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Abstract

In this work we develop a method for optimization over Stiefel manifold that allows
us to use conjugate gradient methods without vector transport for tangent vectors.

Vector transport is a crucial concept in the performance of Riemannian conjugate
gradient methods, we investigate the possibility of avoiding approximations and
using parallel transport for tangent vectors via transforming problems over Stiefel
manifold onto problems on Euclidean spaces.

However, our proposal relies in Riemannian concepts such as retraction. In
particular, the Cayley retraction and the Polar Decomposition based retraction are
used to parametrize Stiefel manifold. Taking advantage of said parametrization,
we use a composite objective function defined over a vector space, the space of
skew-symmetric matrices, therefore, no vector transport is needed.

Performance of our approach is compared with those of three state-of-the-art
algorithms in a variety of numerical experiments. Our approach is seen to have fine
performance but at higher computational cost.
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Chapter 1

Introduction

This work concerns the solution of the problem

min
X∈Rn×p

F(X), s.t. X>X = Ip, (1.1)

where Ip is the p−by−p identity matrix, 1 ≤ p ≤ n and F(X) : Rn×p → R is a
differentiable function. The feasible set is the smooth manifold introduced in 1935
by Stiefel [46],

St(n, p) := {X ∈ Rn×p|X>X = Ip}. (1.2)

The existence of a solution to (1.1) is guaranteed since the domain, St(n, p), is a
compact set [4]. Some particular examples of the Stiefel manifold are the sphere
and the orthogonal group, when p = 1 and p = n, respectively.

However, finding a solution for (1.1) is difficult in general. Since St(n, p) is not a
linear manifold nor a convex set, iterative schemes involve high computational cost
is they are to maintain feasibility of iterates.

Nevertheless, wide applicability of problem (1.1) made it attractive to researchers.

1.1 Motivation

Many applications appear in the context of (1.1), e.g., the linear eigenvalue problem
[22, 40], the orthogonal procrustes problem [23, 16, 44], the weighted orthogonal
procrustes problem [19], the joint diagonalization problem [29, 47], heterogeneous
quadratics minimization [7], the nearest low-rank correlation matrix problem [24,
38], singular value decomposition [41] and sparse principal component analysis [14,
30, 53].

Considering the wide applicability of optimization on the Stiefel manifold is nat-
ural that a lot of efforts have been made to develop capable algorithms for solving
(1.1). However, the Euclidean geometry perspective could be non adequate to de-
velop feasible optimization methods on St(n, p). A more suitable approach considers
the Riemannian nature of the Stiefel manifold and the geometry yielded by it.

15



16 CHAPTER 1. INTRODUCTION

In 1973, Luebenberger [34] mentioned the idea of performing line search along
geodesics, however, it is also mentioned that this would be a fine idea if it were
computationally feasible. It was in 1982 [20] when Gabay actually developed a
steepest descent along geodesics besides the Newton method and a Quasi-Newton
method, also along geodesics. Later on, in 1994 Smith [45] added the Levi-Civita
connection, the Riemmanian exponential and parallel traslation concepts to the
Riemannian tool-box.

As good as the consideration of Riemannian geometry concepts is for optimiza-
tion on Riemannian manifolds, there is always a compromise with computational
cost. Some pragmatic simplifications have been made in order to reduce the com-
putational effort. Manton [35] started not moving along geodesics and replaces the
Riemmanian exponential mapping with a projection operator. Newton’s method
on Riemannian manifolds presented in [5] avoids the exponential update using the
general notion of retraction. Also, the geodesic is replaced with any curve tangent
to the search direction.

Good surveys on Riemannian optimization can be found in [4, 15], where the the-
ory of Riemannian geometry is applied to develop the Riemannian versions of clas-
sical optimization methods such as gradient descent, Newton’s method, trust-region
methods and the conjugate gradient method. However, there are many references
to algorithms developed from the Riemannian perspective including [2, 36, 35], for
gradient descent, [52, 1, 42], for conjugate gradient, [3, 6, 50],for trust-region, and
[43, 27], for quasi-Newton method. Riemannian optimization methods can be seen
as generalizations of the corresponding classical methods.

The main feature of Riemannian optimization or optimization over manifolds is
maintaining each iterate feasible. From the above it can be seen that the iterative
schemes can be separated in two different kinds. Those that follow a curve, geodesic
or not, and those that use a projection of some kind, namely, a retraction. However,
other classification is presented in [28] where three general formulas comprehend
most iterative schemes of literature.

Particularly, our work is inspired in the use of the Cayley Transform for Rieman-
nian methods. Nishimori [36] proposed a quasi-geodesic scheme avoiding computing
exponentials of matrices using the Cayley transform. However, the proposed Cayley
transform scheme requires the inversion of a n−by−n matrix which is also expen-
sive. Fortunately, Wen and Yin [48] developed the Crank-Nicholson-like scheme
which is equivalent to the Cayley transform scheme but has a very efficient imple-
mentation for low-rank-matrices. More recently, Zhu [52] developed a Riemannian
conjugate gradient method considering the Cayley Retraction, Zhu’s method had
very competitive results when compared to other Riemannian conjugate gradient
methods.

Riemannian conjugate gradient methods need a vector transport [4] and great
performance of Zhu’s method can be associated with the features of the vector trans-
ports developed in [52]. It has been shown that vector transport must satisfy the
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Ring-Wirth nonexpansive condition in order to have global convergence [39] but not
all vector transports satisfy this condition. Sato and Iwai introduced the notion of
a scaled vector transport [42] in order to satisfy the nonexpansive condition but this
kind of scaled vector transports violates the property of linearity. Generally, vector
transport is associated to a retraction, that is, a vector transport can be obtained
by the differentiated retraction [4]. Nonetheless, in [26] an intrinsic representation
of vector transports on matrix manifolds was developed which does not have an
associated retraction, however, they are isometric and cheap.

The vector transport that is used in a Riemannian conjugate gradient method
is crucial to the performance of the algorithm as shown by the numerical experi-
ments of [52]. Therefore, our work proposes to avoid the computation of a vector
transport and, as consequence, avoid approximations on parallel transport since our
optimization approach works over the Euclidean space.

Using the Cayley transform, we develop a feasible scheme that does not use
Riemannian optimization directly. As far as we establish an equivalent problem
over a vector space, we can use classical optimization methods and this is the main
feature of this work.

1.2 Objectives

The investigation presented in this work has the following objectives.

1. To have a better comprehension of some optimization algorithms for Stiefel
manifold that are part of the state-of-the-art literature.

2. To show that, under mild assumptions, problem (1.1) over Stiefel manifold can
be solved by finding the solution of an equivalent problem over a vector space
and, therefore, Riemannian optimization is not used directly.

1.3 Overview

We first review some Riemannian optimization algorithms in order to establish a
difference with the framework we are proposing. Cayley Transform is going to be
a common concept between Riemannian methods and our proposal. Inspired by
Riemannian optimization methods, we will use the Cayley Transform to build an
equivalent problem to (1.1) but defined over the space of skew-symmetric matrices,
which is a vector space.

Since the equivalent problem can be solved with classical optimization methods,
we propose to use nonlinear conjugate gradient and make a comparison with some
state-of-the-art Riemannian methods over a selection of objective functions.

The remainder of the work is organized as follows.
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Chapter 2 gives a quick review of mathematical analysis concepts, in particular,
matrix analysis. Classical and Riemannian conjugate gradient methods are also
presented in this chapter. A summary on Riemannian optimization is also given for
better understanding of Riemannian conjugate gradient.

In Chapter 3, three state-of-the-art algorithms are presented. The first one is the
feasible method of Wen and Yin [48] that introduces the Cayley Transform based
retraction inspired by the Crank-Nicholson scheme for differential equations. The
second algorithm, due to Dalmau and Oviedo [12], uses another differential equation
scheme, the Adams-Moulton scheme; this algorithm uses a SVD in order to maintain
feasibility. The third algorithm is a conjugate gradient method developed by Zhu
[52] where vector transports are generated by differentiation of Cayley Retraction.

The development of our proposal is explained in Chapter 4 in which we estab-
lish an equivalent problem to (1.1) that can be solved over a vector space. The
description of algorithms applied in this framework is also presented in this chapter.

Chapter 5 contains results of the numerical experiments and comparison of the
performance of the different optimization methods.

A collection of ideas for possible future investigation is presented in Chapter 6.
These ideas were motivated by the things we learned trough the development of this
work but due to lack of time we were not able to develop them further.

Finally, Chapter 7 contains conclusions regarding the performance of our meth-
ods. Mentioned contents show that problem (1.1) can be solved without using of
Riemannian optimization methods whilst maintaining a feasible scheme. Our pro-
posal can be seen as a change of variable that allows us to use classical optimization
methods.



Chapter 2

Background theory

In this chapter we present some definitions and theorems appearing in the theory of
methods for solving (1.1). The main topics comprise matrix calculus, mathematical
analysis and Riemannian geometry.

The elements presented in this chapter will give the reader sufficient knowledge
to understand the ideas behind the optimization methods presented in this work.

