri and von Waldenfels [17], von Waldenfels [33], and Voiculescu [30].
Their work leads to generalizing the concepts of random variable, expectation, and distribution
to a non-commutative setting. More importantly, it was realized that in the non-commutative
world the notion of independence is a broader concept and that other types of independence exist
besides the classical one. The existence of new types of independence attracted much attention.
This because, at least theoretically, a new notion of independence may lead to new central limit
theorems and other important analogs to the ones in classical probability such as stochastic
processes. Over time several notions of independence have been introduced. Some of the most
studied are the following: free independence [30], Boolean independence [29], operator-valued
free independence [31], c-free independence [12], q-independence [27], monotone independence
[25], and bi-free independence [32]. For each of the new notions of independence a central limit
theorem was also obtained.

Now, there is an important result that gives a more quantitative version of the classical
central limit theorem. This result is known as the Berry-Esseen Theorem ([11], [15]), and it
establishes a bound for the rate of convergence in the classical central limit theorem. Let µ be
a probability measure of zero mean and unit variance. The Berry-Esseen theorem states that
if
∫
R |x|

3dµ <∞, then the distance to the standard Gaussian distribution N is bounded for n
big enough as follows

dkol(D 1√
n
µ∗n,N ) ≤ C

∫
R |x|

3dµ
√
n

,

where ∗ denotes the classical convolution, dkol stands for the Kolmogorov distance, Dbµ desig-
nates the dilation of a measure µ by a factor b > 0, and C is an absolute constant. Moreover,
this estimate is sharp, so there is a measure µ0 such that dkol(D 1√

n
µ∗n0 ,N ) ≥ c√

n
as n→∞.

The great importance of the Berry-Esseen theorem is that, as in any limit theorem, for
many applications of the classical central limit theorem one needs a quantitative version of it;
a version where an estimation of the speed of convergence is obtained. So, as non-commutative
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probability brought new notions of independence and its respective central limit theorem, it is
important to obtain quantitative versions (Berry-Esseen type estimates) for them. Next, we
collect some of the main results obtained in this direction. In the free central limit theorem,
a Berry-Esseen type estimate was given by Kargin [21] for the bounded case and then broadly
improved by Chistyakov and Götze [13] for measures with finite fourth moment; if µ is a
probability measure with m1(µ) = 0, m2(µ) = 1, and m4(µ) < ∞, then the distance to the
standard semicircle distribution S satisfies for n large

dkol(D 1√
n
µ�n,S) ≤ C ′

|m3(µ)|+ |m4(µ)|1/2√
n

,

where the symbol � denotes the free convolution, and C ′ is an absolute constant. Here, as in
the classical Berry-Esseen theorem, the estimate is sharp.

Now for the operator-valued free central limit theorem, Speicher [24] obtained that the rate
of convergence in is bounded by the order 1√

n
. In the finite-free probability setting, Arizmendi

and Perales [5] also show that the rate of convergence in is bounded by the order 1√
n
.

This thesis enters in this line of research.

Main Objective: To obtain Berry-Esseen type estimates for the Boolean and monotone
central limit theorems.

For the Boolean central limit theorem, the first thing one notes is that convergence in the
Kolmogorov distance does not hold. Thus, we consider the Lévy distance instead, which seems
the most appropriate.

Our first contribution considers measures with finite fourth moment.

Theorem 5. Let µ be a probability measure such that m1(µ) = 0, m2(µ) = 1, and m4(µ) <∞.
Then for the measure µn = D 1√

n
µ]n, where ] denotes the Boolean convolution, we have that

dlev(µn,b) ≤ 7

2

3

√
m4(µ)− 1

n
for n ≥ 1.

The proof of this theorem is a direct consequence of a general quantitative estimate of the
distance to Bernoulli distribution in terms of the fourth moment: dlev(µ,b) ≤ 7

2
3
√
m4(µ)− 1.

We think that the estimate in the above theorem is not sharp. We believe that the sharp
rate must be of order 1√

n
.

Our second contribution specializes in the case of measures with bounded support. In this
case we give a sharp bound for the rate of convergence.

Theorem 6. Let µ be a probability measure such that m1(µ) = 0, m2(µ) = 1, and supp(µ) ⊂
[−K,K]. Then the measure µn := D 1√

n
µ]n satisfies for

√
n > K that:

1) supp µn ⊂ [−K√
n
, K√

n
] ∪ {x1, x2}, where |(−1)− x1| ≤ K√

n
and |1− x2| ≤ K√

n
.

2) For p = µn({x1}), q = µn({x2}) and r = µn([−K√
n
, K√

n
]), we have that p, q ∈ [1

2
− 2K√

n
, 1
2
+ K

2
√
n
]

and r < 4K√
n

.

In particular, the Lévy distance between µn and b is bounded by

dlev(µn,b) ≤ 2K√
n
.
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Now, we present our results for the monotone case. In this case we consider the Kolmogorov
distance as in the classical and free cases. Recall that the arcsine distribution a is given by the
density da(t) := 1

π
√
2−t2 for t ∈ (−

√
2,
√

2).
Our first estimation treats measures with finite fourth moment.

Theorem 7. Let µ be a probability measure. Suppose that m1(µ) = 0, m2(µ) = 1, and m4(µ) <
∞. Let µn = D1/

√
nµ

.n, n ≥ 1. Then there exists a constant k depending only on µ such that
we have the Kolmogorov distance

dkol(µn, a) ≤ kn−1/8

We do not know if the bound in this theorem is sharp.
In our following theorem we obtain a sharp bound for the rate of convergence, but we weaken

a bit the generality.

Theorem 8. Let µ be a probability measure. Suppose that m1(µ) = 0, m2(µ) = 1, and m6(µ) <
∞.

Let µn = D1/
√
nµ

.n, n ≥ 1. Then there exists a constant k depending only on µ such that
we have the Kolmogorov distance

dkol(µn, a) ≤ kn−1/4

Infinite Ergodic Theory

Infinite ergodic theory studies the ergodic properties of measure-preserving transformations
when the measure of the underlying space is infinite. The transformations on the real line that
preserve the Lebesgue measure were one of the first situations studied. Next, we discuss some
of the main results obtained for this situation.

In 1973 Adler and Weiss [3] proved that the Boole transform T (x) = x− 1
x
, for x ∈ R \ {0},

preserve the Lebesgue measure and is ergodic. Later, Li and Schweiger [23] proved that the
generalized Boole transform T (x) = x−

∑n
i=1

pi
x−ai , for x ∈ R \ {ai | i = 1, ..., n}, where pi ≥ 0

and ai ∈ R, also preserves the Lebesgue measure and is ergodic. In [28] Schweiger showed the
same conclusions are valid for tan(x), and in [22] similar results were obtained for other real
transformations preserving the Lebesgue.

Aaronson [1] obtains a generalization that includes all the past results. Consider the F -
transform Fµ(z) = [

∫
R

1
z−tdµ(t)]−1 of a positive measure µ over R. For singular measures µ

with respect to the Lebesgue measure, it turns out that we can extend the F -transform Fµ to
R, that is, the limit T (x) := limy→0 Fµ(x + iy) exists and is real a.e. in x ∈ R. Moreover, if
µ is a probability measure, then T (x) preserves the Lebesgue measure. The nice observation
is that all the transformations that we mention above are obtained in this way. For example,
the Boole transform is the extension to R of the F -transform Fb(z) = z − 1

z
of the Bernoulli

distribution b = 1
2
δ−1 + 1

2
δ1.

Now, Aaronson proved that under additional hypothesis on the measure µ, the transforma-
tion on R obtained as above is ergodic.

Theorem (Aaronson). Let µ be a probability measure of zero mean and unit variance. Sup-
pose that µ is singular with respect to the Lebesgue measure and that the support of µ is bounded.
Then the real restriction of Fµ,

T (x) := lim
y→0

Fµ(x+ iy)

is conservative and ergodic transform. Moreover, T is pointwise dual ergodic with return se-
quence

√
2n
π

.

10



In [34], Wang proves that the conclusions of T being conservative and ergodic still holds if
we omit the hypothesis of bounded support. We extend the result of Wang, by proving that it
is also true that T is pointwise dual ergodic with return sequence

√
2n
π

.

Theorem 12. Let µ be a probability measure of zero mean and unit variance. Suppose that µ
is singular with respect to the Lebesgue measure. Then the real restriction of Fµ

T (x) := lim
y→0

Fµ(x+ iy)

is pointwise dual ergodic with return sequence
√
2n
π

.

This thesis is organized as follows:

• In Chapter 2 we give a brief introduction to non-commutative probability theory passing
through the relevant concepts and properties involved in our research about the speed of
convergence of the Boolean and monotone central limit theorem.

• In Chapter 3 we establish a theorem that bounds the Lévy distance of a measure to
the Bernoulli distribution in terms of the fourth moment. We use this theorem and
the theory of Boolean cumulants to prove the theorem of the rate of convergence in the
Boolean central limit theorem for measures of finite fourth moment. We also prove the
estimate for measures of bounded support and give an example that shows that the bound
is sharp.

• In Chapter 4 we give the proofs of the theorems concerning the speed of convergence in
the monotone central limit theorem. The proofs are based on the complex analytic tools
of non-commutative probability.

• In Chapter 5 we first review the basics of infinite ergodic theory and the work of Aaronson
about inner function on the upper half-plane. Then we establish Theorem 12.
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Chapter 2

Non-Commutative Probability

Non-commutative probability theory generalizes classical probability theory. In this new frame-
work, the notion of independence loses the intrinsic role that it has in classical probability, and
new types of independence appear. For some of those new types of independence it is possible
to develop parallel theories with the ones in classical probability.

In this chapter we give a brief introduction to the theory of non-commutative probability
focusing on the Boolean and monotone notions of independence. We first review the main
analytic tools of the theory. Then we explain the main ingredients and the general objective
of the theory. Finally, we study the sum of random variables that are Boolean or monotone
independent.

2.1 Analytic Tools

In this section we introduce some transforms that assign to a measure on R an analytic complex
function. This transforms form the analytic machinery of non-commutative probability theory.
We also define the Kolmogorov and Lévy distances, and we recall Bai’s theorem to estimate
the Kolmogorov distance. These concepts are used to study the convergence of measures in the
subsequent chapters.

2.1.1 Notation

We denote by M the set of all Borel probability measures and by M1
0 the subset of M of

measures with zero mean and unit variance. Let µ be a probability measure. We write mn(µ)
for the n-th moment of µ. The notation Fµ denotes the cumulative distribution function of
µ, that is Fµ(x) = µ((−∞, x]) for x ∈ R. The support of a measure µ ∈ M is denoted by
supp(µ). For µ ∈M let Daµ denote the dilation of a measure µ by a factor a > 0; this means
that Daµ(B) = µ(a−1B) for all Borel sets B ⊂ R.

By C+ and C− we denote the open upper and lower complex half-planes, respectively.

2.1.2 The Cauchy transform

The Cauchy transform (a.k.a. Stieltjes transform) associates to each Borel measure on R
an analytic complex function. Many features of the measure like the support or the moments
become now information of an analytic function that we can study using the tools from complex
analysis.

12



Definition 1. The Cauchy transform of a positive measure µ is defined as

Gµ(z) :=

∫
R

1

z − t
dµ(t) for z ∈ C \ supp(µ). (2.1)

For a measure µ ∈M, the Cauchy transform is analytic in C \ supp(µ) and maps C+ to C−
(and vice versa). We can recover a measure µ ∈ M from its Cauchy transform. This result is
known as the Stieltjes inversion formula:

µ((a, b]) = lim
δ↓0

lim
ε↓0
− 1

π

∫ b+δ

a+δ

Im(Gµ(x+ iε))dx. (2.2)

This formula implies that the Cauchy transform Gµ determines completely the measure µ.
Next, we present some important properties of the Cauchy transform.

Proposition 1. Let µ be a Borel measure on R. Then the Cauchy transform of the dilation
Daµ is given by

GDaµ(z) =
1

a
Gµ(

z

a
) for z ∈ C+. (2.3)

Proposition 2. Let µ be a Borel measure on R. Then

|Gµ(z)| ≤ µ(R)

Imz
, for z ∈ C+. (2.4)

Proposition 3. Let µ be a Borel measure on R. If supp(µ) ⊂ [−K,K] , then

Gµ(x) 6= 0 for x ∈ R \ [−K,K]. (2.5)

The following proposition is essentially Proposition 5.1 ii) in [10]. It tells us that the
asymptotic behavior of the Cauchy transform is quite simple.