2.1 Matrix Analysis

In this section we review a few basic definitions and concepts that will result useful
in the development of this work. Further information on this topics can be found in
[22].

Definition 2.1 (Symmetric matrix). A square matrix A ∈ Rn×n is said to be
symmetric if A> = A.

Definition 2.2 (Skew-symmetric matrix). A square matrix A ∈ Rn×n is said
to be skew-symmetric if A> = −A.

Definition 2.3 (Trace). The trace of a square matrix is the sum of its diagonal
entries,

Tr[A] =
n∑
i=1

aii, A ∈ Rn×n.

Theorem 1 (Trace properties). The trace has the following properties.

1. Tr[kA] = kTr[A], A ∈ Rn×n, k ∈ R.

2. Tr[A+B] = Tr[A] + Tr[B], A,B ∈ Rn×n.

3. Tr[A] = Tr[A>], A ∈ Rn×n.

4. Tr[AB] = Tr[BA], A ∈ Rm×n, B ∈ Rn×m.

19
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5. Tr[A>A] = Tr[AA>] =
∑m

i=1

∑n
j=1 a

2
ij, A ∈ Rm×n.

Definition 2.4 (Euclidean inner product in Rm×n). Let A,B ∈ Rm×n. The
inner product between A and B is defined as

〈A,B〉 :=
∑
i,j

aijbij = Tr[A>B].

The inner product in Rm×n induces the Frobenius norm.

Definition 2.5 (Frobenius norm). The Frobenius norm of A ∈ Rm×n is defined
as

‖A‖F :=
√
〈A,A〉 =

√
Tr[A>A] =

√∑
i,j

a2
ij.

Definition 2.6 (Orthogonal complement). Let S ⊆ Rm be a subspace of Rm.
The orthogonal complement of S is

S⊥ := {y ∈ Rm|〈y, x〉 = 0,∀x ∈ S}.

Definition 2.7 (Orthogonal Matrix). The matrix Q ∈ Rn×n is orthogonal if its
columns are an orthonormal basis of Rn, i.e., Q is orthogonal if, and only if,

Q>Q = QQ> = I,

where I is the n-by-n identity matrix.

Proposition 2.1 (Cayley Transform). Let W ∈ Rn×n be a skew-symmetric ma-
trix, i.e., W> = −W . Then I−W is nonsingular and the matrix (I−W )−1(I+W )
is orthogonal. This is known as the Cayley Transform of W .

Proof. See Appendix A

Theorem 2 (Sherman-Morrison-Woodbury Formula). For A ∈ Rn×n and
U, V ∈ Rn×l we have

(A+ UV >)−1 = A−1 − A−1U(Ik + V >A−1U)−1V >A−1, (2.1)

where Ik is the size k identity matrix. Matrices A and Ik + V >A−1U are assumed
to be nonsingular.

2.2 Mathematical Analysis

Definitions contained in this chapter appear in mathematical analysis and functional
analysis. Since they are standard concepts they can be found in books like [8,
32]. These concepts will be useful to understand the convergence properties of the
optimization algorithms to be presented later in this document.

Although some of the following definitions are given over R or Rn the have
natural extensions over Rm×n.
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Definition 2.8 (Convergent sequence). A sequence {xn} ⊂ R is said to converge
to x ∈ R, or x is said to be the limit of {xn}, if for every ε > 0 there exists a natural
number K(ε) such that for all n ≥ K(ε), the terms xn satisfy |xn − x| ≤ ε.

If the sequence has a limit, we say that the sequence is convergent; if it has no
limit, we say that the sequence is divergent.

Definition 2.9 (Bounded sequence). A sequence {xn} of real numbers is said to
be bounded if there exists a real number M > 0 such that |xn| ≤M for all n ∈ N.

Definition 2.10 (Monotone sequence). Let {xn} a sequence of real numbers.
We say that {xn} is increasing if it satisfies the inequelities

x1 ≤ x2 ≤ · · · ≤ xn ≤ xn+1 ≤ · · · .

We say that {xn} is decreasing if it satisfies the inequalities

x1 ≥ x2 ≥ · · · ≥ xn ≥ xn+1 · · · .

We say that {xn} is monotone if it is either increasing or decreasing.

Definition 2.11 (Bounded set). The set X ⊂ Rn is a bounded set if there exists
a real number M > 0 such that ‖x‖2 ≤M , for all x ∈ X.

Definition 2.12 (Closure). The closure of the set X ⊆ Rn is defined as

X := {x ∈ Rn|Nε(x) ∩X 6= ∅,∀ε > 0},

where Nε = {s ∈ Rn|‖x− s‖2 < ε}.
Definition 2.13 (Closed set). The set X ⊂ Rn is closed if, and only if, X = X.

Definition 2.14 (Compact set). The set X ⊂ Rn is compact if, and only if, X
is closed and bounded.

Definition 2.15 (Limit point). Let X ⊆ Rn and x ∈ X. We say that x is a limit
point of X if said point belongs to the closure of X−{x}. The set of all limit points
of X will be denoted as X ′.

Definition 2.16 (Cauchy sequence, completeness). A sequence {xn} in a met-
ric space X = (X, d) is said to be Cauchy (or fundamental) if for every ε > 0 there
is an N = N(ε) such that

d(xm, xn) < ε for every m,n > N.

The space X is said to be complete if every Cauchy sequence in X converges (that
is, has a limit which is an element of X).

Definition 2.17 (Hilbert Space). A Hilbert space is a complete inner product
space (complete in the metric defined by the inner product).

Theorem 3 (Riez representation). Let H be a Hilbert space and H∗ its dual
space (all the continuous functions from H to R). For any φ ∈ H∗ there exists a
unique x0 ∈ H such that φ(x) = 〈x, x0〉 for all x ∈ H. We say that x0 represents φ.
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2.3 Derivatives

In this work, we consider first order methods for optimization, i.e., methods that
take advantage of the information given by the gradient of the objective function F .
In this regard, let us present some concepts about differentiable functions. These
and more concepts on differential calculus can be studied in mathematical analysis
literature such as [21].

Definition 2.18 (Differential). Let F : A ⊂ Rm×n → R a function defined on an
open set A ⊂ Rm×n and X ∈ A′. Then the function F is differentiable at X if there
exists a matrix GX ∈ Rm×n such that, for all H ∈ Rm×n,

lim
H→0

F(X +H)−F(X)− 〈GX , H〉
‖H‖

= 0. (2.2)

Theorem 4. Let F : Rm×n → R a differentiable function at X ∈ Rm×n and Z ∈
Rm×n. Then

DF(X)[Z] := lim
t→0

F(X + tZ)−F(X)

t
= 〈GX , Z〉,

where t ∈ R and GX =
[
∂F(X)
∂xij

]
.

2.4 Matrix calculus

In order to derive our optimization method, we will need to compute the derivative
of matrix functions with respect to matrices. Theory is clear but actual computing
of derivatives can be cumbersome. We next present some rules of matrix calculus
that simplify these computations. Two important concepts are the vec operator and
the Kronecker product that are presented next.

2.4.1 Kronecker product and vec operator

The vec operator vectorizes a matrix by stacking its columns,

vec : Rm×n → Rmn.

For example, if A ∈ Rm×n and Ai denotes the i-th column of A, then

vec(A) =


A1

A2
...
An

 .
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The Kronecker product of two matrices, A ∈ Rm×n and B ∈ Rp×q, is defined as

A⊗B =


A11B A12B · · · A1nB
A21B A22B · · · A2nB

...
. . .

Am1B Am2B · · · AmnB

 ∈ Rmp×nq. (2.3)

For square matrices A and B of order m and n, respectively, the Kronecker sum is
defined as

A⊕B = (A⊗ In) + (Im ⊗B). (2.4)

From [17] we have a useful relationship:

vec(AXB) = (B> ⊗ A)vec(X). (2.5)

Consider again a matrix A ∈ Rm×n, there is a permutation matrix Tm,n ∈ Rmn×mn

such that
Tm,nvec(A) = vec(A>),

with the property T>m,n = Tn,m [17].

2.4.2 Notation for derivatives

Since Riemannian optimization methods consider both the Euclidean gradient and
the Riemannian gradient, it is important to establish an agreement on notation in
order to avoid any confusion. We also use a derivative with respect to a skew-
symmetric matrix in our methods so the functions defined over this space will be
denoted by H to help noticing that the gradient of these functions is also skew-
symmetric.

Following notation is adopted in the remainder of this document.
Let us consider a differentiable function F that assigns to an n-by-p real matrix

a real value, i.e.,
F : Rn×p → R.

We use the notation of [48] and denote the Euclidean gradient of F with respect

to X as G := DF :=
(
∂F(X)
∂Xij

)
. The Riemannian gradient will be denoted as ∇F .

Remember that differences between these concepts will be clarified in Section 2.6.2.
In the remainder of this document, W ∈ Rn×n will denote a n-by-n skew-

symmetric matrix, i.e., W> = −W . We will denote as H the differentiable function
that maps a skew-symmetric matrix to a real value, i.e.,

H : Rn×n → R.

Since the set {W ∈ Rn×n|W> = −W} is a vector space, there is no confusion in
using ∇H to denote the gradient of H for the Euclidean and Riemannian gradient
of H are the same. Note that ∇H is a n-by-n skew-symmetric matrix.
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On the other hand, we also consider derivatives of matrices with respect to
matrices which is accomplished by vectorizing the matrices. If U : Rm×n → Rp×q :
M 7→ U(M) then

dvec(U(M))

dvec(M)

is a Jacobian matrix as we know it, i.e., is the derivative of vec(U) : Rmn → Rpq.
The transpose of this Jacobian matrix will be the gradient of vec(U) and will be
denoted as

vec

∇ U :=

(
dvec(U(M))

dvec(M)

)>
.

2.4.3 Product rule

For functions of matrices, we will adopt the definition of product rule for derivatives
as defined in [17]. Let U : Rm×n → Rp×q and V : Rm×n → Rq×r. The product rule is

dvec(U(X)V(X))

dvec(X)
= (V(X)> ⊗ Ip)

dvec(U(X))

dvec(X)
+ (Ir ⊗ U(X))

dvec(V(X))

dvec(X)
, (2.6)

where Ip and Ir are identity matrices of size p and r, respectively.

2.5 Conjugate Gradient method for unconstrained

optimization

Conjugate Gradient method is a powerful tool developed for minimization of convex
quadratic functions. However, extensions of the CG method have been developed
for general nonlinear functions [37].

In the context of nonlinear conjugate gradient method, the first search direction is
selected as the negative gradient and the following directions are linear combinations
of the negative gradient and the preceding directions. The coefficient β in this
combination is selected according to a conjugacy condition.

As an example, we present a nonlinear CG method due to Fletcher and Reeves
[18]. Since optimization is made over the Euclidean space Rd we use ∇f(xk) to
denote the Euclidean gradient of the objective function f at xk.
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Algorithm 2.1 Fletcher-Reeves nonlinear CG method
Input: x0 ∈ Rn.
1: p0 ← −∇f(x0), k ← 0.
2: while ∇f(xk) 6= 0 do
3: Select αk.
4: Set xk+1 ← xk + αkpk.
5: Compute

βFRk+1 ←
∇f(xk+1)>∇f(xk+1)

∇f(xk)>∇f(xk)
, (2.7)

pk+1 ← −∇f(xk+1) + βFRk+1pk,

k ← k + 1

6: end while

Other selections for the coefficient β have led to different nonlinear CG methods.
In subsection 3.3.2 of Chapter 3 a nonmonotone method due to Dai [13] will be
presented.

2.6 Riemannian geometry for the Stiefel manifold

Stiefel manifold is a smooth manifold embedded on Rn×p [4]. In this regard, we
discuss in this section the concepts that allow us to apply Riemannian optimization
on Stiefel manifold.

Stiefel manifold is defined as all the n× p matrices, p ≤ n, on the set

St(n, p) := {X ∈ Rn×p : X>X = Ip}.

The Proposition 3.3.3 in [4] shows that the dimension of St(n, p) is

dim(St(n, p)) = np− 1

2
p(p+ 1).

In [4], it is also shown that St(n, p) is closed and bounded, hence, it is compact. As
some examples, when p = 1 the Stiefel manifold is the sphere Sn−1; for p = n we
have the orthogonal group On.

2.6.1 Tangent vectors, tangent space and differential of a
map

In order to define a search direction in the context of an optimization algorithm,
some generalizations have to be made. Similar to the case of regular surfaces, smooth
manifolds have a tangent space in each point of the manifold conformed with all the
tangent vectors on said point.
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Let M be a smooth manifold. A smooth mapping

γ :R→ St(n, p)

t 7→ γ(t),

is called a curve in M. If F is a smooth real-valued function on M then F ◦ γ is a
smooth function from R to R with well-defined classical derivative. Let γ(0) = X ∈
M. Then, a tangent vector to γ at t = 0 is the mapping γ̇(0), from FX(M) to R,
satisfying

γ̇(0)F :=
d(F(γ(t)))

dt

∣∣
t=0
, F ∈ FX(M),

where FX(M) is the set of smooth real-valued functions defined on a neighborhood
of X [4].

The tangent space toM at X, denoted by TXM is the set of all tangent vectors
to M at X. The tangent space is indeed a vector space.

Let F be a smooth mapping between two manifolds M and N . The mapping

DF (X) : TXM→ TF (X)N
ξ 7→ DF (X)[ξ]

is a linear mapping called the differential of F at X [4].

2.6.2 Riemannian manifolds and Riemannian gradient

A Riemannian manifold is a smooth manifold whose tangent spaces are endowed
with a smooth inner product, called Riemannian metric. The Riemannian metric
induces a norm on the tangent space and, therefore, we can characterize the steepest
increase direction of a scalar field at a point X on the manifold.

Let M be a smooth manifold. Suppose that TXM is endowed with an inner
product 〈·, ·〉X and a smooth scalar field F is defined on M. The Riemannian
gradient of F at X is the unique element of TXSt(n, p) that satisfies [4]

〈∇F(X), ξ〉X = DF(X)[ξ], ∀ξ ∈ TXSt(n, p), (2.8)

The Riemannian gradient is the direction of steepest ascent of F at X [4].

Suppose that FN is a smooth function defined on a manifold N . Let M be a
manifold embedded in N and FM be the restriction of FN to M. The gradient of
FM is equal to the projection of FN onto TXM [4]

∇FM(X) = PX(∇FN(X)). (2.9)



2.6. RIEMANNIAN GEOMETRY FOR THE STIEFEL MANIFOLD 27

2.6.3 Stiefel manifold as a Riemannian manifold

As mentioned at the beginning of Section 2.6, Stiefel manifold is embedded in Rn×p.
Moreover, it is a Riemannian manifold. Particular details on its geometry are given
next.

For St(n, p), the tangent space at X is given by [4]

TXSt(n, p) = {Z ∈ Rn×p : X>Z + Z>X = 0} (2.10)

= {XΩ +X⊥K : Ω> = −Ω, K ∈ R(n−p)×p}, (2.11)

where X⊥ is any matrix such that span(X⊥) is the orthogonal complement of
span(X). For the tangent space TXSt(n, p) is natural to define the Riemannian
metric as the metric inherited from Rn×p, i.e.,

〈ξ, η〉X := Tr[ξ>η], (2.12)

the so-called Frobenius inner product.
An important element of TXSt(n, p) is the Riemannian gradient whose compu-

tation is described next. From now on, we consider F to be a smooth real-valued
function defined on Rn×p and, therefore, also defined on St(n, p). In this regard,
the Riemannian gradient of F can be computed considering Equation (2.9), i.e.,
projecting the Euclidean gradient, G := ∂F

∂X
, onto TXSt(n, p):

∇F(X) = PX(G). (2.13)

In order to find the projection operator PX we solve

PX(Z) = arg min
η∈TXSt(n,p)

‖Z − η‖2
F , (2.14)

where X ∈ St(n, p) and Z ∈ Rn×p. The Lagrangian can be written as

L(η; Λ) = Tr[(Z − η)>(Z − η)]− Tr[Λ(η>X +X>η)],

the derivative equal to zero yields

−2Z + 2η −X(Λ> + Λ) = 0,

hence

η = Z +X
Λ + Λ>

2
.

Since η ∈ TXSt(n, p), we have(
Z +X

Λ + Λ>

2

)>
X +X>

(
Z +X

Λ + Λ>

2

)
= 0,
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or

Λ + Λ> = −(X>Z + Z>X).

Finally, for any Z ∈ Rn×p the projection to TXSt(n, p) is given by

PX(Z) = Z −Xsym(X>Z) = (I −XX>)Z +Xskew(X>Z), (2.15)

where sym(A) = (A+ A>)/2 and skew(A) = (A− A>)/2.
Using (2.13) and (2.15), the Riemannian gradient of F at X ∈ St(n, p) is

∇F(X) = G−Xsym(X>G).

2.6.4 Optimization on St(n, p)

Classical line search methods consider a search direction ηk and then decide how
far to move along that direction from a given iterate Xk. Next iterate is generated
choosing the step length α, a positive scalar, in the following function

ψ(α) = Xk + αηk.

However, if Xk ∈ St(n, p) and η ∈ TXkSt(n, p) then ψ(α) ∈ TXkSt(n, p), since
TXkSt(n, p) is a vector space. In such case, if α > 0 then ψ(α) /∈ St(n, p). Therefore,
if feasibility is to be maintained in each iterate, it is not adequate to select Xk+1 =
ψ(αk), for some αk > 0.

In order to have a feasible iterative scheme, a mapping from TXSt(n, p) onto
St(n, p) is used, namely, a retraction. The definition for general manifold is [4]

Definition 2.19. A retraction on a manifold M is a smooth mapping R from the
tangent bundle TM onto M with the following properties. Let RX denote the re-
striction of R to TXM.

(i) RX(0X) = X, where 0X denotes the zero element of TXM.