Proposition 4. Let zn ∈ C+ such that zn → ∞ non-tangentially, that is, |zn| → ∞ and for
some α > 0 we have |Re(zn)| ≤ αIm(z) for all n. Then

lim
n→∞

znGµ(zn)→ µ(R). (2.6)

Proposition 5. If
∫
|t|dµ(t) <∞, then

Gµ(z) =
µ(R)

z
+
µ(R)

z

∫
R

t

z − t
dµ(t) for z ∈ C+. (2.7)

Proposition 6. Let µ be a finite Borel measure over R. Suppose that
∫
R |t|

nµ <∞. Then we
have the expansion

Gµ(z) =
n∑
i=0

mi(µ)
1

zi+1
+ o(

1

zn+1
), as z −→∞ non-tangentially,

where mi(µ) :=
∫
R t

iµ.
Conversely, if n is even and Gµ(z) admits the previous expansion for real numbers mi

i = 0, ..., n, then mi =
∫
R t

iµ for i = 0, ..., n.
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2.1.3 The F -transform

The F -transform is defined as the multiplicative inverse of the Cauchy transform. This trans-
form plays a central role in non-commutative probability theory. Many important operations
of the theory (as the sum of “independent” random variables) can be expressed naturally in
terms of the F -transform.

Definition 2. The F -transform of a positive measure µ is the holomorphic function Fµ :
C+ → C+ defined as

Fµ(z) :=
1

Gµ(z)
for z ∈ C+. (2.8)

One reason why the F -transform is so useful is that it is, in particular, a Nevanlinna function,
and these functions are well understood.

Now, we present some properties of the F -transform relevant for us.

Proposition 7. For b > 0 we have

FDbµ(z) = bFµ(
z

b
) for z ∈ C+. (2.9)

The F -transform can be used to identify potential atoms of a measure.

Proposition 8. If a ∈ R is an isolated atom of µ ∈M, then Fµ(a) = 0.

The following proposition establishes a very helpful connection between the asymptotics at
infinity of the Cauchy transform and the F -transform.

Proposition 9. Let µ be a positive measure. Let Gµ and Fµ be the corresponding Cauchy and
F -transform respectively. Then Gµ admits the representation

Gµ(z) =
m0

z
+
m1

z2
+ · · ·+ mn

zn+1
+ o(

1

zn+1
), as z −→∞, (2.10)

where m0,m1, ...,mn are real numbers, if and only if Fµ admits the representation

Fµ(z) = z + s1 +
s2
z

+
s3
z2

+ · · ·+ sn
zn−1

+ o(
1

zn−1
), as z −→∞, (2.11)

where s1, ..., sn are real numbers.

Proof. We proof the forward implication. The proof of the backward implication is analogous.
Without loss of generality, we assume that m0 = 1. All the asymptotics in this proof are for
z →∞. We have that

Fµ(z) =
1

Gµ(z)

=
1

1
z

+ m1

z2
+ · · ·+ mn

zn+1 + o( 1
zn+1 )

=
1

1
z
(1 + m1

z
+ · · ·+ mn

zn
+ o( 1

zn
))
.

Put p(z) = m1

z
+ · · ·+ mn

zn
. We have that

1

1 + p(z) + o( 1
zn

)
=

1

1 + p(z)
−

o( 1
zn

)

(1 + p(z))(1 + p(z) + o( 1
zn

))
. (2.12)
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For |z| large enough |p(z)| is small, so we have that

1

1 + p(z)
= 1− p(z) + p(z)2 − p(z)3 + p(z)4 + · · ·

= 1 +
∞∑
j=1

sjz
−j,

where s1, s2, s3, ... are some real numbers. Note that s1 = −m1. Now, we have that as z →∞

−
o( 1

zn
)

(1 + p(z))(1 + p(z) + o( 1
zn

))
= o(

1

zn
). (2.13)

Thus
1

1 + p(z) + o( 1
zn

)
= 1 +

n∑
j=1

sjz
−j + o(

1

zn
). (2.14)

Finally, we conclude that

Fµ(z) = z(1 +
n∑
j=1

sjz
−j + o(

1

zn
))

= z + s1 +
s2
z

+
s3
z2

+ · · ·+ sn
zn−1

+ o(
1

zn−1
).

Next we present the Nevanlinna representation for F -transforms. This is a very useful
formula.

Proposition 10. Let µ be a positive measure. Suppose that m2(µ) < ∞. Then there exists a
positive measure ν such that ν(R) = var(µ) and

Fµ(z) = z − α−Gν(z) for z ∈ C+, (2.15)

where α = m1(µ).

In particular, if µ ∈M1
0, then there exists ν ∈M such that Fµ(z) = z −Gν(z) for z ∈ C+.

Proposition 11. Let µ be a probability measure. Suppose that
∫
R t

2ndµ < ∞. According
to the previous proposition, there exists a positive measure ν such that ν(R) = var(µ) and
Fµ(z) = z − α−Gν(z). Then we have that m2n−2(ν) <∞.

Proof. The hypothesis
∫
R t

2ndµ <∞ and the Proposition 6 implies that

Gµ(z) =
2n∑
i=0

mi(µ)
1

zi+1
+ o(

1

z2n+1
), as z −→∞ non-tangentially.

By Proposition 9 we have that

Fµ(z) = z + s1 +
s2
z

+
s3
z2

+ · · ·+ s2n
z2n−1

+ o(
1

z2n−1
), as z −→∞,

where s1 = −m1. So we conclude that

Gν(z) =
−s2
z

+
−s3
z2

+ · · ·+ −s2n
z2n−1

+ o(
1

z2n−1
), as z −→∞.

Thus Proposition 6 implies that m2n−2(ν) <∞.

15



The following result is Lemma 2.1 in [18]. It describes the relationship of the supports of
the measures of the previous formula.

Proposition 12. Let µ and ν be probability measures on R such that Fµ(z) = z − Gν(z) for
z ∈ C+. Then:

1) C \ supp(µ) is the maximal domain where Gµ(z) is analytic and satisfies the integral
representation (2.1).

2) C \ supp(ν) is the maximal domain where Fµ(z) is analytic and satisfies the integral
representation (2.8).

3) {x ∈ R \ supp(µ) | Gµ(x) 6= 0} ⊂ R \ supp(ν), and {x ∈ R \ supp(ν) | Fµ(x) 6= 0} ⊂
R \ supp(µ).

2.1.4 The Kolomogorov and Lévy distances for probability measures

In this section we define the metrics that we use in our main theorems to quantify the rate of
convergence on the Boolean and monotone central limit theorems.

Definition 3. Let µ and ν probability measures over R. Let Fµ and Fν its respective cumu-
lative distribution functions. Then

• the Kolomogorov distance between µ and ν is defined as

dkol(µ, ν) := sup
x∈R
|Fµ(x)−Fν(x)|.

• the Lévy distance between µ and ν is defined as

dlev(µ, ν) := inf{ε > 0 | Fµ(x− ε)− ε ≤ Fν(x) ≤ Fµ(x+ ε) + ε for all x ∈ R}.

.

For two measures µ and ν the Kolmogorov distance dkol(µ, ν) is the greatest vertical separa-
tion between the graphs of the functions Fµ and Fν. Meanwhile, the Lévy distance dlev(µ, ν)
is the side-length of the largest square that can be inscribed between the graphs, adding verti-
cal segments where there is a discontinuity, of the functions Fµ and Fν. This, in particular,
implies that

dlev(µ, ν) ≤ dkol(µ, ν).

The next theorem due to Bai [8] allows us to estimate the Kolmogorov distance of two
probability measures using its Cauchy transforms.

Theorem 1 (Bai’s inequality). Let µ and ν probability measures. Suppose that
∫
R |Fµ(x) −

Fν(x)|dx <∞. Then we have that for all y > 0

dkol(µ, ν) ≤ 1

π(2γ − 1)
[

∫
R
|Gµ(z)−Gν(z)|dx+

1

y
sup
r∈R

∫
|t|≤2ay

|Fν(r + t)−Fν(r)|dt], (2.16)

where z = x+ iy and a and γ are constants such that γ = 1
π

∫
|t|<a

1
t2+1

dt > 1
2
.
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2.2 Non-Commutative Probability

The starting observation of non-commutative probability theory is that certain elements in
some algebras endowed with a functional behave like independent random variables. That is,
those elements have a natural distribution defined with respect to the functional, and it makes
sense to define the notion of independence, with respect to the functional also, for them. In this
new context it is realized that the notion of independence is a broader concept and that other
types of independence exist. More interestingly, for some of the new types of independence we
can develop a parallel theory with classical probability.

Non-commutative random variables

A non-commutative probability space (A, φ) consists of a unital ∗-algebra A, ∗ is an adjoint
operation, and a functional φ : A → C such that sends the unity 1A to 1 and is positive:
φ(a∗a) ≥ 0. A selfadjoint element a ∈ A is an element such that a = a∗. The positivity
assumption on the functional implies that for selfadjoint elements we have that φ(an) ∈ R for a
positive integer n. We call φ(an) the n-th moment of a. It may happen that for some selfadjoint
element a there exist a probability measure µ such that φ(an) =

∫
R t

ndµ(t) for n = 0, 1, 2, 3, ...
(if we do not ask that the functional to send 1A to 1, then such a probability measure can
not exist). If such distribution is unique (i.e. it is determined by moments) then we call µ
the distribution of a and call to a a non-commutative random variable. By example,
(Mn(C), T r) any selfadjoint matrix has a unique distribution µ given by µ = 1

n

∑n
i=1 δλi , where

λi are the eigenvalues of M and Tr(Mn) =
∫
R t

ndµ(t).
Some important theories that fall within this framework are graph theory, where we consider

a graph by its adjacency matrix and the functional may be the normalized trace or the element
1-1 of the matrix, random matrices, and algebras of operators on Hilbert spaces where the
functional is a vacuum state.

Independence

If X and Y are two classical random variables whose distributions are determined by mo-
ments then independence is characterized by the conditions

E(XnY n) = E(Xn)E(Y n).

In a similar way, we can characterize any set of independent random variables {Xi}i∈I whose
distributions are determined by moments.

In a non-commutative probability space (A, φ) the functional φ takes the role of the expec-
tation. We define the notion of classical independence in terms of the functional as follows. We
say that the random variables {ai}i∈I in a non-commutative probability space (A, φ) are classi-
cal independent with respect to φ if they commute and for any product of elements aj1aj2 · · · ajm ,
jm ∈ I, we have that the reduced product ar1ji1

· · · arkjik , where aj1aj2 · · · ajm = ar1ji1
· · · arkjik and

jil 6= jis for s 6= l, can be factorized by φ as follows

φ(ar1ji1
· · · arkjik ) = φ(ar1ji1

) · · ·φ(arkjik
).

Note that independence is just a rule for factorizing the functional evaluated in products
of random variables. In non-commutative probability new rules for making such factorizations
are defined. These new factorizations are new notions of independence.
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We say that the random variables {ai}i∈I are Boolean independent with respect to φ if for
any product of elements aj1aj2 · · · ajm , jm ∈ I, we have that the reduced product ar1ji1

· · · arkjik ,

where aj1aj2 · · · ajm = ar1ji1
· · · arkjik and jil 6= jil+1

, can be factorized by φ as follows

φ(ar1ji1
· · · arkjik ) = φ(ar1ji1

) · · ·φ(arkjik
).

We say that the random variables {ai}i∈I , where I is an ordered set, say I ⊂ N, are monotone
independent with respect to φ if for any product of elements aj1aj2 · · · ajm , jm ∈ I, we have
that the reduced product ar1ji1

· · · arkjik , where aj1aj2 · · · ajm = ar1ji1
· · · arkjik and jil 6= jil+1

, can be

factorized by φ as follows

φ(ar1ji1
· · · arkjik ) = φ(arsjis )φ(ar1ji1

· · · ars−1

jis−1
a
rs+1

jis+1
· · · arkjik ),

where arsjis ≥ arljil
for l = 1, ..., k.

We present some examples of non-commutative probability spaces with independent random
variables in the new senses. Consider the system (Mn×n(C), ψ1) where ψ1(M) = M11 for a
matrix M. Let A ∈Mm×m(C) and B ∈Mk×k(C) such that n = mk. Denote by Im the identity
matrix of m×m, and by Pm the matrix such that Pm(1, 1) = 1 and the other entries are zero.
Then we have that (A ⊗ Im) and (Ik ⊗ B) are tensorial independent; (A ⊗ Pm) and (Pk ⊗ B)
are Boolean independent; and (A⊗Pm) and (Ik⊗B) are monotone independent with the order
(A⊗ Pm) < (Ik ⊗B).

Broadly speaking, non-commutative probability studies meaningful process

f(a1, a2, a3, ...)

of Boolean (monotone) independent random variables ai. Usually, the outcome of the process is
some random variable, and we want to compute their moments or distribution. Most of theses
processes are motivated by the processes studied in classical probability.