(ii) With the canonical identification T0XTXM' TXM, RX satisfies

DRX(0X) = idTXM,

where idTXM denotes the identity mapping on TXM.

Therefore, an adequate iterative scheme is

Xk+1 = RXk(αkηk), (2.16)

where αk > 0 and ηk ∈ TXkSt(n, p).
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Example 2.1 (Retraction base on the polar decomposition). The polar de-
composition of M ∈ Rn×p is

M = QR,

where Q = M(M>M)−1/2 and R = (M>M)1/2. We have Q ∈ St(n, p) since Q>Q =
Ip.

The retraction based on the polar decomposition is [4]

RX(η) = (X + η)(Ip + η>η)−1/2, η ∈ TXSt(n, p). (2.17)

Property (i) in definition 2.19 is readily checked since

RX(0X) = (X + 0X)(Ip + 0>X0X)−1/2 = X.

Property (ii) is harder to show. Let us begin by computing dvec(M1/2)
dvec(M)

, for M ∈ Rn×n

such that M> = M . Since dvec(M)
dvec(M)

= In2, we have

In2 =
dvec(M1/2M1/2)

dvec(M)

= (M1/2 ⊗ In)
dvec(M1/2)

dvec(M)
+ (In ⊗M1/2)

dvec(M1/2)

dvec(M)

= (M1/2 ⊕M1/2)
dvec(M1/2)

dvec(M)
,

hence,
dvec(M1/2)

dvec(M)
= (M1/2 ⊕M1/2)−1. (2.18)

Now,

dvec((Ip + η>η)1/2)

dvec(η)
=

dvec((Ip + η>η)1/2)

dvec((Ip + η>η))

dvec((Ip + η>η))

dvec(η)

= [(η>η)1/2 ⊕ (η>η)1/2]−1[(η> ⊗ Ip)Tn,p + (Ip ⊗ η>)]. (2.19)

We are actually interested in computing dvec((Ip+η>η)−1/2)

dvec(η)
. Using the product rule and

(2.19), we have

0p2×np =
dvec((Ip + η>η)1/2(Ip + η>η)−1/2)

dvec(η)

= ((Ip + η>η)−1/2 ⊗ Ip)[(η>η)1/2 ⊕ (η>η)1/2]−1[(η> ⊗ Ip)Tn,p + (Ip ⊗ η>)]

+ (Ip ⊗ (Ip + η>η)1/2)
dvec((Ip + η>η)−1/2)

dvec(η)
,
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therefore,

dvec((Ip + η>η)−1/2)

dvec(η)
= −[(Ip + η>η)−1/2 ⊗ (Ip + η>η)−1/2]

[(η>η)1/2 ⊕ (η>η)1/2]−1[(η> ⊗ Ip)Tn,p + (Ip ⊗ η>)]. (2.20)

Finally, we have

dvec(RX(η))

dvec(η)
= ((Ip + η>η)1/2 ⊗ In)− [(Ip + η>η)−1/2 ⊗ (X + η)(Ip + η>η)−1/2]

[(η>η)1/2 ⊕ (η>η)1/2]−1[(η> ⊗ Ip)Tn,p + (Ip ⊗ η>)], (2.21)

hence,
dvec(RX(η))

dvec(η)

∣∣∣∣
η=0

= (Ip ⊗ In). (2.22)

For a tangent vector ξ ∈ TXSt(n, p), we have

(Ip ⊗ In)vec(ξ) = vec(InξIp) = vec(ξ),

since ξ was arbitrary, this is actually the required identity mapping.

Example 2.2 (Retraction based on the Cayley Transform). Wen and Yin
introduced the Cayley Transform based retraction deduced from the Crank-Nicholson
scheme [48], details will be presented in Section 3.1. For now, consider η ∈ TXSt(n, p)
in order to build a skew-symmetric matrix

W := W (η) := PηX> −Xη>P,

where P = In − 1
2
XX>. The retraction based on the Cayley Transform is [48]

RX(η) =

(
In −

1

2
W

)−1(
In +

1

2
W

)
X.

Since W (0) = 0 we have RX(0) = X, i.e., property (i) in Definition 2.19 is satisfied.
Once again, property (ii) takes more effort to be proven.

Let us begin by taking the derivative of W w.r.t. η.

dvec(W )

dvec(η)
=

dvec(PηX> −Xη>P )

dvec(η)

= (In ⊗ P )(X> ⊗ In)− (In ⊗X)(P ⊗ Ip)Tn,p
= (X ⊗ P )− (P ⊗X)Tn,p. (2.23)

In order to find the derivative of the inverse matrix we write

0 =
dvec

((
In − 1

2
W
)−1 (

In + 1
2
W
))

dvec(η)
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=

((
In −

1

2
W

)>
⊗ In

)
dvec

(
In − 1

2
W
)−1

dvec(η)

− 1

2

(
In ⊗

(
In −

1

2
W

)−1
)

[(X ⊗ P )− (P ⊗X)Tn,p], (2.24)

hence

dvec
(
In − 1

2
W
)−1

dvec(η)
=

1

2

[((
In −

1

2
W

)−>
X ⊗

(
In −

1

2
W

)−1

P

)

−

((
In −

1

2
W

)−>
P ⊗

(
In −

1

2
W

)−1

X

)
Tn,p

]
. (2.25)

Now, the product rule yields

dvec(RX(η))

dvec(η)
=

1

2

[(
X>

(
In +

1

2
W

)>(
In −

1

2
W

)−>
X ⊗

(
In −

1

2
W

)−1

P

)

−

(
X>

(
In +

1

2
W

)>(
In −

1

2
W

)−>
P ⊗

(
In −

1

2
W

)−1

X

)
Tn,p

+

(
Ip ⊗

(
In −

1

2
W

)−1

P

)
−

(
X>P ⊗

(
In −

1

2
W

)−1

X

)
Tn,p

]
,

so that,
dvec(RX(0))

dvec(η)
= (Ip ⊗ P )− (X>P ⊗X)Tn,p. (2.26)

For ξ ∈ TXSt(n, p) we have

[(Ip ⊗ P )− (X>P ⊗X)Tn,p]vec(ξ) = vec(PξIp −XξPX)

= vec

((
In −

1

2
XX>

)
ξ −Xξ>

(
In −

1

2
XX>

)
X

)
= vec

(
ξ −XX>ξ + ξ>X

2

)
= vec(ξ),

where the last equality follows from the fact that ξ was already a tangent vector, and,
therefore, X>ξ + ξ>X = 0. Since ξ is arbitrary, dvec(RX(0))

dvec(η)
is indeed the identity

mapping.

We have seen that proving a mapping to be a retraction can be difficult using
only the definition. A simpler way to do that is described next.
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Since St(n, p) is an embedded manifold of a vector space Rn×p, we can construct
a retraction by looking for a manifold N such that dim St(n, p)+dimN = dimRn×p

and a diffeomorphism

φ : St(n, p)×N → Rn×p
∗

(M,N) 7→ φ(M,N),

where Rn×p
∗ is an open subset of Rn×p, with a neutral element I ∈ N satisfying

φ(M, I) = M, ∀M ∈ St(n, p).

Then, apply the following proposition.

Proposition 2.2. With the notation above, the mapping

RX(η) := π1(φ−1(X + η)),

where π1 : St(n, p) × N → St(n, p), π1(M,N) = M , is the projection onto the first
component, defines a retraction on St(n, p).

Proof. See proposition 4.1.2 in [4]

According to Proposition 2.2, the following example is aretraction on the Stiefel
manifold. Compute the QR decomposition of X + η and use the Q factor as the
retracted tangent vector, i.e.,

RX(η) = qf(X + η).

2.6.5 Riemannian conjugate gradient and vector transport

Considering the geometry of St(n, p), the conjugate gradient method on Rn has to
be adapted in order to be properly defined on St(n, p).

The first important detail is to notice that the conjugate gradient equation

ηk+1 = −∇F(Xk+1) + βk+1ηk (2.27)

does not guarantee that ηk+1 is in TXk+1
St(n, p) in general. Actually, it only happens

for βk+1 = 0. In order to assure that ηk+1 is in the desired tangent space, both terms
in the right side of (2.27) should be in TXk+1

St(n, p).
In [15] parallel translation is used to transport ηk from TXkSt(n, p) to TXk+1

St(n, p)
and generate a conjugate gradient algorithm, considering the equation of a geodesic
at a point X with direction D. However, parallel translation can be computationally
demanding.

In order to reduce the computational cost other mappings between tangent spaces
are used. We consider a transport vector as defined in [4],
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Definition 2.20. A vector transport on a manifold M is a smooth mapping

TM⊕ TM→ TM : (η, ξ) 7→ Tη(ξ) ∈ TM

satisfying the following properties for all X ∈M, and η, ξ ∈ TXM:

(i) (Associated retraction) There exists a retraction R, called the retraction asso-
ciated with T , such that the following diagram commutes

(η, ξ) Tη(ξ)

η φ(Tη(ξ)) = RX(η)

T

φ

R

where φ(Tη(ξ)) denotes the foot of the tangent vector Tη(ξ).

(ii) (Consistency) T0Xξ = ξ for all ξ ∈ TXM.

(iii) (Linearity) Tη(aξ + bζ) = aTη(ξ) + bTη(ζ).

Given a retraction R on St(n, p) there exists a vector transport associated with
the differential of R. According to [4], we have

Tη(ξ) := DRX(η)[ξ] =
d

dt
RX(η + tξ)

∣∣
t=0
, (2.28)

where η, ξ ∈ TXSt(n, p).
Finally, the Riemannian conjugate gradient equation is

ηk+1 = −∇F(Xk+1) + βk+1Tαkηk(ηk). (2.29)

Remark. Remeber that for a smooth, mapping, F , between two manifoldsM and
N we have

DF (X) :TXM→ TF (X)N
ξ 7→ DF (X)[ξ].

It is important to notice that in the case of a retraction on Stiefel manifold we have

RX(η) : TXSt(n, p)→ St(n, p)

η 7→ RX(η),

hence,

DRX(η) : Tη(TXSt(n,p))→ TRX(η)St(n, p)

ξ 7→ DRX(η)[ξ].

However, since TXSt(n, p) is a vector space we have Tη(TXSt(n, p)) ' TXSt(n, p), so
that, DRX(η)[ξ] is indeed the desired transported vector.
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Chapter 3

State-of-the-Art

We now present the main ideas on the literature that led us to develop this work.

3.1 A Feasible Method for Optimization with Or-

thogonality Constraints

In this article, Wen and Yin proposed an iterative scheme based on the Crank-
Nicolson method for partial differential equations. Given X ∈ St(n, p) a new iterate
is generated by

Y (t) = X − t

2
W (X + Y (t)),

so that,

Y (t) =

(
I +

t

2
W

)−1(
I − t

2
W

)
X. (3.1)

If W = (PXG)X>−X(PXG)>, where PX = (I− 1
2
XX>), or W = GX>−XG> and

G := DF(X) = (∂F(X)
∂Xi,j

), then W> = −W and (I + t
2
W )−1(I − t

2
W ) is orthonormal

for any t (this follows from Proposition 2.1).
Let us comment about the two possible choices for W . Definition (2.8) of the

Riemannian gradient depends on the definition of the metric. Euclidean metric is
an option but, because of the properties of tangent vectors, the canonical metric for
Stiefel manifold is sometimes more adequate. For ξ, η ∈ TXSt(n, p) the canonical
inner product is defined as [15]

〈η, ξ〉c = Tr

[
η>
(
In −

1

2
XX>

)
ξ

]
. (3.2)

In this regard, the Riemannian gradient of F(X) under the canonical metric is
∇cF(X) = G−XG>X [15]. We have the relation [52]

∇cF(X) = (In +XX>)∇F(X). (3.3)

35
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On the other hand, differentiating both sides of(
In +

t

2
W

)
Y (t) =

(
In −

t

2
W

)
X

with respect to t, we have

1

2
WY +

(
In +

t

2
W

)
Ẏ (t) = −1

2
WX,

therefore,
Ẏ (0) = −WX (3.4)

Then Y (t) is a smooth curve Y (t) on St(n, p) with the properties

• Y (0) = X.

• Y (t)>Y (t) = X>X = Ip.

• Ẏ (0) =

{
−∇F(X) if W = GX> −XG>

−∇cF(X) if W = (PXG)X> −X(PXG)>
.

In order to state first-order optimality conditions, consider the Lagrangian of prob-
lem (1.1),

L(X,Λ) = F(X)− 1

2
tr(Λ(X>X − I)).

Lemma 3.1. Suppose X is a local minimizer of problem (1.1). Then X satisfies
the first-order optimality conditions DXL(X,Λ) = G −XG>X = 0 and X>X = I
with the associated Lagrangian multiplier Λ = G>X. Define

∇cF := G−XG>X and W := GX> −XG>.

Then ∇cF = WX. Moreover, ∇cF = 0 if and only if W = 0.

Proof. See [48].

On the other hand, in Lemma 4, Wen and Yin, gave an efficient way to compute
Y (t) when p � n. They consider the decomposition W = UV >, where U =[
G −X

]
and V =

[
X G

]
are n-by-2p matrices, so that

Y (t) = X − tU
(
I +

t

2
V >U

)−1

V >X, (3.5)

requires only the inversion of a 2p-by-2p matrix. Last equation is obtained via the
Sherman-Morrison-Woodbury formula. However, to avoid lost of feasibility, after a
certain number of iterations a modified Gram-Schmidt process is performed since
the SMW formula is numerically unstable.
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Choosing a good stepsize tk at iteration k could accelerate the convergence of
the algorithm. However, choosing a stepsize by minimizing F(Yk(t)) along the curve
Yk(t) with respect to t could be computationally expensive and one is usually sat-
isfied with an approximate minimizer such as tk satisfying the Armijo-Wolfe condi-
tions:

F(Yk(tk)) ≤ F(Yk(0)) + ρ1tkF ′t(Yk(0)) (3.6)

F ′t(Yk(tk)) ≥ ρ2F ′t(Yk(0)), (3.7)

where 0 < ρ1 < ρ2 < 1.
The initial guess for the step size is computed according to the Barzilai-Borwein

stepsize [9],

tk =
Tr[S>k Sk]

|Tr[S>k Yk]|
,

where Sk = Xk+1 −Xk and Yk = ∇F(Xk+1)−∇F(Xk). Note that the elements of
two different tangent spaces are being summed without using of a vector transport.

Wen and Yin used the former elements to define the following algorithm.

Algorithm 3.1 A gradient descent method with curvilinear search

Input: X0 ∈ St(n, p), ε ≥ 0 and 0 < ρ1 < ρ2 < 1.
1: while true do
2: Set W = GX> −XG>
3: Choose the step size tk. Call line search along the path of Yk(t) to obtain a

step size tk that satisfies the Riemannian Armijo-Wolfe conditions.
4: Xk+1 ← Y (tk).
5: if ‖∇Fk+1‖ ≤ ε then STOP
6: else k ← k + 1.
7: end if
8: end while

3.2 Projected nonmonotone search methods for

optimization with orthogonality constraints

Similar to Wen and Yin [48], Dalmau and Oviedo [12] developed an optimization
approach for Stiefel manifold based on numerical schemes for solving differential
equations. They selected the Adams-Moulton scheme and used a projection operator
to maintain feasibility. Furthermore, they proposed another method based on a
linear combination of descent directions.

First, consider X ∈ Rn×p with rank equal to p. The nearest matrix to X on the
Stiefel manifold, with respect to the Frobenius norm, is given by

π(X) = arg min
Q∈St(n,p)

‖X −Q‖F . (3.8)
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We restate here Proposition 1 in [12] regarding the explicit formula for π(X). In
the next proposition, In,p denotes a truncated identity matrix.

Proposition 3.1. Let X ∈ Rn×p be a rank p matrix. Then, π(X) is well defined.
Moreover, if the SVD of X is X = UΣV >, then π(X) = UIn,pV

>.

Proof. See [35].

Now, the new trial point is given by

Xk+1 := Zk(t) := π(Yk(t)). (3.9)

Regarding the definition of Yk(t) there are two proposals presented in the next
subsections.

3.2.1 A scheme based on a linear combination

The first scheme is based on a linear combination of descent directions and is given
by

Y CL
k (t) := Xk − t(λBkL+ µCkR), (3.10)

where Gk = DF(Xk), Bk = GkL
>−LG>k , Ck = GkR

>−RG>k , L,R ∈ Rn×p, t is the
step size and (λ, µ) are any two scalars satisfying:

λ‖Bk‖2
F + µ‖Ck‖2

F > 0.

Lemma 3.2. Let Y CL
k (t) be defined by Equation (3.10), then Y CL

k (t) is a descent
curve at t = 0, i.e.,

DF(Xk)[Ẏ
CL
k (0)] = −λ

2
‖Bk‖2

F −
µ

2
‖Ck‖2

F < 0.

Proof. See [12].

Dalmau and Oviedo [12] use L = Xk, R = Xk−1 and (λ, µ) = (2/3, 1/3) to
obtain a convex combination of the gradient in the current iteration ∇F(Xk) =
BkL = BkXk and a term that approximates the gradient of the previous itertion if
t is small. Finally, the updating formula is

Y CL
k (t) := Xk − t(λAkXk + µBkXk−1),

where Ak = GkX
>
k −XkG

>
k and Bk = GkX

>
k−1 −Xk−1G

>
k .
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3.2.2 The Adams-Moulton scheme

The second proposal for Yk(t) derives from the problem

ẋ(τ) = f(t, x(τ)), x(τ0) = x0, (3.11)

which can be solved numerically via Adams-Moulton implicit methods. The two-
steps Adams-Moulton method yields the following approximate solution [31]

xk+1 = xk +
h

12
(5f(τk+1, xk + 1) + 8f(τk, xk)− f(τk−1, xk−1)), (3.12)

with τi = τ0 + ih, i ∈ 1, ..., N where N is a positive integer.
The updating formula is obtained by considering f(τ, x(τ)), in Equation (3.11),

as −∇F(X(τ)) = −A(τ)X(τ) and adapting formula (3.12) to obtain

Y AM
k (t) := Xk −

t

12
Ak(5Y

AM
k (t) + 8Xk −Xk−1), (3.13)

where Ak := GkX
>
k −XkG

>
k , Gk := DF(Xk) and t > 0 is the step size.