2.3 Sum of Random Variables

The simplest process to study in non-commutative probability is the sum of independent random
variables. In this section we discuss how to obtain the moments and distribution of the sum of
Boolean (monotone) independent random variables. We also present the main theorems, which
are limit theorems, concerning the sum of random variables: the law of large numbers and the
central limit theorem.

Moments and Distribution
Following the ideas of classical probability, to deal with the problem of obtaining the mo-

ments and distribution of the sum of independent random variables, we restate it in a more
convenient way. The Boolean (monotone) independence induces an operation called the Boolean
(monotone) convolution ] (.) :M×M→M, that associates to the couple (µ, ν) the distribu-
tion µ]ν (µ.ν) of the sum x+y of Boolean (monotone) independent random variables x and y
with distribution µ and ν respectively. For a detailed definition we refer to [29], [26], and [16].
So, the problem of interest becomes now to find a way of computing the Boolean (monotone)
convolution and its moments.

In classical probability, the problem of computing the moments of the convolution of mea-
sures (i.e. the moments of the sum of independent random variables) was settled with the
discovery of the cumulants. The cumulants of a measure are quantities defined in terms of its
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moments with the property that the cumulants of the convolution of measures are the sum of
the cumulants of the measures convoluted. The n-th cumulant of a measure is defined by a
certain function of the first n moments. This formula has an inverse, so the cumulants solve
the problem of computing the moments of the convolution. For the Boolean (monotone) con-
volution there also exist some quantities that are additive respect the Boolean (monotone)
convolution. Naturally, these quantities are called the Boolean (monotone) cumulants.

Let µ be a probability measure. Suppose that the n-th moment of µ exists. We define the
Boolean cumulants rk(µ) for k = 1, 2, ..., n by the recurrence formula

mk(µ) =
k∑
i=1

ri(µ)mk−i(µ). (2.17)

Explicitly the formula for the first four cumulants gives

m1(µ) = r1(µ),

m2(µ) = r1(µ)2 + r2(µ),

m3(µ) = r1(µ)3 + 2r1(µ)r2(µ) + r3(µ), and

m4(µ) = r1(µ)4 + 3r1(µ)2r2(µ) + r2(µ)2 + 2r3(µ)r1(µ) + r4(µ).

Note that r1(µ) = m1(µ) and r2(µ) = m2(µ) −m1(µ)2 = V ar(µ). Also note that if µ ∈ M1
0,

then
m4(µ) = 1 + r4(µ). (2.18)

The Boolean cumulants behave like the classical cumulants: they are additive for Boolean
independent random variables, and the n-th Boolean cumulant is homogeneous of degree n on
the random variable. We prove this in Proposition 14 below in a more general context.

On the other hand, the problem of computing the Boolean (monotone) convolution is at-
tacked using a similar idea to the characteristic function in classical probability. A certain
transform (the “characteristic function”) that sends measures to complex analytic functions is
found, mainly using generating functions, such that a simple operation on the transforms of
two given measures correspond to their Boolean (monotone) convolution. We next define some
transforms that have the mentioned properties.

Theorem 2. The monotone convolution µ . ν is determined by the equation

Fµ.ν(z) = Fµ(Fν(z)) for z ∈ C+.

Definition 4. The K-transform (or self-energy) of a measure µ ∈M is defined as

Kµ(z) := z − Fµ(z) for z ∈ C+.

Theorem 3. Let µ and ν be probability measures. The Boolean convolution µ] ν is deter-
mined by the equation

Kµ]ν(z) = Kµ(z) +Kν(z) for z ∈ C+.

To end with this section, we study some properties of the K-transform that are relevant for
Chapter 3. Directly from the definitions above we obtain that

Fµ]n(z) = (1− n)z + nFµ(z), z ∈ C+. (2.19)

The next proposition gives an asymptotic expansion of the K-transform in terms of the Boolean
cumulants.
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Proposition 13. Let µ be a probability measure. Suppose that mn(µ) < ∞. Then Kµ admits
the expansion

Kµ(z) = r1 +
r2
z

+ · · ·+ rn
zn−1

+ o(
1

zn−1
), as z −→∞ non-tangentially

where ri = ri(µ) is the i-th Boolean cumulant of µ for i = 1, 2, ..., n. Conversely, if Kµ admits
the previous expansion for even n, then mn(µ) <∞.

Proof. Suppose that mn(µ) <∞. Proposition 6 implies that

Gµ(z) =
n∑
i=0

mi(µ)
1

zi+1
+ o(

1

zn+1
), as z −→∞ non-tangentially,

By Proposition 9 we obtain that

Fµ(z) = z + s1 +
s2
z

+
s3
z2

+ · · ·+ sn
zn−1

+ o(
1

zn−1
), as z −→∞ non-tangentially,

for some real numbers s1, s2, ..., sn. Since Kµ(z) = z − Fµ(z) we obtain that

Kµ(z) = r1 +
r2
z

+
r3
z2

+ · · ·+ r2n
zn−1

+ o(
1

zn−1
), as z −→∞ non-tangentially,

where ri = −si for i = 1, ..., n. Now, we want to prove that the numbers ri are the Boolean
cumulants of µ. That is, we want to prove that

mk(µ) =
k∑
i=1

ri(µ)mk−i(µ),

for k = 1, 2, ..., n. Note that
Gµ(z)Kµ(z) = zGµ(z)− 1 (2.20)

The second side of this equation can be expressed as

zGµ(z)− 1 = z(
n∑
i=0

mi(µ)
1

zi+1
+ o(

1

zn+1
))− 1

=
n∑
i=1

mi(µ)
1

zi
+ o(

1

zn
).

Expanding the first side of the Equation 2.20, we obtain

Gµ(z) ·Kµ(z) = (
n∑
i=0

mi(µ)
1

zi+1
+ o(

1

zn+1
))(

n∑
k=1

rk
zk−1

+ o(
1

zn−1
))

= (
n∑
i=0

mi(µ)
1

zi+1
)(

n∑
k=1

rk
zk−1

) + (
n∑
i=0

mi(µ)
1

zi+1
)(o(

1

zn−1
))

+ (
n∑
k=1

rk
zk−1

)(o(
1

zn+1
)) + (o(

1

zn+1
))(o(

1

zn−1
))

= (
n∑
i=0

mi(µ)
1

zi+1
)(

n∑
k=1

rk
zk−1

) + o(
1

zn
).
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Putting m−1 = 0, mi = mi(µ) for i = 0, 1, ..., n, mi = 0 for i = n + 1, ..., 2n, and ri = 0 for
i = n+ 1, ..., 2n, we obtain that

(
n∑
i=0

mi(µ)
1

zi+1
)(

n∑
k=1

rk
zk−1

) = (
n+1∑
i=0

mi−1
1

zi
)(
n−1∑
k=0

rk+1

zk
)

=
2n∑
k=0

(
k∑
i=0

ri+1mk−i−1)
1

zi

Therefore, we arrive to

Gµ(z) ·Kµ(z) =
n∑
k=0

(
k∑
i=0

ri+1mk−i−1)
1

zi
+ o(

1

zn
). (2.21)

The Equation 2.20 and the previous calculations imply that

n∑
k=1

mk
1

zk
+ o(

1

zn
) =

n∑
k=0

(
k∑
i=0

ri+1mk−i−1)
1

zi
+ o(

1

zn
).

We conclude that for k = 1, ..., n

mk =
k∑
i=0

ri+1mk−i−1

=
k−1∑
i=0

ri+1mk−i−1

=
k∑
i=1

rimk

Therefore r1, ..., rn are the first n Boolean cumulants of µ.
On the other hand. Suppose that for an even integer n Kµ admits the expansion

Kµ(z) = r1 +
r2
z

+ · · ·+ rn
zn−1

+ o(
1

zn−1
), as z −→∞ non-tangentially

It follows that

Fµ(z) = z − r1 −
r2
z

+ · · · − rn
zn−1

+ o(
1

zn+1
), as z −→∞ non-tangentially.

Then by Propositions 9 and 6 we conclude that mn(µ) <∞.

Finally, the next proposition shows that the Boolean cumulants defined previously have the
right properties.

Proposition 14. Let µ and ν be probability measures. Then we have the following:

• If mn(µ) <∞ and mn(ν) <∞ for even n, then we have that mn(µ ] ν) <∞ and

ri(µ ] ν) = ri(µ) + ri(ν), (2.22)

for i = 1, 2, ..., n.
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• If mk(µ) <∞, then
rk(Daµ) = akrk(µ). (2.23)

Proof. Suppose that for even n we have mn(µ) <∞. Then Proposition 13 implies that

Kµ(z) = r1(µ) +
r2(µ)

z
+ · · ·+ rn(µ)

zn−1
+ o(

1

zn−1
), as z −→∞ non-tangentially,

and

Kν(z) = r1(ν) +
r2(ν)

z
+ · · ·+ rn(ν)

zn−1
+ o(

1

zn−1
), as z −→∞ non-tangentially.

Thus we obtain that

Kµ]ν(z) = Kµ(z) +Kν(z) = r1(ν) + r1(ν) +
r2(µ) + r2(ν)

z
+ · · ·+ rn(µ) + rn(ν)

zn−1
+ o(

1

zn−1
),

as z −→ ∞ non-tangentially. Since n is even, Proposition 13 implies that mn(µ ] ν) < ∞ and
that the Boolean cumulants of µ ] ν are given by ri(µ ] ν) = ri(µ) + ri(ν) for i = 1, 2, ..., n.
Now, we prove Equation 2.23. By definition

mk(µ) =
k∑
i=1

ri(µ)mk−i(µ) =
k−1∑
i=1

ri(µ)mk−i(µ) + rk,

because m0(µ) = 1. So, we have that

rk(µ) = mk(µ)−
k∑
i=1

ri(µ)mk−i(µ). (2.24)

Recall that the n-th moment of a measure µ satisfies mn(Daµ) = anmn(µ). We proceed by
induction. For n = 1 we have that r1(Daµ) = m1(Daµ) = am1(µ) = ar1(µ). Now, suppose
that rn(Daµ) = anrn(µ) for n = 1, 2, ..., k − 1. By Equation 2.24 we have that

rk(Daµ) = mk(Daµ)−
k∑
i=1

ri(Daµ)mk−i(Daµ)

= akmk(µ)−
k∑
i=1

airi(µ)ak−imk−i(µ)

= ak(mk(µ)−
k∑
i=1

ri(µ)mk−i(µ)).

Therefore rk(Daµ) = akrk(µ).
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Chapter 3

A Boolean Berry-Esseen Type
Theorem

In this Chapter we study the rate of convergence in the Boolean central limit theorem with
respect to the Lévy distance. In the next section we establish our results. In Sections 3.2 and
3.3 we give the proofs of our theorems.

3.1 Main Results

Let µ be a probability measure of zero mean and unit variance. Define µn := D 1√
n
µ]n where

] denotes the Boolean convolution. Our objective is to obtain a Berry-Essen type estimate
for the Boolean central limit theorem. Now, the Berry-Essen theorem and the Berry-Esseen
type theorem for the Free independence are in terms of the Kolmogorov distance. But in the
Boolean central limit theorem there is not convergence in the Kolmogorov distance, as one can
easily see from almost any example (see Example 1 for a particular one). Here we consider the
Lévy distance instead, which seems the most appropriate. Thus, in other words, our objective
is to estimate the Lévy distance dlev(µn,b), where b is the Bernoulli distribution 1

2
δ−1 + 1

2
δ1.

The first problem we face is to find a way of estimating the Lévy distance other than the
definition. Using just the definition to estimate dlev(µn,b) seems a very difficult approach. Our
first theorem gives us a way to estimate the more particular situation of dlev(ν,b) for some
measure ν ∈ M1

0, and we use it to estimate dlev(µn,b). The theorem says that the distance
dlev(ν,b) depends uniquely on the fourth moment. This theorem is a version of a fourth moment
theorem with respect to the Lévy distance. In [4] Arizmendi and Gaxiola prove a similar result,
but with respect to a different distance given in terms of the Cauchy transform.

Theorem 4. Let µ be a probability measure such that m1(µ) = 0, m2(µ) = 1, and m4(µ) <∞.
Then

dlev(µ,b) ≤ 7

2
3
√
m4(µ)− 1. (3.1)

Note that the radical m4(µ) − 1 is positive for a measure with µ2(µ) = 1 (since E(X4) ≥
E(X2)2) . This theorem says in particular that if m4(µ) = 1 for a measure µ ∈ M1

0, then µ is
the Bernoulli distribution.

Now, this theorem gives an useful way to estimate dlev(µn,b). That is because we can
easily obtain the fourth moment of µn through the Boolean cumulants. We obtain the following
theorem that gives a bound of the rate of convergence in the Boolean CLT for measures with
finite fourth moment.
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Theorem 5. Let µ be a probability measure such that m1(µ) = 0, m2(µ) = 1, and m4(µ) <∞.
Then for the measure µn = D 1√

n
µ]n we have that

dlev(µn,b) ≤ 7

2

3

√
m4(µ)− 1

n
for n ≥ 1.