Equation (3.13) defines an implicit iterative scheme for solving (1.1). However,
the following lemma gives an explicit scheme.

Lemma 3.3. 1. Let W ∈ Rn×n be any real skew-symmetric matrix, then Q =
I +W is a nonsingular matrix.

2. Y AM
k (t) defined as in Equation (3.13) can be written as

Y AM
k (t) =

(
I +

5t

12
Ak

)−1(
Xk −

t

12
Ak(8Xk −Xk−1)

)
, (3.14)

3. and its derivative with respect to t is

Ẏ AM
k (t) = − 1

12

(
I +

5t

12
Ak

)−1

Ak
(
5Y AM

k (t) + 8Xk −Xk−1

)
, (3.15)

in particular, Ẏ AM
k (0) = − 1

12
Ak(13Xk −Xk−1).

Proof. See [12].

The cost associated to the computation of the inverse matrix on the right side
of (3.14) can be reduced if p < n/2 using a similar factorization to that of Wen and
Yin.

Lemma 3.4. Let U = [Gk, Xk] ∈ Rn×2p and V = [Xk,−Gk] ∈ Rn×2p. If I+ 5t
12
V >U

is a nonsingular matrix then (3.14) is equivalent to

Y AM
k (t) = Xk −W (t)(13Xk −Xk−1), (3.16)

where W (t) = t
12
U
(
I + 5t

12
V >U

)−1
V >.
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Proof. See [12].

In order to guarantee that a descent direction is being used, the introduction of
a parameter β is needed

Y AM2
k (t) := Xk −

t

12
Ak
(
5βY AM2

k (t) + 8Xk −Xk−1

)
, (3.17)

where

β =

{
2Tr[G>k AkXk−1]/5‖Ak‖2

F if DF(Xk)[Ẏ
AM
k (0)] ≥ 0

1 in other case.
(3.18)

3.2.3 Nonmonotone search with Barzilai-Borwein stepsize

Algorithm 2 in [12] uses the Barzilai-Borwein step size [9] to improve its performance.
Defining Sk = Xk+1−Xk and Rk = DF(Xk+1)−DF(Xk), two step size are proposed

αBB1
k =

‖Sk‖2
F

Tr[S>k Rk]
and αBB2

k =
Tr[S>k Rk]

‖Rk‖2
F

. (3.19)

Dalmau and Oviedo also consider a nonmonotone line search due to Zhang and
Hager [51] and propose algorithm 3.2.

Algorithm 3.2 Non-monotone linear search algorithm for solve optimization prob-
lems on Stiefel manifold
Input: X0 ∈ St(n, p), ε, t > 0, 0 < tm � tM , σ, η, δ ∈ (0, 1), X−1 = X0, C0 =
F(X0), Q0 = 1, k = 0.

1: while ‖∇F(Xk)‖F > ε do
2: while F(Zk(t)) > Ck + σtDF(Xk)[Ẏk(0)] do
3: t = δt
4: end while
5: Xk+1 = Zk(t) := π(Yk(t)), with Yk as in (3.10) or (3.17).
6: Calculate Qk+1 = ηQk+1 and Ck+1 = (ηQkCk + F(Xk+1))/Qk+1.
7: Choose t = |αBB1

k | or well t = |αBB2
k |,

8: Set t = max(min(t, tM), tm).
9: k = k + 1.
10: end while
11: X∗ = Xk.

3.3 A Riemannian conjugate gradient method for

optimization on the Stiefel manifold

In subsection 2.6.5 we stated the need for a vector transport in order to define a
conjugate gradient method on St(n, p). Zhu [52] developed two vector transports
with desirable qualities for optimization on Stiefel manifold.
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Consider the Cayley Transform based retraction (3.1) and notice that for all
η ∈ TXSt(n, p), it holds

η = WηX,

with Wη = PXηX
> −Xη>PX and PX = I − 1

2
XX>. With this new definition, we

restate the Cayley transform retraction

RX(tη) =

(
I − t

2
Wη

)−1(
I +

t

2
Wη

)
X. (3.20)

Note that Wηk = UkV
>
k , with Uk = [PXkηk, Xk] and Vk = [Xk,−PXkηk], hence for

p� n we have an iterative scheme similar to (3.5),

Xk+1(αk) = Xk + αkUk

(
I − αk

2
V >k Uk

)−1

V >k Xk. (3.21)

3.3.1 Vector transport from differentiated retraction

According to equation (2.28), Zhu differentiated the retraction (3.20) to obtain a
the associated vector transport. Consider(

I − 1

2
Wη −

t

2
Wξ

)
RX(η + tξ) =

(
I +

1

2
Wη +

t

2
Wξ

)
X

and differentiate both sides, with respect to t, to have

−1

2
WξRX(η + tξ) +

(
In −

1

2
Wη −

t

2
Wξ

)
d

dt
RX(η + tξ) =

1

2
WξX,

therefore,

T Rη (ξ) =
d

dt
RX(η + tξ)

∣∣∣∣
t=0

=
1

2

(
In −

1

2
Wη

)−1

Wξ(X +RX(η))

=
1

2

(
In −

1

2
Wη

)−1

Wξ

(
X +

(
In −

1

2
Wη

)−1(
In +

1

2
Wη

)
X

)

=
1

2

(
In −

1

2
Wη

)−1

Wξ

(
In −

1

2
Wη

)−1 [(
In −

1

2
Wη

)
X +

(
In +

1

2
Wη

)
X

]
T Rη (ξ) =

(
In −

1

2
Wη

)−1

Wξ

(
In −

1

2
Wη

)−1

X. (3.22)

Actually, the desired transport is

T Rαkηk(ηk) =
(
In −

αk
2
W

k

)−1

Wηk

(
In −

αk
2
Wηk

)−1

Xk
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=
(
In −

αk
2
W

k

)−1 (
In −

αk
2
W

k

)−1 (
In −

αk
2
W

k

)
Wηk

(
In −

αk
2
W

k

)−1

Xk

=
(
In −

αk
2
W

k

)−2

WηkXk

=
(
In −

αk
2
W

k

)−2

ηk. (3.23)

Using (3.23) and (3.21) the desired vector transport is

T Rαkηk(ηk) = Uk

[
Mk,1 +

αk
2
Mk,2Mk,3 +

αk
2

(
I − αk

2
Mk,2

)−1

Mk,2Mk,3

]
, (3.24)

where

Mk,1 = V >k Xk, Mk,2 = V >k Uk, Mk,3 =
(
I − αk

2
V >k Uk

)−1

V >k Xk.

Since Mk,1, Mk,2 and Mk,3 have already been computed to generate Xk+1, the com-
putation of (3.24) takes only 4np2 +O(p3) flops.

Lemma 2 in [52] proves that T Rαkηk(ηk) satisfies the Ring-Wirth nonexpansive
condition [39],

〈T Rαkηk(ηk), T
R
αkηk

(ηk)〉RXk (αkηk) ≤ 〈ηk, ηk〉Xk , (3.25)

needed to ensure global convergence of the Riemannian conjugate gradient method.
On the other hand, Zhu also differentiated the retraction corresponding to the

matrix exponential, i.e.,

Rexp
X (tη) = etWηX.

In order to obtain a vector transport associated with the Exponential retraction
consider Equation (2.28) and write

dRexp
X (η + tξ)

dt
=

deWη+tWξX

dt
= eWη+tWξWξX,

therefore,

Tηexp(ξ) =
dRexp

X (η + tξ)

dt

∣∣∣∣
t=0

= eWηWξX. (3.26)

We are interested in

T exp
αkηk

(ηk) = eαkWηkWηkXk = eαkWηkηk (3.27)

Vector transport (3.27) requires the computation of a matrix exponential, how-
ever, Zhu [52] proposed the use of the first-order diagonal Padé approximant in



3.3. A RIEMANNIAN CONJUGATEGRADIENTMETHOD FOROPTIMIZATIONON THE STIEFELMANIFOLD 43

order to reduce the computational cost. Since said Padé approximant is actually
the Cayley transform, the vector transport obtained is

Tαkηk(ηk) =
(
I − αk

2
Wηk

)−1 (
I +

αk
2
Wηk

)
WηkXk

=
(
I − αk

2
Wηk

)−1

Wηk

(
I +

αk
2
Wηk

)
Xk

=
(
I − αk

2
Wηk

)−1

Wηk

(
I − αk

2
Wηk

)(
I − αk

2
Wηk

)−1 (
I +

αk
2
Wηk

)
Xk

=
(
I − αk

2
Wηk

)−1 (
I − αk

2
Wηk

)
Wηk

(
I − αk

2
Wηk

)−1 (
I +

αk
2
Wηk

)
Xk

= WηkXk+1. (3.28)

Considering Mk,1, Mk,2 and Mk,3 as defined above, we have

Tαkηk(ηk) = Uk(Mk,1 + αkMk,2Mk,3), (3.29)

and the computation takes also 4np2 +O(p3) flops.
Lemma 3 in [52] states that Tαkηk(ηk) is an isometric transport, that is,

〈Tαkηk(ηk), Tαkηk(ηk)〉RXk (αkηk) = 〈ηk, ηk〉Xk ,

hence, the Ring-Wirth nonexpansive condition is satisfied.
After the derivation of these vector transports, Zhu discuss the generation of a

new class of isometric vector transports using higher order diagonal Padé approx-
imants. Although, this approach could be associated with a high computational
cost.