We think that the estimate in the above theorem is not sharp. Our guess is that the sharp
rate must be of order 1√

n
, as it is in the case of our next theorem.

Our next theorem is not the result of finding a way of estimating the Lévy distance
dlev(µn,b). It is the direct consequence of the surprising fact that the measure µn when µ
has bounded support becomes quite simple for big n. It consists of one atom about -1, one
atom about +1, and a negligible mass around 0. It is possible to estimate such atoms using
the F -transform of µn, and with that estimations directly obtain an estimation of dlev(µn,b).
The theorem is the following.

Theorem 6. Let µ be a probability measure such that m1(µ) = 0, m2(µ) = 1, and supp(µ) ⊂
[−K,K]. Then the measure µn := D 1√

n
µ]n satisfies for

√
n > K that:

1) supp µn ⊂ [−K√
n
, K√

n
] ∪ {x1, x2}, where |(−1)− x1| ≤ K√

n
and |1− x2| ≤ K√

n
.

2) For p = µn({x1}), q = µn({x2}) and r = µn([−K√
n
, K√

n
]), we have that p, q ∈ [1

2
− 2K√

n
, 1
2
+ K

2
√
n
]

and r < 4K√
n

.

In particular, the Lévy distance between µn and b is bounded by

dlev(µn,b) ≤ 2K√
n
.

Note that the theorem says that as soon as
√
n > K we can guarantee the limit measure

µn has two atoms, one close to -1 and the other to 1, with a mass about 1
2
, and the rest of the

measure is concentrated around 0. This gives us a very explicit description of the convergence
in the Boolean central limit theorem.

If the support is not bounded, then we can not assure the appearance of the two atoms. By
instance, for the standard Normal distribution g one can see that, Proposition 7.4 in [19], the
distribution g]n is given by the density

n

|(1− n)xGg(x) + n|2
1

2π
exp−x2/2,

so no atoms show up in D 1√
n
g]n.

The main results in this chapter have been published in collaboration with Octavio Ariz-
mendi [6].

3.2 Unbounded Case

The objective of this section is to prove Theorems 4 and 5. Theorem 5 essentially establishes a
Berry-Esseen type theorem for the Boolean central limit. We first give two technical lemmas.
Then we prove Theorem 4. After that, We prove in a proposition that the bound of this theorem
is sharp. At last, we prove Theorem 5.

The next lemma says that for a measure ν of zero mean and unit variance the Lévy distance
dlev(ν,n) is small if ν concentrates evenly around the points +1 and -1.
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Lemma 1. If µ ∈M1
0 and µ((−1− ε,−1 + ε)∪ (1− ε, 1 + ε)) ≥ 1− ε for some ε ∈ (0, 1), then

dlev(µ,b) ≤ 7

2
ε. (3.2)

Proof. Define R1 := (−∞,−1−ε], R2 := (−1−ε,−1+ε), R3 := [−1+ε, 1−ε], R4 := (1−ε, 1+ε),
and R5 := [1 + ε,∞). Let pi := µ(Ri) for i = 1, 2, 3, 4, 5. Clearly, there exists ti ∈ Ri such that∫

Ri

tdµ(t) = tipi.

Note that p2 + p4 ≥ 1− ε by hypothesis. So we have

pi ≤ ε for i = 1, 3, 5. (3.3)

Observe that

|t1p1|+ |t5p5| ≤
∫
R1

t2dµ(t) +

∫
R5

t2dµ(t)

= 1−
∫
R2

t2dµ(t)−
∫
R3

t2dµ(t)−
∫
R4

t2dµ(t)

≤ 1− (1− ε)2(p2 + p4)

≤ 1− (1− ε)2(1− ε)
≤ 3ε,

where the first equality is because of m2(µ) = 1. It is clear that |t3p3| ≤ ε. Thus, we obtain
from m1(µ) = 0 that

|t2p2 + t4p4| = |t1p1 + t3p3 + t5p5| ≤ 4ε.

Also note that

|p2 − p4| − |t2p2 + t4p4| ≤ |t2p2 + t4p4 + p2 − p4|
≤ |t2 + 1|p2 + |t4 − 1|p4
≤ ε(p2 + p4)

≤ ε.

It follows that |p2 − p4| ≤ 5ε, and since 1− ε ≤ p2 + p4 ≤ 1, then

1

2
− 3ε ≤ p2, p4 ≤

1

2
+

5

2
ε. (3.4)

Using the estimates (3.3) and (3.4), it is easy to see that

dlev(µ,b) ≤ 7

2
ε.

Let µ be a probability measure, and let X be a random variable with distribution µ. By µ2

we denote the distribution of X2. Note that for ε > 0 we have

µ((−1− ε,−1 + ε) ∪ (1− ε, 1 + ε)) ≥ µ2((1− ε, 1 + ε)). (3.5)
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Lemma 2. If µ ∈M1
0 and m4(µ) <∞, then:

(i) V ar(µ2) = r4(µ).

(ii) µ2((1− ε, 1 + ε)) ≥ 1− r4(µ)
ε2

.

Proof. For part (i) observe that V ar(µ2) = m2(µ
2) −m1(µ

2)2 = m4(µ) − 1. Hence, by (2.18)
we obtain that V ar(µ2) = r4(µ).

For part (ii) we see that by the Chebyshev inequality we have

P (|X2 − E(X2)| < ε) ≥ 1− V ar(X2)

ε2
,

and using (i) we conclude that µ2((1− ε, 1 + ε)) ≥ 1− r4(µ)
ε2
.

We use the previous lemmas to prove Theorem 4

Proof of Theorem 4. By Lemma 2 and inequality (3.5), we see that

µ((−1− ε,−1 + ε) ∪ (1− ε, 1 + ε)) ≥ µ2((1− ε, 1 + ε)) ≥ 1− r4(µ)

ε2
.

Taking ε = 3
√
r4(µ), we obtain

µ((−1− 3
√
r4(µ),−1 + 3

√
r4(µ)) ∪ (1− 3

√
r4(µ), 1 + 3

√
r4(µ))) ≥ 1− 3

√
r4(µ).

By Lemma 1 we conclude that when r4(µ) < 1, then

dlev(µ,b) ≤ 7

2
3
√
r4(µ) =

7

2
3
√
m4(µ)− 1.

The following proposition shows that the bound in Theorem 4 is sharp.

Proposition 15. For all α > 1
3

and for all C > 0 there exists µ ∈M1
0 such that

dlev(µ,b) > C · r4(µ)α

Proof. Fix α > 1
3

and C > 0. Let ε ∈ (0, 1/2). Define

µε =
ε

2
δ−
√
1+ε + (

1

2
− ε)δ−1 +

ε

2
δ−
√
1−ε +

ε

2
δ√1−ε + (

1

2
− ε)δ1 +

ε

2
δ√1+ε

Clearly µε ∈M1
0. We also have that

m4(µε) = ε(1 + ε)2 + ε(1− ε)2 + (1− 2ε)

= 1 + 2ε3.

So by (2.18) we obtain that r4(µ) = 2ε3.
On the other hand, since µε is atomic, then, for ε < 1, one has

dlev(µε,b) ≥ min{ ε
2
, 1−

√
1− ε,

√
1 + ε− 1} ≥ ε

4
.

It is not hard to see that for ε small enough we have that ε
4
> C(2αε3α). For such ε

dlev(µε,b) > C · r4(µ)α.
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Now we are able to prove Theorem 5.

Proof of Theorem 5. It follows from (2.22) and (2.23) that

r4(µn) = r4(D1/
√
nµ
]n) =

1

n2
nr4(µ) =

r4(µ)

n
.

By Theorem 4 we conclude that

dlev(µn,b) ≤ 7

2

3

√
r4(µ)

n
=

7

2

3

√
m4(µ)− 1

n
.

3.3 Bounded case

In this section we prove Theorem 6. This theorem establishes a Berry-Esseen type theorem for
the Boolean central limit theorem for measures of bounded support. We also give an example
that shows that the estimate in this theorem is sharp.

Proof of Theorem 2. Using (2.9) and (2.19), we obtain

Fµn(z) = (1− n)z +
√
nFµ(

√
nz) for z ∈ C+.

By Proposition 10 there exists a measure ν ∈ M such that Fµ(z) = z − Gν(z) for z ∈ C+. It
follows that

Fµn(z) = (1− n)z +
√
n(
√
nz −Gν(

√
nz))

= z −
√
nGν(

√
nz))

= z −GD 1√
n
ν(z) for z ∈ C+,

where the third equality is due to (2.3).
Note that supp (ν) ⊂ [−K,K]. Indeed, suppose that x ∈ R \ [−K,K]. Since supp (µ) ⊂

[−K,K], then x ∈ R \ supp (µ). Therefore, by (2.5) we obtain that Gµ(x) 6= 0. Finally, part
(3) of Proposition 12 implies that x ∈ R \ supp (ν).

Let us write ν̂ = D 1√
n
ν. So we have that supp(ν̂) ⊂ [−K√

n
, K√

n
] and

Fµn(z) = z −Gν̂(z) for z ∈ C+. (3.6)

By the third part of Proposition 12, we conclude that supp(µn) ⊂ [−K√
n
, K√

n
] ∪ {x ∈ R \

[−K√
n
, K√

n
] | Fµn(x) = 0}. To conclude the proof of part 1), it is left to prove that there are only

two zeros x1 and x2 which satisfy the conditions |(−1) − x1| ≤ K√
n

and |1 − x2| ≤ K√
n
. The

second part of Proposition 12 implies for z ∈ C \ [−K√
n
, K√

n
] that Fµn(z) = z − Gν̂(z) and that

Fµn(z) is analytic. Therefore, we obtain from the definition of Cauchy transform that

F ′µn(x) = 1 +

∫ ∞
−∞

1

(t− x)2
dν̂(t) for x ∈ R \ [

−K√
n
,
K√
n

].

In particular, Fµn(x) is increasing in ( K√
n
,∞) and can have at most one zero there. It is clear

that

Fµn(x) > x− 1

x−K/
√
n
> K/

√
n for x > 1 +K/

√
n
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and

Fµn(x) < x− 1

x+K/
√
n
< −K/

√
n forK/

√
n < x < 1−K/

√
n.

Since Fµn(x) is continuous in ( K√
n
,∞), it must have a zero x2 in [1− K√

n
, 1 + K√

n
].

A similar argument shows that Fµn(x) has only a zero x1 in (−∞, −K√
n

) bounded in [−1 −
K√
n
,−1 + K√

n
]. We conclude the proof of part 1).

Using (3.6) and Proposition 10, we obtain that m1(µn) = 0 and m2(µn) = 1. The idea of
the rest of the proof is that these two moments force the mass of µn to concentrate evenly in
x1 and x2.

We put p = µn({x1}), q = µn({x2}), and r = µn([−K√
n
, K√

n
]). Note that p+ q+ r = 1 by part

1). It is clear that there exist y1 ∈ [−K√
n
, K√

n
] and y2 ∈ [0, K√

n
] such that

∫ K/√n
−K/

√
n
x dµn(x) = y1r

and
∫ K/√n
−K/

√
n
x2 dµn(x) = y22r. Define ε := 1 + x1 and δ := x2 − 1. Since m1(µn) = 0, then we

have that x1p + y1r + x2q = 0; it follows that p(−1 + ε) + ry1 + q(1 + δ) = 0. Therefore, we
deduce the inequalities

|q − p| ≤ p|ε|+ r|y1|+ q|δ| ≤ (p+ q + r)
K√
n

=
K√
n
. (3.7)

Since p+ q ≤ 1, then p+ p− K√
n
≤ 1. Therefore we obtain that p ≤ 1

2
+ K

2
√
n
. Similarly, we

can conclude that q ≤ 1
2

+ K
2
√
n
. Now, we have from m2(µn) = 1 that x21p + y22r + x22q = 1. It

follows that (1 + 2ε+ ε2)p+ y22r + (1 + 2δ + δ2)q = 1, and we get the estimate

p+ q = 1− (ε2p+ y22r + δ2q)− 2(εp+ δq) ≥ 1− K2

n
− 2

K√
n
≥ 1− 3

K√
n
.

Since q ≤ p+ K√
n
, then 2p+ K√

n
≥ 1− 3 K√

n
. It follows that p ≥ 1

2
− 2K√

n
and q ≥ 1

2
− 2K√

n
. Finally,

we conclude that r ≤ 4 K√
n

because of p+ q + r = 1.
It follows from the estimates obtained for p, q, and r that

dlev(µn,b) ≤ 2K√
n
.