3.3.2 Generalization of Dai’s nonmonotone method

The two vector transports of last section can be used to generalize known conjugate
gradient methods on Rn. In particular, Zhu chose to work with Dai’s nonmonotone
method [13].

Consider

βDk+1 =
‖∇F(Xk+1)‖2

max{y>k ηk,−∇F(Xk)>ηk}
, (3.30)

where yk = ∇F(Xk+1) − ∇F(Xk). Once again, notice that, in the Riemannian
framework, yk needs to compute the difference between two vectors of different
tangent spaces. In order to overcome this difficulty, Tαkηk(ηk) is used yielding

βDk+1 =
‖∇F(Xk+1)‖2

max{yTk ,−〈∇F(Xk), ηk〉Xk}
, (3.31)

where yTk = 〈∇F(Xk+1), Tαkηk(ηk)〉Xk+1
− 〈∇F(Xk), ηk〉Xk .
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Another aspect of importance is the generalization of the nonmonotone condition
used in Dai’s algorithm. Considering the Riemannian iterative scheme, we have [52]

F(RXk(αkηk)) ≤ max{F(Xk), · · · ,F(Xk−min{m−1,k})}+ δαk〈∇F(Xk), ηk〉Xk ,
(3.32)

where m is some positive integer and δ is the constant corresponding to the Armijo-
type condition.

Finally, the algorithm of the Riemannian conjugate gradient method is

Algorithm 3.3 A Riemannian nonmonotone CG algorithm on St(n, p)

Input: ε, δ, λ ∈ (0, 1), m ∈ N+, αmax > α0 > αmin > 0, X0 ∈ St(n, p), η0 =
−∇f(X0), k = 0.

1: while ‖∇F(Xk)‖Xk > ε do
2: if nonmonotone condition (3.32) is satisfied then
3: Set Xk+1 = RXk(αkηk)
4: else
5: Set αk = λαk and go to line 2;
6: end if
7: Compute ηk+1 = −∇F(Xk+1) + βk+1Tαkηk(ηk), where βk+1 ∈ [0, βDk+1] with
βDk+1 computed as in (3.31), and Tαkηk(ηk) computed by (3.24) or (3.29) if p� n.

8: Update αk+1 ∈ [αmin, αmax] and set k ← k + 1
9: end while



Chapter 4

New Optimization Approach

The study of state-of the-art algorithms granted us with the idea of transforming
problem (1.1) into an equivalent problem over a vector space and, then, use conjugate
gradient method in Rd to solve it, without need for a vector transport.

In this chapter we explain our proposal for optimization starting by establishing
an equivalent problem to (1.1).

4.1 An equivalent problem

Consider the Cayley transform iterative scheme

Xk+1 = (I −Wk)
−1(I +Wk)Xk, (4.1)

where I is the identity matrix of size n and W>
k = −Wk. Since

det[(I −Wk)
−1(I +Wk)] = det(I −Wk)

−1 det(I +Wk)

=
1

det(I −Wk)
det(I +Wk)

=
1

det(I −Wk)
det(I +Wk)

>

=
1

det(I −Wk)
det(I −Wk)

= 1,

Xk+1 is a rotation of Xk. Furthermore, the minimizer X∗ is a rotation of the ini-
tial iterate X0, i.e., X∗ = Q∗X, where Q∗ is the composition of all rotation matrix
generated trough the iterative process. Hence, algorithms using Cayley Transform
to generate iterates over Stiefel manifold are indirectly finding the matrix Q∗. The
following theorem guarantees that, given an initial iterate X0 ∈ St(n, p), the min-
imizer X∗ always can be found as a rotation of X0, if p < n (we are considering
p� n for many practical cases).

45
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Theorem 5. Let X and Y be any two elements of St(n, p). If p < n then there
exists Q ∈ St(n, n), with detQ = 1, such that Y = QX.

Proof. Choose BY ∈ Rn×(n−p) such that Y =
[
Y BY

]
is an orthonormal basis

of Rn, then detY = ±1. In the same manner, choose BX ∈ Rn×(n−p) such that
X =

[
X BX

]
is an orthonormal basis of Rn but, also, such that detX = detY .

Note that this selection is always possible since p < n, so that, if detX has the
opposite sign of detY it suffices to change the sign of one of the columns of BX .

We have

YX>X =
[
Y BY

] [
X BX

]>
X

=
[
Y BY

] [X>
B>X

]
X

=
[
Y BY

] [Ip
0

]
= Y.

Furthermore,

detYX> = detY detX
= detY detY
= (±1)2

= 1.

Hence, Q = YX> is the desired rotation matrix.

Moreover, the Cayley transform assures the existence of a skew-symmetric W ∗

matrix such that Q∗ = (I −W ∗)−1(I +W ∗) if −1 is not an eigenvalue of Q∗.
Regarding the above, we consider a new variable. For a fixed X ∈ St(n, p) define

Y (W ) = (I −W )−1(I +W )X ∈ St(n, p), (4.2)

for any skew-symmetric matrix W .
Consider F : Rn×p → R. The composite function

HX : Rn×n → R
W 7→ HX(W ) := F(Y (W ))

is defined over the space of skew-symmetric matrices but it is actually F evaluated
at feasible points of (1.1).

Our proposal is to solve the next problem:

min
W
HX(W ) s.t. W> = −W (4.3)
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The main feature of this approach is the optimization over W since the set of skew-
symmetric matrices is a vector space. In this regard, there is no need for a vector
transport when implementing the conjugate gradient method. Actually, classical
optimization methods over Rd could be used to solve (4.3) without modification.
Furthermore, in every iteration we have a skew-symmetric matrix that generates a
feasible solution to (1.1), Yk = Y (Wk), hence, our proposal is a feasible method.

4.1.1 Gradient of composite function HX

We want to compute the gradient of HX in order to be able to use first order
optimization methods to solve (4.3). A simple way to find the required derivative is
using the chain rule to obtain

dHX(W )

dW
=

dF(Y )

dY

dY

dW
, (4.4)

where Y is defined as in (4.2).
Computations can be made using derivative rules from Section 2.4. Nevertheless,

there is the need to take the derivative of Y with respect to a skew-symmetric
matrix. In order to compute this derivative, we follow the idea presented in [17] for
derivatives with respect to symmetric matrices.

We define the vech operator for a skew-symmetric matrix

vech : Rn×n → Rn(n−1)/2),

as

vech(W ) =



w21

w31
...
wn1

w32

w42
...
wn2

...
wnn−1


so that, the columns of W are stacked in a way that only the elements below the
diagonal are conserved.

Since wij = −wji, we can take derivatives with respect to vech(W ), instead of
the whole matrix W . Let us begin by defining the derivative of W ∈ Rn×n with
respect to vech(W ) as

Sn :=
dvec(W )

dvech(W )
, (4.5)
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where Sn ∈ Rn2×n(n−1)/2 has, in each column, a single 1, a single −1 and zeros.
The application of S>n to the vectorization of A ∈ Rn×n generates de vech form of
A− A>, i.e.,

S>n vec(A) = vech(A− A>). (4.6)

For details on the derivation and action of Sn see Appendix B.
Using notation from Section 2.4, we actually want to calculate

dHX(W )

dvech(W )
=

dF(Y )

dvec(Y )

dvec(Y )

dvech(W )
. (4.7)

Since dF(Y )/dvec(Y ) is a Jacobian matrix and, as we will show below, it is actually
the Euclidean gradient G of F in the form vec(G)>, the following paragraphs will
describe only the computation of dvec(Y )/dvech(W ). Details on the computation
of G for some particular objective functions can be found in Appendix B.