In the next example we compute the

Example 1. Let n be a positive integer. Define pn := 1
2

√
1+4n+1√
1+4n

, qn := 1
2

√
1+4n−1√
1+4n

, xn :=
1−
√
1+4n√
4n

, and yn := 1+
√
1+4n√
4n

. Let µn be the probability measure given by µn := pnδxn + qnδyn.

Then µn = D 1√
n
µ]n1 , where µ := µ1, and dlev(µn,b) ≥ 1

6
√
n

.

To prove µn = D 1√
n
µ]n, it is sufficient to show that Fµn(z) = FD 1√

n
µ]n(z) for z ∈ C+. First

we compute the Cauchy transform of µn:

Gµn(z) =
pn

z − xn
+

qn
z − yn

=
pn(z − yn) + qn(z − xn)

(z − xn)(z − yn)

=
pn(z − yn) + qn(z − xn)

(z − xn)(z − yn)
=
z − ynpn − xnqn
(z − xn)(z − yn)

=
z − xn − yn

z2 − (xn + yn)z + xnyn
=

z − 1/
√
n

z2 − z/
√
n− 1

.
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Hence, we have that Fµn(z) =
√
nz2−z−

√
n√

nz−1 . In particular Fµ(z) = z2−z−1
z−1 .

On the other hand, we compute

FD 1√
n
µ]n(z) =

1√
n

((1− n)
√
nz + nFµ(

√
nz) = (1− n)z +

√
nFµ(

√
nz)

= (1− n)z +
√
n(
nz2 −

√
nz − 1√

nz − 1
) =

(z − nz)(
√
nz − 1) +

√
nnz2 − nz −

√
n√

nz − 1

=

√
nz2 − z −

√
n√

nz − 1
= Fµn(z).

Now it is easy to see, that dlev(µn,b) = max{|−1−xn|, |1−y|, |1/2−pn|}, and since |1/2−pn| ≥
1

6
√
n

, then dlev(µn,b) ≥ 1
6
√
n

.
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Chapter 4

A Monotone Berry-Essen Type
Theorem

In this section we study the speed of convergence in the monotone central limit theorem with
respect to the Kolmogorov distance. We obtain two theorems. In the next section we describe
them. In Section 4.2 we prove the theorems. Since the proof requires many estimations,
we opt for proving the estimations in the next two sections. In Section 4.3 we obtain the
estimations concerning the monotone convolution, and in Section 4.4 we give the calculations
of the integrals.

4.1 Main Results

Let µ be a probability measure of zero mean and unit variance. Let n be a positive integer,
and define µn := D 1√

n
µ.n. We denote by a to the arcsine distribution:

da(t) :=

{
1

π
√
2−t2 t ∈ (−

√
2,
√

2),

0 elsewhere.
(4.1)

Our goal is to study the convergence on the monotone central limit theorem with respect
to the Kolmogorov distance. In other words, we want to estimate the Kolmogorov distance
dkol(µn, a) = supx∈R |Fµn(x)−Fa(x)| as n goes to infinity.

Our first result gives an estimation of the rate of convergence in the monotone central limit
theorem for measures of finite fourth moment.

Theorem 7. Let µ be a probability measure with m1(µ) = 0 and m2(µ) = 1. Let µn = D1/
√
nµ

.n,
n ≥ 1. Suppose that m4(µ) <∞. Then there exists a constant k depending only on µ such that
we have the Kolmogorov distance

dkol(µn, a) ≤ kn−1/8

The following theorem improves the bound of the previous one, but it slightly less general
being only for measures of finite sixth moment.

Theorem 8. Let µ be a probability measure. Suppose that m1(µ) = 0, m2(µ) = 1, and m6(µ) <
∞. Let µn = D1/

√
nµ

.n, n ≥ 1. Then there exists a constant k depending only on µ such that
we have the Kolmogorov distance

dkol(µn, a) ≤ kn−1/4
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In fact, the rate in Theorem 8 is sharp as we see in the example of the next section.
Before passing to the proofs, we make some comments about the difficult parts of this

problem. The first problem we face is that the Kolmogorov distance is defined at the level of
cumulative distribution functions and the definition of monotone convolution is at the level of
F -transforms. So, a very natural strategy is to estimate the Kolmogorov distance in terms of
the F -transforms (equivalently of Cauchy transforms) of the involved measures. This task is
done by Bai’s inequality. This inequality was also the approach used in the proofs of the free
Berry-Esseen theorem given by Chistyakov and Götze [13] and Kargin [21].

Bai’s inequality reduces the problem to the level of F -transforms. The task now is essentially
to estimate Fµ.n(z) with precision for z near the real axis. This is the most difficult part because
it is not trivial to obtain even a basic expansion of Fµ.n(z), and any such expansion is quite
messy.

The results of this chapter were published in [7] with the collaboration of Arizmendi and
Wang.

4.2 Proofs of Main Results

In this section we prove our two theorems from a general argument. The idea is to use Bai’s
inequality. It implies to obtain nontrivial estimates of some integrals and some other expressions
involving F -transforms. For the sake of clarity, we put the main estimations into lemmas, and
we prove them in the following sections.

Proof of Theorems 7 and 8. Let µ be a probability measure of zero mean and unit variance. Let
n be a positive integer, and define µn := D 1√

n
µ.n. Our objective is to estimate the Kolmogorov

distance dkol(µn, a) as n goes to infinity. As we mention in the previous section, the strategy is
to use Bai’s inequality.

The following lemma allows us to use Bai’s inequality.

Lemma 3. ∫
R
|Fµn(x)−Fa(x)|dx <∞. (4.2)

We may now conclude by Bai’s inequality that

dkol(µn, a) ≤ 1

π(2γ − 1)

(∫
R
|Gµn(z)−Ga(z)|dx+

1

y
sup
r∈R

∫
|t|≤2ay

|Fa(r + t)−Fa(r)|dt
)
, (4.3)

where z = x+ iy, y > 0, and a and γ are constants such that

γ =
1

π

∫
|t|<a

1

t2 + 1
dt >

1

2
. (4.4)

The second integral is not difficult to handle. We get that

Lemma 4.
1

y
sup
r∈R

∫
|t|≤2ay

|Fa(r + t)−Fa(r)|dt ≤ 16a3

3 4
√

2π

√
y.

As a consequence we obtain for γ = 2
3

and a =
√

3 that (4.3) becomes

dkol(µn, a) ≤ 3

π

(∫
R
|Gµn(z)−Ga(z)|dx+ 8

√
y

)
. (4.5)
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The problem is reduced now to bound the difference of the Cauchy transforms |Gµn(z) −
Ga(z)|. Note that the right side of the inequality only depends on y: For any y > 0 the right
side of the inequality takes a value, and that value is greater or equal than dkol(µn, a). The
problem here is that as y goes to zero we lose control of the integral

∫
R |Gµn(z) − Ga(z)|dx.

Since the monotone convolution is defined in terms of the F -transform, it is more convenient
to work with them instead of the Cauchy transforms. Consider the F -transforms Fµn(z) and
Fa of the measures µn and a respectively. Let

√
· : C\[0,∞) → C+ denote the principal

root square. Define the complex function εn(z) : C+ → C as εn(z) := z2 − 2 − F 2
µn , that is

Fµn(z) =
√
z2 − 2 + εn(z). So we have that∫

R
|Gµn(z)−Ga(z)|dx =

∫
R

∣∣∣ 1√
z2 − 2 + εn(z)

− 1√
z2 − 2

∣∣∣dx. (4.6)

We may think of |εn(z)| as an error between Fµn(z) and Fa(z). The next lemma gives an
estimation of the last integral.

Lemma 5. Let ε : C+ → C such that |ε(z)| < 3y
2

. Then∫
R

∣∣∣ 1√
z2 − 2 + ε(z)

− 1√
z2 − 2

∣∣∣dx ≤ C
√
y.

We make some comments about this lemma. For fixed y > 0 the point z2 − 2 draws a
parabola being the x-axis its axis of symmetry. The vertex is at the point (−2,−y2). It is easy
to see that the parabola is always at a distance greater than 2y of the semi-axis [0,∞). From
this fact we conclude first that the hypothesis of the lemma must ask at least that |ε(z)| < 2y,
so we guaranteed that the term z2 − 2 + ε(z) is in the domain of the principal root square.
Second, by asking the error to be smaller, say |ε(z)| < 3y

2
, we assure that |z2 − 2 + ε(z)| > y/2,

and thus the term 1√
z2−2+ε(z)

can not be too big and its size is depending essentially on how

small is y. Thus, one may expect an estimation of the integral (4.6) in terms only of y. We
could get a better estimation than the one given in the lemma by taking the error term much
smaller (compared to y), but for our purposes with this estimation is enough.

Let us go back to the estimation of dkol(µn, a). By lemma 5, (4.6), and (4.5) we have that
if |εn(z)| < 3y

2
, then we have the Kolmogorov distance

dkol(µn, a) ≤ 3

π
(C
√
y + 8

√
y) . (4.7)

We next conclude Theorem 7. First, we give an expression for the error εn(z) from which we
derive a bound of |εn(z)| in terms only of y and n. Then by choosing y = 1

nα
for some adequate

α, we may conclude that |εn(z)| < 3y
2

and apply the last inequality.
goes to zero we lose control in the precision of the estimate of Fµn(z), because in general

we do not have good estimates of Cauchy transform G(z) as y goes to zero, and we would not
have a good estimate of |εn(z)|. So, we need to find an optimal choice of y = 1

nα
that minimize

|εn(z)|.
We left the necessary expansions and estimations for the next section. Suppose thatm4(µ) <

∞. By equation (4.24) we have that

εn(z) = − 2

n

j=n∑
j=1

∫
R

t√
nF ◦n−1n (z)− t

dν(t) +
1

n

j=n∑
j=1

Gν(
√
nF j−1

n (z))2, (4.8)
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where Fn(z) = FD 1√
n
µ(z) and ν is the probability measure such that Fµ(z) = z −Gν(z). Note

that by Proposition 10 we have that m2(ν) <∞.
Note that by definition of Bn(z), see next section, we haveBn(z) = 1

n

∑j=n
j=1 Gν(

√
nF j−1

n (z))2.

If n ≥ max{4α2, 4w(R)2}, then by the proof of lemma 7 we have

∣∣ 1
n

j=n∑
j=1

Gν(
√
nF j−1

n (z))2
∣∣ ≤ 8√

n
. (4.9)

Observe that the stronger hypothesis m6(µ) <∞ of the lemma is not used to conclude this.
Now, we have the following estimation∣∣∣∣− 2

n

j=n∑
j=1

∫
R

t
√
nF ◦j−1n (z)− t

dν(t)

∣∣∣∣ ≤ 2

n

j=n∑
j=1

m

Im(
√
nF ◦j−1n (z))

≤ 2

n

j=n∑
j=1

m√
nIm((z))

=
2m√
ny
,

where m =
∫
R |t|dν(t). Observe that m is finite because of m2(ν) <∞.

By the above estimations we have that

|εn(z)| ≤ 2m√
ny

+
8

n1/2
. (4.10)

Take y = 2m
n1/4 . Then we have that

|εn(z)| ≤ 1

n1/4
+

8

n1/2
. (4.11)

Clearly for n big enough we have that |εn(z)| ≤ 3y
2

, and then equation (4.7) implies

dkol(µn, a) ≤ 3

π

(√
2mC

n1/8
+

8
√

2m

n1/8

)
. (4.12)

We conclude Theorem 7.
Now assume that m6(µ) <∞. Take y = h

n1/2 , where h is as in lemma 7. Then by the same
lemma we obtain that for n big enough

|εn(z)| ≤ h

n1/2
<

3y

2
. (4.13)

Hence, the equation (4.7) implies

dkol(µn, a) ≤ 3

π

(√
hC

n1/4
+

8
√
h

n1/4

)
. (4.14)

We conclude Theorem 8.
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Example of sharpness for Theorem 8.
We prove that for some measure µ with m6(µ) < ∞ we have that dkol(µn, γ) ≥ 1

5n1/4 . We
need the next proposition, which is derived from Section 5 of [18].

Proposition 16. Let c ≥ 0. Let µ the measure with F -transform given by Fµ(z) = c +√
(z − c)2 − 2. Then:

1) We have that µ = µac +µsing with Supp(µac) ⊂ [c−
√

2, c+
√

2] and µsing = |c|
c2+2

δc−
√
c2+2.

2) The F -transform of µ.n is Fµ.n(z) = c+
√

(z − c)2 − 2n.

Let µ the measure given by the F -transform Fµ(z) = 1 +
√

(z − 1)2 − 2. The proposition

implies that Fµ.n(z) = 1+
√

(z − 1)2 − 2n. By equation (2.9) the F -transform of µn := D 1√
n
µ.n

is Fµn(z) = 1√
n
Fµ.n(

√
nz) = 1√

n
+
√

(z − 1√
n
)2 − 2. Take l to be the infimum of the Supp(µn).

Again by the previous proposition we see that l = 1√
n
−
√
−2 + 1

n
> −
√

2 + 0.5√
n
. It follows that

dkol(µn, a) = supx∈R |µn(−∞, x] − a(−∞, x]| ≥ |µn(−∞,−
√

2 + 0.5√
n
] − a(−∞,−

√
2 + 0.5√

n
]| =

a((−
√
−2,−

√
2 + 0.5√

n
]). Finally, note that

a((−
√
−2,−

√
2 +

0.5√
n

]) =
1

π

∫ −√2+ 0.5√
n

−
√
2

1√
2− x2

dx

=
1

π

∫ −√2+ 0.5√
n

−
√
2

1√
(
√

2− x)(
√

2 + x)
dx

≥ 1

2π

∫ −√2+ 0.5√
n

−
√
2

1√
(
√

2 + x)
dx

=
1

2π

∫ 0.5√
n

0

1√
x
dx

=
1

2π
2(

0.5√
n

)
1
2 ≥ 1

5n1/4
.

4.3 Properties of Fµn

Let µ ∈ M1
0 such that m4(µ) < ∞. Define µn = D 1√

n
µ.n. In this section we obtain an

estimate of Fµn(z) of the form Fµn =
√
z2 − 2− εn(z) where en(z) is an error term that goes

to zero as n goes to infinity (have in mind that the F -transform of the limiting distribution is
FA(z) =

√
z2 − 2). We also estimate |εn(z)| for Im(z) small.

To give a better perspective of the problem of computing Fµn(z) we first briefly review
what is known about it. That problem is equivalent to compute Fµ.n(z). We find two main
contributions in the literature. The first is in the context of monotone infinitely divisibility.
In [25] and [9] is established that a measure µ is monotone infinitely divisibility if and only if
there exists a composition semigroup of F -transforms {Ft(z)}t≥0 with F0 = Id and F1 = µ. In
particular Fn(z) = Fµ.n(z). In [25] Muraki computes Fµ.n(z) for the cases where µ is a point
measure δa, the arcsine distribution, the monotone Poisson distribution, the deformed arcsine
distribution (our example of sharpness for Theorem 8), and the Cauchy distribution. Also in
the context of obtaining examples of monotone infinitely divisible distributions, in [18] Hasebe
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obtains Fµ.n(z) for the measure given by Fµ(z) = c + [(z − c)α + b]
1
α . This is a generalization

of the deformed arcsine distribution.
The second contribution is given in [34] by Wang. In example 3.5 it is computed Fµn(z) for

the Bernoulli distribution 1
2
δ−1 + 1

2
δ1. He obtains that

Fµn(z) =

√√√√√z2 − 2 +
1

n2

n−1∑
j=0

1

F ◦jD 1√
n
µ(z)2

.

His method to obtain this was essentially instead of obtaining directly Fµn(z) = F ◦nD 1√
n
µ(z)

he computed g−1 ◦ F ◦nD 1√
n
µ ◦ g(z) where g(z) =

√
z. This method can be generalized to obtain

the same result that we obtained here, but here we use another approach that we describe next.
By Proposition 10 there exists ν ∈ M such that m2(ν) < ∞ and Fµ(z) = z − Gν(z) for

z ∈ C+. Let us define Fn(z) as (see Proposition 2.9)

Fn(z) := FD 1√
n
µ(z) = z − 1√

n
Gν(
√
nz) for z ∈ C+ (4.15)

By definition of monotonic convolution, we have that Fµn(z) = FD 1√
n
µ.n(z) = F ◦nn (z).

Observe that by (2.7) we have that

Gν(z) =
1

z
+

1

z

∫
R

t

z − t
dν(t), (4.16)

and so

zGν(z) = 1 +

∫
R

1

z − t
dν(t). (4.17)

The j-th iteration of Fn(z) is given by

F ◦jn (z) = F j−1
n (z)− 1√

n
Gν(
√
nF j−1

n (z)). (4.18)

Squaring this equation we obtain that

F ◦jn (z)2 = F j−1
n (z)2 − 1

n

√
nF j−1

n (z)Gν(
√
nF j−1

n (z)) +
1

n
Gν(
√
nF j−1

n (z))2. (4.19)

By equation (4.17) it follows that

F ◦jn (z)2 = F j−1
n (z)2 − 2

n
− 2

n

∫
R

t√
nF ◦n−1n (z)− t

dν(t) +
1

n
Gν(
√
nF j−1

n (z))2. (4.20)

We sum the equation from j=1 to j=n as follows:

j=n∑
j=1

F ◦jn (z)2 =

j=n∑
j=1

F j−1
n (z)2 − 2− 2

n

j=n∑
j=1

∫
R

t√
nF ◦n−1n (z)− t

dν(t) +
1

n

j=n∑
j=1

Gν(
√
nF j−1

n (z))2.

(4.21)
This implies that

F ◦nn (z)2 = z2 − 2− 2

n

j=n∑
j=1

∫
R

t√
nF ◦n−1n (z)− t

dν(t) +
1

n

j=n∑
j=1

Gν(
√
nF j−1

n (z))2. (4.22)

35



We conclude that
F ◦nn (z) =

√
z2 − 2 + ε(z), (4.23)

where

ε(z) = − 2

n

j=n∑
j=1

∫
R

t√
nF ◦n−1n (z)− t

dν(t) +
1

n

j=n∑
j=1

Gν(
√
nF j−1

n (z))2. (4.24)

This expression is used for proving Theorem 7. But for obtaining Theorem 8 we need a
more sophisticated expansion of ε(z).

Recall that m2(ν) <∞. By Proposition 10 we can expand Gν(z) as

Gν(z) =
1

z − Ĝw(z)
, (4.25)

where Ĝw(z) = α + Gw(z), α ∈ R, and Gw is the Cauchy transform of some positive finite
measure w with w(R) = var(ν).

A straight forward computation gives∫
R

t

z − t
dν(t) = zGν(z)− 1 =

Ĝw(z)

z − Ĝw(z)
. (4.26)

Using (4.25) and (4.26) we rewrite the error as

εn(z) = − 2

n

n−1∑
j=0

Ĝw(
√
nF ◦jn (z))

√
nF ◦jn (z)− Ĝw(

√
nF ◦jn (z))

+
1

n

n−1∑
j=0

1

[
√
nF ◦jn (z)− Ĝw(

√
nF ◦jn (z))]2

. (4.27)

For a brief reference to εn(z), we write it as εn(z) = An(z) +Bn(z) where

An(z) := − 2

n

n−1∑
j=0

Gw(
√
nF ◦jn (z))

√
nF ◦jn (z)−Gw(

√
nF ◦jn (z))

,

and

Bn(z) :=
1

n

n−1∑
j=0

1

[
√
nF ◦jn (z)−Gw(

√
nF ◦jn (z))]2

.

In the next lemma we obtain some useful estimates that we use for bounding |εn(z)|.

Lemma 6. Suppose that n ≥ max{4α2, 4w(R)2}. Then for all z such that 1/
√
n ≤ Im(z) ≤ 1

we have that

i) |F ◦nn (z)− z| ≤ 8.

ii) |
∑n−1

j=0 Im[Gν(
√
nF ◦jn (z)]| ≤ 8

√
n.

Proof. Since Fn(z) = z − 1√
n
Gν(
√
nz), then by (2.4) we have

|Fn(z)− z| ≤ 1√
n
≤ 1 for Im(z) ≥ 1√

n
. (4.28)

Now rewriting Fn(z) with (4.25) we get
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Fn(z) = z − 1√
n

1√
nz − α−Gw(

√
nz)

= z − 1

n

1

z − α√
n
− 1√

n
Gw(
√
nz)

.

Hence, we have that

|Fn(z)− z| ≤ 1

n
for Im(z) ≥ 1√

n
, |z| ≥ 2, and n ≥ max{4α2, 4w(R)2}. (4.29)

We can now prove part i). Suppose Im(z) ≥ 1√
n

and n ≥ max{4α2, 4w(R)2}. We want

to show that |F ◦nn (z) − z| ≤ 7. If |z| ≥ 3 (4.29) implies that |F ◦nn (z) − z| ≤ 1. Now assume
that |z| < 3. Define J = {j ∈ {1, 2, ..., n} | |F ◦jn (z)| ≥ 3}. If J = ∅ then |F ◦nn (z) − z| ≤
|F ◦nn (z)|+ |z| < 6. If J 6= ∅, then take k = min J . By (4.28) and (4.29) we have

|F ◦nn (z)− z| ≤ |F ◦nn (z)− F ◦kn (z)|+ |F ◦kn (z)− F ◦k−1n (z)|+ |F ◦k−1n (z)− z| ≤ 8.

Now we prove part ii). Since

Fn(z) = z − 1√
n
Gν(
√
nz),

then
n∑
j=1

F ◦jn (z) =
n−1∑
j=0

F ◦jn (z)− 1√
n

n−1∑
j=0

Gν(
√
nF ◦jn (z)).

It follows that

F ◦nn (z) = z − 1√
n

n−1∑
j=0

Gν(
√
nF ◦jn (z)),

and hence

|
n−1∑
j=0

Gν(
√
nF ◦jn (z)| =

√
n|F ◦nn (z)− z|.

If we suppose that Im(z) ≥ 1√
n

and n ≥ max{4α2, 4w(R)2}, then by part i) we conclude that

|
n−1∑
j=0

Gν(
√
nF ◦jn (z)| ≤ 8

√
n.

In the following lemma we obtain a bound for |ε(z)|.

Lemma 7. Suppose m6(µ) <∞. Then there exists a constant h only depending on µ such that
for all z with Im(z) ≥ 1/

√
n we have that |ε(z)| ≤ h√

n
.
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Proof. Let z a complex number such that Im(z) ≥ 1√
n
. Recall that ε(z) = An(z) + Bn(z).

We first bound Bn(z) and then An(z). In the proof of Lemma 6 we see that Fn increases the
imaginary part. So

Im[F ◦jn (z)] ≥ Im(z) ≥ 1√
n
. (4.30)

Now, by lemma 6 part ii) and (4.25) it follows that

3
√
n ≥ |

n−1∑
j=0

Gν(
√
nF ◦jn (z))| ≥ Im[

n−1∑
j=0

Gν(
√
nF ◦jn (z))]

=
n−1∑
j=0

Im[
√
nF ◦jn (z)]− Im[Ĝw(

√
nF ◦jn (z))]

|
√
nF ◦jn (z)− Ĝw(

√
nF ◦jn (z))|2

≥
n−1∑
j=0

1

|
√
nF ◦jn (z)− Ĝw(

√
nF ◦jn (z))|2

, (4.31)

where the last inequality is by (4.30) and that Im( ˆGw(·)) < 0 over C+. We conclude that
Bn(z) ≤ 3√

n
.

On the other hand, suppose
∫
R t

6dµ(t) < ∞. Proposition (x) implies that
∫
R t

4dv(t) < ∞,
and by the same reason

∫
R t

2dw(t) <∞. Hence
∫
R |t|dw(t) =: M <∞ and w(R) = var(ν) <∞.

Using the definition of Ĝw and (4.30) we have that

|Ĝw(
√
nF ◦jn (z)))| ≤ |α|+

∫
| 1
√
nF ◦jn (z))− t

|dw(t)

≤ |α|+ w(R)

Im[
√
nF ◦jn (z))]

≤ |α|+ w(R) =: K. (4.32)

From (4.26) we obtain the following estimate

|
√
nF ◦jn (z)Gw(

√
nF ◦jn (z)))| ≤

∫
| t
√
nF ◦jn (z))− t

|dw(t) ≤
∫
R |t|dw(t)

Im[
√
nF ◦jn (z))]

≤M.

We can now bound An(z) as follows:

|
n−1∑
j=0

Ĝw(
√
nF ◦jn (z))

√
nF ◦jn (z)− Ĝw(

√
nF ◦jn (z))

| = |
n−1∑
j=0

α +Gw(
√
nF ◦jn (z))

√
nF ◦jn (z)−Gw(

√
nF ◦jn (z))]

|

≤ |
n−1∑
j=0

α
√
nF ◦jn (z)−Gw(

√
nF ◦jn (z))]

|+ |
n−1∑
j=0

Gw(
√
nF ◦jn (z))

√
nF ◦jn (z)−Gw(

√
nF ◦jn (z))]

|.

The first sum of the last expression is |α||
∑n−1

j=0 Gν(
√
nF ◦jn (z))|, and lemma 6 implies that it is
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bounded by 9|α|
√
n. Now from the previous estimates note that

|
n−1∑
j=0

Gw(
√
nF ◦jn (z))

√
nF ◦jn (z)− Ĝw(

√
nF ◦jn (z))

| = |
n−1∑
j=0

Gw(
√
nF ◦jn (z))[

√
nF ◦jn (z)− Ĝw(

√
nF ◦jn (z))]

√
nF ◦jn (z)−Gw(

√
nF ◦jn (z))]2

|

= |
n−1∑
j=0

√
nF ◦jn (z)Gw(

√
nF ◦jn (z))− αGw(

√
nF ◦jn (z))−G2

w(
√
nF ◦jn (z))

√
nF ◦jn (z)−Gw(

√
nF ◦jn (z))]2

|

≤
n−1∑
j=0

|
√
nF ◦jn (z)Gw(

√
nF ◦jn (z))|+ |αGw(

√
nF ◦jn (z))|+ |G2

w(
√
nF ◦jn (z))|

|
√
nF ◦jn (z)−Gw(

√
nF ◦jn (z))|2

≤
n−1∑
j=0

M + |α|K +K2

|
√
nF ◦jn (z)−Gw(

√
nF ◦jn (z))|2

By (4.31) we conclude that |An(z)| = O( 1√
n
).

4.4 Integral Estimates

In the proof of the main theorems of Section 4.2, we put all the estimations concerning integrals
into lemmas. These are the Lemmas 3,4 and 8. In this section we prove them.

Proof of Lemma 3. We have that∫
R
|Fµn(x)−Fa(x)|dx

=

∫ −√2
−∞

Fµn(x)dx+

∫ √2
−
√
2

|Fµn(x)−Fa(x)|dx+

∫ ∞
√
2

(1−Fµn(x))dx

=

∫ −√2
−∞

µn ((−∞, x]) dx+

∫ √2
−
√
2

|Fµn(x)−Fa(x)|dx+

∫ ∞
√
2

µn ([x,∞)) dx

=

∫
x≥
√
2

µn{|t| ≥ x}dx+

∫ √2
−
√
2

|Fµn(x)−Fa(x)|dx

We want to bound the last two integrals. The second one is clearly bounded. To see that
the first integral is also bounded just note that since m2(µn) = 1, then

∫
|t|≥x t

2dµn ≤ 1, which

implies that µn{|t| ≥ x} ≤ 1
x2

for x ≥ 1.

We conclude that ∫
R
|Fµn(x)−Fa(x)|dx <∞. (4.33)

Proof of Lemma 4. Without loss of generality let us suppose |ay| < 1/4. We have that |Fa(r+
t)− Fa(r)| = |

∫ r+t
r

da(x)| and a is supported in [−
√

2,
√

2] with density da(x) = 1
π
√
2−x2 . It is

not hard to see that |Fa(r + t) − Fa(r)| ≤ Fa(−
√

2 + |t|) − Fa(−
√

2) for r ∈ R and |t| ≤ 1
2
.

This implies that
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∫
|t|≤2ay

|Fa(r + t)−Fa(r)|dt ≤ 2

∫ 2ay

0

(Fa(−
√

2 + t)−Fa(−
√

2))dt

= 2

∫ 2ay

0

∫ −√2+t
−
√
2

1

π
√

2− s2
dsdt

≤ 2

π
√

2 4
√

2

∫ 2ay

0

∫ −√2+t
−
√
2

1√√
2 + s

dsdt

=

√
2

π 4
√

2

∫ 2ay

0

∫ t

0

1√
s
dsdt

=
4
√

2(2a)3/2

3 4
√

2π
y3/2,

and the desired result follows.

Lemma 8. Suppose that |ε(z)| < 3y
2

. Then∫
R

∣∣∣ 1√
z2 − 2 + ε(z)

− 1√
z2 − 2

∣∣∣dx ≤ C
√
y,

where C is an absolute constant.

Proof. Fix y > 0. Recall z = x+ iy. The proof consists in bounding the integrand. Note that∣∣∣ 1√
z2 − 2 + ε(z)

− 1√
z2 − 2

∣∣∣ =
∣∣∣√z2 − 2−

√
z2 − 2 + ε(z)

√
z2 − 2 ·

√
z2 − 2 + ε(z)

∣∣∣. (4.34)

We have that √
z2 − 2−

√
z2 − 2 + ε(z) =

∫
L

1√
w
dw, (4.35)

where L is the straight line joining z2 − 2 and z2 − 2 − ε(z). Indeed, we know that
√
· is

analytical in C− [0,∞). Note that

• If |x| ≥ 1, then |Im(z2 − 2)| = |2xy| ≥ 2y.

• If |x| < 1, then Re(z2 − 2) = x2 − y2 − 2 < −1− y2 < −2y.

This implies that L ⊂ [0,∞), since |ε(z)| ≤ 3
2
y, so equation (4.35) is right. It also shows that

|z2 − 2| ≥ 2y.
Claim: |z2 − 2 + δ| ≥ |z2 − 2|/4 for all δ ∈ C with |δ| < 3y

2
.

Note that |z2− 2 + δ| ≥ |z2− 2| − 3
2
y. Since |z2− 2| ≥ 2y, then y ≤ |z2− 2|/2. We conclude

that |z2 − 2 + δ| ≥ |z2 − 2|/4.
Now, we can bound the numerator of (4.34) as follows

|
√
z2 − 2−

√
z2 − 2 + ε(z)| ≤ |L| · sup

w∈L
1/
√
|w|

= |ε(z)| · sup
w∈L

1/
√
|w|

≤ 2|ε(z)|
|z2 − 2| 12

<
3y

|z2 − 2| 12
,
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where the second inequality is by the claim. Using this and again the claim, we conclude that∣∣∣√z2 − 2−
√
z2 − 2 + ε(z)

√
z2 − 2 ·

√
z2 − 2 + ε(z)

∣∣∣ ≤ 3y

|z2 − 2|1/2
· 1

|z2 − 2|1/2
· 1∣∣ z2−2

4

∣∣1/2 .
So we arrive to ∫

R

∣∣∣ 1√
z2 − 2 + ε(z)

− 1√
z2 − 2

∣∣∣dx ≤ ∫
R

6y

|z2 − 2|3/2
dx.

Finally, lemma 9 gives the desired result.

Lemma 9. There exists C ′ > 0 such that∫
R

1

|z2 − 2|3/2
dx ≤ C ′

√
y
.

Proof of Lemma. Since the integrand is symmetric with respect to x, then we have∫
R

1

|z2 − 2|3/2
dx = 2

∫ ∞
0

1

|z2 − 2|3/2
dx.

So, it is enough to show that for some absolute c > 0∫ ∞
0

1

|z2 − 2|3/2
dx ≤ c

√
y
. (4.36)

It is convenient to split the integral into two parts:∫ ∞
0

1

|z2 − 2|3/2
dx =

∫ 2

0

1

|z2 − 2|3/2
dx+

∫ ∞
2

1

|z2 − 2|3/2
dx.

It is easy to see that |z2 − 2| > (x− 1)2 for x > 2 and y > 0. Thus∫ ∞
2

1

|z2 − 2|3/2
dx ≤

∫ ∞
2

1

(x− 1)3
dx <∞. (4.37)

On the other hand, we have that∫ 2

0

1

|z2 − 2|3/2
dx =

∫ 2

0

dx

|z −
√

2|3/2 · |z +
√

2|3/2

≤
∫ 2

0

dx

|z −
√

2|3/2
=

∫ 2

0

dx[√
(x−

√
2)2 + y2

]3/2
=

∫ 2−
√
2

−
√
2

dx

(x2 + y2)3/4
=

1

y3/2

∫ 2−
√
2

−
√
2

dx

[(x/y)2 + 1]3/4

≤ 1
√
y

∫
R

dθ

[θ2 + 1]3/4
.

Since
∫
R

dθ

[θ2+1]3/4
<∞, then this estimation and (4.37) implies (4.36).
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Chapter 5

Ergodic Properties of F-transforms

The F -transforms of certain measures belong to a class of analytic functions on the upper half-
plane, called inner functions, that admit a real-valued extension to the real line. Sometimes that
extension preserves the Lebesgue measure. Therefore, we are in the scope of infinite ergodic
theory, and it is of interest to determine the ergodic properties of such transformations. In this
context, we obtain a theorem that extends a previous work of Aaronson.

In Section 2.1 we give some preliminaries on infinite ergodic theory and the theory of inner
functions on the upper half-plane. In Section 2.2 we establish our main theorem, and we see
an interesting application of the monotone central limit theorem to prove a weak form of this
theorem. In Section 2.3 we give a proof of our main theorem.

5.1 Preliminaries

In this section we briefly discuss the main ideas of infinite ergodic theory and the theory of inner
functions on the upper-half plane. The latter theory studies the (infinite) ergodic properties of
certain transforms on R which are induced by some analytic functions on the upper half-plane.

5.1.1 Pointwise Dual Ergodic Transform

One of the central questions in ergodic theory is to understand the frequency at which some
orbit passes through some region of the space. When the measure of the underlying space is
finite, the answer is well understood. But, when the measure of the underlying space is infinite,
the situation becomes very complex and only in certain cases we can say something reasonable
about that frequency. The objective of this section is to introduce the notion of pointwise dual
ergodic transform that defines one of those situations when we can say something.

Let us start with the basic setting of ergodic theory. Let (X,A,m) be a measure space and
T : X −→ X be a transformation such that T preserves the measure: m(T−1(A)) = m(A) for
all A ∈ A. Infinite ergodic theory study the case m(X) = ∞. Now, consider the following
simple and natural situation. Given a set A ∈ A and a point x ∈ A, does the orbit of x
O(x) := {T k(x) | k = 0, 1, 2, 3, ...} return to the set A, and if the orbit return to A at which
frequency does it?.

To study those questions is convenient to introduce the occupation times function of a set
A ∈ A:

SA :=
n−1∑
k=0

1A ◦ T k. (5.1)
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Note that Sn(A)(x) counts how many times before time n the orbit O(x) visited the set A.
In general, it may happen that the orbit return infinitely many times or that the orbit

wanders in some region of the set X. More exactly, the situation is as follows. The space X
can be separated into a conservative part C and a dissipative part D such that X = C ∪ D.
In the conservative part, for any A ∈ A we have that limn−→∞ Sn(A)(x) = ∞ a.e. for x ∈ A.
This means that the orbit of almost every point in A will return to A infinitely often. In the
dissipative part, we have the opposite behavior; the orbits that enter a set will never go back
to it. We call a transformation conservative if X = C.

The previous argument settles the first question of our situation of study. Now, for the
question about the frequency at which the orbit returns, we restrict the discussion only for
conservative transformation, where it makes more sense. Note that the frequency at which the
orbit returns means the asymptotic growth of the occupation time function Sn(A).

Before proceeding, we also consider another natural restriction on our transformation T .
Note that if exists a set A invariant by T , that is T−1(A) = A, it implies that TA ⊂ A and
TAc ⊂ Ac. So we could study T separately in A and Ac. We say that T is ergodic if we have a
set A such that T−1(A) = A, then m(A) = 0 or m(Ac) = 0. We restrict the situation of study
to ergodic transforms.

We first consider the finite case m(X) < ∞. By the Poincaré recurrence theorem we have
that every transform is conservative. Now, if besides it is ergodic, the Birkoff theorem tells
us that 1

n
SA(x) −→ m(A)

m(X)
a.e. for x ∈ X. So, the asymptotic growth of the occupation times

function is asymptotically of order some constant times n.
For the infinite case m(X) = ∞, Birkoff theorem says that 1

n
SA(x) −→ 0 a.e. for x ∈ X.

One may wonder if there is some sequence (an)n≥1 that captures the correct rate of growth of
Sn(A)(x). The next theorem shows that such a sequence does not exist.

Theorem 9. For any positive sequence (an) and any A ∈ A we have that

limn−→∞
1

an
Sn(A)(x) =∞ a.e. on X,

or

limn−→∞
1

an
Sn(A)(x) = 0 a.e. on X.

This means that any sequence (an)n≥1 either overestimate or underestimate the growth of
the occupation times function a.e. in X.

We conclude that the asymptotic pointwise behavior of the occupation times function is
very complex in the infinite case, and that it seems to depend strongly on the point x where
we evaluate the function. Thus, in general we can not say something reasonable. However, for
some transformations there is still possible to say something about the asymptotic behavior of
the occupation time function but only at the distributional level.

For some transforms T happens that we can still capture the asymptotic of Sn(A) but only
at the dual level. Denote Lp := Lp(X,A,m). Each T induces a linear isometry L in L∞ given

by f −→ f ◦ T . The dual operator (or transfer operator) T̂ : L1 −→ L1, is defined by∫
X

T̂ f · gdm =

∫
X

f · (g ◦ T )dm f ∈ L1, g ∈ L∞. (5.2)

Some very special transforms T have the property that for any f ∈ L1

1

an

n−1∑
k=0

T̂ kf(x) −−−−→
n−→∞

∫
X

fdm a.e. for x ∈ X.
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They are called pointwise dual ergodic transforms. The following result of Aaronson
tells us that we can capture the asymptotic of Sn(A) in the distributional sense. Here, we are
thinking Sn(A) as a random variable.

Theorem 10. Suppose that T is pointwise dual ergodic such that its return sequence an is
regularly varying of index α, that is

a(tn)
an
−−−−→
n−→∞ tα for some real α, inside the interval ∈ [0, 1].

Then
Sn(f)

an

d−→ Yα, (5.3)

where Yα is the normalized Mittag-Leffer distribution of order α.

5.1.2 Inner Functions on the Upper Half-Plane

Some transforms T : R → R that preserve the Lebesgue measure can be seen as the real
extension of a certain holomorphic function F : C+ → C+. By instance, the Boole transform
T (x) = x− 1

x
is the real extension of the holomorphic function F (z) = z − 1

z
. The interesting

thing is that the ergodic properties of these transforms T can be studied in terms of the dynamics
of the function F. In this section we characterize and determine the ergodic properties of such
transforms. We are based on Aaronson [2] Chapter 6.

Let F : C+ −→ C+ be a holomorphic function. We say that T is an inner function if
limy↓0 F (x+ iy) exist a.e. x ∈ R and belongs to R. We denote this limit by TF (x), and we call
it the real restriction of F. Next we obtain a characterization of the inner functions.

Recall that the Nevanlinna representation says that any holomorphic function F : C+ −→ C+

can be written as

F (z) = αF z + βF +

∫
R

1 + tz

t− z
dµF , (5.4)

where αF , βF ∈ R, α ≥ 0, and µF is a positive measure on R.

Proposition 17. F : C+ −→ C+ is an inner function if and only if µF is singular with respect
the Lebesgue measure.

Now, the next situation of interest is when an inner function preserves the Lebesgue measure.

Proposition 18. Suppose F : C+ −→ C+ is an inner function, then m ◦ T−1F = 1
αF
λ.

This implies that TF preserves the Lebesgue measure if and only if αF = 1.
When we have a measure-preserving transformation on an infinite space, the first ergodic

properties to determine are conservativity and ergodicity.

Proposition 19. Suppose that F : C+ −→ C+ is an inner function with αF = 1. Then TF is
conservative and ergodic if and only if

n∑
k=1

Im
−1

F k(z)
=∞ (5.5)

for some z ∈ C+.

The next ergodic property of interest is the pointwise dual ergodicity. The following theorem
gives a criterion for it.
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Theorem 11. Let F : C+ −→ C+ be an inner function. Suppose that αF = 1 and that its
real restriction TF is conservative and ergodic. Then TF is pointwise dual ergodic with return
sequence

an(TF ) ∼ 1

π

n∑
k=1

Im
−1

F k(z)
for ∈ C+. (5.6)

5.2 Main Result

The F -transform of a measure µ is an analytic function Fµ : C+ → C+. If µ is singular
respect to the Lebesgue measure, then by Proposition 17 Fµ is an inner function. Thus, its
real restriction Tµ(x) := limy↓0 Fµ(x+ iy) exists a.e. on R and preserves the Lebesgue measure.
The next theorem establish some ergodic properties of the transform Tµ.

Theorem (Aaronson). Suppose that µ has zero mean, unit variance, and bounded support.
Then Tµ is conservative and ergodic. Moreover, it is pointwise dual ergodic with return sequence

an(Tµ) ∼
√
2n
π

.

In [34] this result is generalized.

Theorem (Wang). Suppose that µ has zero mean and unit variance. Then Tµ is conservative
and ergodic.

The following theorem is the main result of this chapter. We complete the generalization
started by Wang.

Theorem 12. Suppose that µ has zero mean and unit variance. Then Tµ is pointwise dual

ergodic with return sequence an(Tµ) ∼
√
2n
π

.

Recall that Sn(A) =
∑n−1

k=0 1A ◦ T k is the occupation times function. Since
a(tn)(Tµ)

an(Tµ)
= t1/2,

then an is regularly varing of index 1/2. Thus, by the Theorem 10 we have that for any Borel
set A

lim
n−→∞P ([

π√
2n
Sn(A) ≤ x]) =

2

π

∫ x

0

e−t
2/πdt for x ≥ 0,

where P is any absolutely continuous probability measure on R. So, we obtain a good asymp-
totic understanding of Sn(A) in the distributional sense.

Remark 1. Since the main object of the theorem of this section is the F -transform of some
measure, one may expect a connection between the theory of Chapter 4 and the results of this
section. Indeed, that is the case, and in the following lines we obtain a simple proof of our main
theorem but under the weak assumption that the fourth moment is finite. By Theorem 11 we
have that for any z ∈ C+

an(TF ) ∼ 1

π

n∑
m=1

Im
−1

Fm(z)
. (5.7)

For a positive integer m define Fm(z) := FD1/
√
mµ(z). Formula (2.9) implies that Fm(z) =

F (
√
mz)/

√
m. Let us rewrite it as F (z) =

√
mFm(z/

√
m). Therefore

F ◦m(z) =
√
mF ◦mm (z/

√
m). (5.8)
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By (4.23) we have that F ◦mm (z) admits the approximation

F ◦mm (z) =
√
z2 − 2 + εm(z) for z ∈ C+. (5.9)

Since we are assuming that m6(µ) <∞, the inequality (4.13) says that for some h > 0 we have
that |εm(z)| ≤ h√

n
when Im(z) ≥ h√

n
.

It follows that for z = hi

n∑
m=1

Im
−1

Fm(z)
=

n−1∑
m=0

Im(
−1

F ◦m(hi)
)

=
n−1∑
m=1

Im(
−1√

mF ◦mm (hi/
√
m)

)

=
n−1∑
m=1

Im(
−1

√
m
√

(hi/
√
m)2 − 2 + εm(hi/

√
m)

=
n−1∑
m=1

Im(
−1

√
m
√
−2 + δm

)

∼ 1√
2

n−1∑
m=1

1√
m
∼ 1√

2
(2
√
n) ∼

√
2n,

where δm = (hi/
√
m)2 + εm(hi/

√
m). The only property of δm that matters for the above

calculations is that δm → 0.
We conclude that

an(TF ) ∼
√

2n

π
. (5.10)

This theorem was published in [7] with the collaboration of Arizmendi and Wang.

5.3 Proof

In this section we prove the main theorem. But before, we need a technical lemma.

Lemma 10. Let µ a probability measure with zero mean and unit variance. Let ν be the
probability measure such that Fµ(z) = z − Gν(z). Let k a positive number big enough so that
ν([−k, k]) ≥ 9/10, and define Γ := {z : y ≥ 2(k + 1), |x| ≤ y}. If z ∈ Γ, then we have that

F ◦nµ (z) ∈ Γ ∀n ∈ N. (5.11)

Proof. It is enough to prove that if z ∈ Γ, then Fµ(z) ∈ Γ. First, we need to establish a technical
result. Let Γ+ := {z : y ≥ 2(k+1), y−1 ≤ x ≤ y}, Γ− := {z : y ≥ 2(k+1),−y ≤ x ≤ −(y−1)},
and Γ0 := Γ \ {Γ+ ∪ Γ−}.

Claim:

i) Re(Gν(z)) > 0 if z ∈ Γ+,

ii) Re(Gν(z)) < 0 if z ∈ Γ−.
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We only prove i). The proof of ii) is similar. Note that

Re(Gν(z)) =

∫
R

(x− t)
(x− t2) + y2

dν(t) =
1

y

∫
R

(x−t)
y

(x−t
y

)2 + 1
dν(t)

=
1

y

∫ k

−k

(x−t)
y

(x−t
y

)2 + 1
dν(t) +

1

y

∫
|t|>k

(x−t)
y

(x−t
y

)2 + 1
dν(t).

Now if z ∈ Γ+, then

y − 1
2
y

y
≤ y − 1− k

y
≤ x− t

y
≤ y + k

y
≤
y + 1

2
y

y
for t ∈ [−k, k].

So we have that
1

2
≤ x− t

y
≤ 3

2
for t ∈ [−k, k].

It is not hard to see that

inf
1
2
≤θ≤ 3

2

θ

θ2 + 1
=

1/2

(1/2)2 + 1
= 0.4

It follows that for z ∈ Γ+

1

y

∫ k

−k

(x−t)
y

(x−t
y

)2 + 1
dν(t) ≥ 1

y

∫ k

−k
0.4dν(t) ≥ 0.36

1

y
,

where the last inequality is because by hypothesis ν([−k, k]) ≥ 0.9. We conclude that for
z ∈ Γ+

Re(Gν(z)) ≥ 0.36
1

y
+

1

y

∫
|t|>k

(x−t)
y

(x−t
y

)2 + 1
dν(t)

≥ 0.36
1

y
− 1

y

∫
|t|>k

dν(t)

≥ 0.36
1

y
− 0.1

1

y

≥ 0.26
1

y
> 0.

So the claim is true.
We are now able to prove that if z ∈ Γ, then Fµ(z) ∈ Γ. Take z ∈ Γ. There are 3 cases.

Case 1: z ∈ Γ0. Note that the distance of z to δΓ (the boundary of Γ) is at least 1√
2
. Since

|Fµ(z)− z| = |Gν(z)| ≤ 1
y
< 1

2
, then clearly Fµ(z) ∈ Γ.

Case 2: z ∈ Γ+. We have that 1 < y − 1 ≤ x ≤ y. We want to prove that Fµ(z) ∈ Γ:
Im(Fµ(z)) ≥ 2(k + 1) and |Re(Fµ(z)| ≤ Im(Fµ(z)). Since Im(Fµ(z)) = y +

∫
R

y
(x−t)2+y2dν(t),

then Im(Fµ(z)) ≥ y ≥ 2(k + 1). Now, we have that Re(Fµ(z)) = x − Re(Gν(z)) and
Re(Gν(z)) > 0 for z ∈ Γ+ (by the claim), so Re(Fµ(z)) = x−Re(Gν(z)) < x ≤ y ≤ Im(Fµ(z)).
Since x ≥ y− 1 ≥ 1 and |Gν(z)| ≤ 1

y
< 1

2
, then Re(Fµ(z)) > 1− 1/2 = 1/2. We conclude that

|Re(Fµ(z)| ≤ Im(Fµ(z)).
Case 3: z ∈ Γ−. The argument is analogous to the case 2.
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Proof of Theorem 12. By Theorem 11, it is enough to prove that 1
π

∑n
k=1 Im

−1
Fk(z)

∼
√
2n
π

.

Let µ be a probability measure with zero mean and 0 < var(µ) < +∞. By Proposition 10
there exists a measure ν such that Fµ(z) = z −Gν(z) with ν(R) = var(µ). Let zn = F ◦nµ (c · i)
with c = 2(k + 1) and k is as in Lemma 10. So, by this lemma we have |Re(zn)| ≤ Im(zn).
Next note that the sequence zn satisfies

lim
n→∞

|zn| =∞.

This is because the Denjoy-Wolff point of Fµn must be ∞. Indeed, note that Im(Fµn(z)) =
y +

∫
R

y
(x−t)2+y2dν(t) where z = x+ iy. Since ν(R) = var(µ) > 0, then Im(Fµ(z)) > Im(z) for

z ∈ C+. So, Fµn has no fixed point in C+ and Im(zn) is increasing. Therefore the D-W point
of Fµ is ∞.

We conclude that zn →∞ non-tangentially and by Proposition 4 we have

znGν(zn)→ ν(R).

It follows that

z2n+1 − z2n = (zn+1 − zn)(−
∫
R

dν(t)

zn − t
)

= (
zn+1

zn
+ 1)(−znGν(zn))

→ −2ν(R) = −2var(µ)

as n→∞. Consequently, we obtain the convergence of averages

1

n+ 1

n−1∑
j=1

(z2j+1 − z2j )→ −2var(µ) (n→∞).

Observe now that
z2n
n

=
z21
n

+
n− 1

n

[
n−1∑
j=1

(z2j+1 − z2j

]
, n ≥ 2,

and so we finally have
z2n
n

= −2var(µ).

The point here is that the number −2var(µ) < 0. Hence we can apply the principal branch of√
· to z2n

n
, and the continuity of

√
· on (−∞, 0) says that

lim
n→∞

zn√
n

= i
√

2var(µ).

This shows that

Im

(
−1

zn

)
∼

√
1

2var(µ)n
(n→∞)

and naturally,
N∑
n=1

Im

(
−1

zn

)
∼

√
2N

var(µ)
(N →∞).
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