Let us begin by calculating the derivative of (In−W )−1. Using the product rule
(2.6), we have

0 =
dvec(In)

dvech(W )

=
dvec((In −W )−1(In −W ))

dvech(W )

= ((In −W )> ⊗ In)
dvec((In −W )−1)

dvech(W )

+ (In ⊗ (In −W )−1)(−Sn),

hence,

dvec((In −W )−1)

dvech(W )
= ((In −W )−> ⊗ In)(In ⊗ (In −W )−1)Sn

= ((In −W )−> ⊗ (In −W ))Sn. (4.8)

On the other hand, the product rule (2.6) also yields

dvec((In +W )X)

dvech(W )
= (X> ⊗ In)Sn. (4.9)

Once again we apply the product rule (2.6) and use Equations (4.8) and (4.9) to
obtain

dvec(Y (W ))

dvech(W )
=

dvec((In −W )−1(In +W )X)

dvech(W )

= (X>(In −W )> ⊗ In)((In −W )−> ⊗ (In −W )−1)Sn

+ (Ip ⊗ (In −W )−1)(X> ⊗ In)Sn
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= ((X + Y )> ⊗ (In −W )−1)Sn. (4.10)

Now, we can use (4.10) to find the derivative (4.7) in the following manner.
Since F is a real-valued function, we have

dF(Y )

dvec(Y )
=



∂F(Y )
∂y11
∂F(Y )
∂y21
∂F(Y )
∂y31

...
∂F(Y )
∂yn1
∂F(Y )
∂y12
∂F(Y )
∂y22

...
∂F(Y )
∂yn2
∂F(Y )
∂y13

...
∂F(Y )
∂ynp



>

= vec(G)> ∈ R1×np, (4.11)

where G is the Euclidean gradient of F evaluated at Y . Note that dvec(Y (W ))
dvech(W )

∈
Rpn×n(n−1)/2 because ((X + Y )> ⊗ (In − W )−1) ∈ Rpn×n2

and Sn ∈ Rn2×n(n−1)/2.
Hence,

dF(Y )

dvec(Y )

dvec(Y )

dvech(W )
∈ R1×n(n−1)/2

is well defined.
The desired derivative is

dHX(W )

dvech(W )
=

dF(Y )

dvec(Y )

dvec(Y )

dvech(W )
= vec(G)>((X + Y )> ⊗ (In −W )−1)Sn. (4.12)

Actually, transposing (4.12) makes easier to wee how to use properties (2.5) and
(4.6) in order to avoid Kronecker products and explicit computation of Sn:

vec

∇ HX(W ) = S>n ((X + Y )> ⊗ (In −W )−>)vec(G)

= S>n vec((In −W )−>G(X + Y )>)

= vech((In −W )−>G(X + Y )> − (X + Y )G>(In −W )−1), (4.13)

reordering to matrix form we have

∇Hx = (In −W )−>G(X + Y )> − (X + Y )G>(In −W )−1. (4.14)
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4.1.2 Comments on the use of Cayley Transform

We said before that there always exists a skew-symmetric matrix W such that Q =
(I −W )−1(I +W ) if −1 is not an eigenvalue of Q. This can be seen from

Q = (I −W )−1(I +W )

(I −W )Q = I +W

Q− I = (I +Q)W

(Q+ I)−1(Q− I) = W,

so that, the existence of W is reserved to the existence of (Q+ I)−1.
Consider the eigendecomposition Q = MΛM−1, we have

(Q+ I)−1 = (MΛM−1 + I)−1

= (M(Λ + I)M−1)−1

= M(Λ + I)−1M−1,

so that, if −1 is an element of Λ then Q+ I is a singular matrix.
The former discussion implies that {(I − W )−1(I + W )X|W> = −W,X ∈

St(n, p)} is a proper subset of St(n, p) and, therefore, the composite function HX

could have left out some minimizer of F . For example, suppose that Y = −X
is the minimizer of F , there is no skew-symmetric matrix W such that −X =
(I −W )−1(I +W )X since

−X = (I −W )−1(I +W )X

−(I −W )X = (I +W )X

−X +WX = X +WX

−X = X,

which is impossible since X ∈ St(n, p). Hence, solving (4.3) could mislead to a
wrong solution for some X.

On the other hand, we have

Q = (I −W )−1(I +W )

= V (I −D)−1V −1V (I +D)V −1

= V


1+d1
1−d1

. . .
1+dn
1−dn ,

V −1

where V DV −1 is the eigendecomposition of W . The last equality implies that if the
module of some eigenvalue di tends to∞ then Q will have some eigenvalue equal to
−1. Actually, eigenvalues of W are 0 or purely imaginary, that is, Q will have a pair
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of eigenvalues equal to −1. In this regard, we have lim
a→±∞

(I−aW )−1(I+aW ) = −I,

that is, lim
a→±∞

Y (aW ) = −X. Hence, theoretically, we can approximate to −X with

sufficiently large W . In general, the case when wij → ∞, and wji → −∞ for only
one, or a few indexes, imply some eigenvalues of Q approaching to −1. In practice,
we must be aware of numerical limitations.

Riemannian methods, such as the Riemannian conjugate of Section 3.3 or the
gradient descent method in Section 3.1, do not suffer from the problem we are de-
scribing because of the use of composite rotations. Hence, if the minimizer X∗ is a
rotation of initial iterate X0 with eigenvalues equal to -1, the Riemannian methods
are indirectly decomposing said rotation in many factors without any eigenvalues
equal to -1. Therefore, we will use composite rotations in order to avoid the possi-
bility of X∗ not being reachable as from our first iterate with only one rotation with
eigenvalues different to -1. Let us clarify with the following example.

Example 4.1 (Optimization on St(n, p)). Let X ∈ R2 be a fixed element of the
sphere S1, i.e., X ∈ St(n, p). Then, an optimization problem is defined as

min
Y ∈R2

F(Y ) = ‖Y +X‖2
F s.t. Y >Y = 1. (4.15)

It is clear that the solution of Problem (4.15) is Y ∗ = −X. Considering our proposal,
we proceed to parametrize Y by taking Y = Y (W ) = (I −W )−1(I +W )X and write
the following problem

min
W∈R2×2

HX(W ) = ‖Y (W ) +X‖2
F s.t. W> −W. (4.16)

However, we have shown that there is no skew-symmetric matrix such that Y (W ) =
−X. Hence, if we keep X fixed and try to solve Problem (4.16) in order to find a
solution for (4.15) we may not be able to reach the desired solution. Furthermore,
Problem (4.16) does not have a solution in the space of skew-symmetric matrices as
shown next.

Consider

Y (W ) = (I −W )−1(I +W )X

=

(
1 w
−w 1

)(
1 −w
w 1

)(
x1

x2

)
=

1

1 + w2

(
1 −w
w 1

)(
x1 − wx2

wx1 + x2

)
=

1

1 + w2

(
x1 − wx2 − w(wx1 + x2)
w(x1 − wx2) + wx1 + x2

)
=

1

1 + w2

(
(1− w2)x1 − 2wx2

2wx1 + (1− w2)x2

)
.
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Let Ŷ (w) be Y (W ) expressed as a function of one real parameterw, that is,

Ŷ (w) =

(
1−w2

1+w2x1 − 2 w
1+w2x2

2 w
1+w2x1 + 1−w2

1+w2x2

)
.

Hence,

lim
w→±∞

Ŷ (w) =

(
−1 · x1 − 2 · 0 · x2

2 · 0 · x1 − 1 · x2

)
= −

(
x1

x2

)
= −X. (4.17)

Equation (4.17) shows that as w tends to infinity a better solution can be found and
therefore, in theory, an iterative optimization process could get arbitrarily close to
the solution without reaching it.

On the other hand, it is clear that

−
(
x1

x2

)
=

(
−1 0
0 −1

)(
x1

x2

)
=

(
cos π − sin π
sin π cosπ

)(
x1

x2

)
,

so that, the required rotation matrix has eigenvalues λ1,2 = −1, as expected. More-
over, we have a rotation of angle π over the plane which is decomposable into two
rotations of angle π/2, i.e.,(

cos π − sin π
sin π cos π

)
=

(
−1 0
0 −1

)
=

(
0 −1
1 0

)(
0 −1
1 0

)
=

(
cos π

2
− sin π

2

sin π
2

cos π
2

)2

,

where each π/2 rotation has complex conjugate eigenvalues λ = ±i, that is, different
from −1. Note that this is not the only possible decomposition since choosing 0 <
θ < π and composing the two rotations, corresponding to angles θ and π − θ, leads
to the same result.

Hence, in order to solve (4.15) trough our proposal, we can adopt one, or two,
of the following strategies

1. Use composite rotations.

2. Choose Y (W ) = (I −W )−1(I +W )Z, where Z ∈ St(2, 1) and Z 6= X.

Considering the above, implementation of our method will include a parameter
kr, a positive integer, indicating that after every kr iterations, Yk = (I −Wk)

−1(I +
Wk)X is assigned to X so that we can benefit from composite rotations.

4.1.3 Equivalence of Problems (1.1) and (4.3)

As shown before, Cayley Transform is unable to generate all rotation matrices and,
in general, is impossible to know beforehand if, given an initial guess X0 ∈ St(n, p),
F has a minimizer of the form Y ∗ = QX0, where Q does not have any eigenvalue
equal to −1. Moreover, it is impossible to know if HX(W ) has a minimizer.
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However, if HX has a local minimizer W ∗, for a given X ∈ St(n, p), then Y ∗ =
(I −W ∗)−1(I + W ∗)X must be a local minimizer of F . In this regard, a solution
of (4.3) generates a solution of (1.1) and therefore, we have equivalent problems.
We next develop an argument in order to establish a theorem that formalizes this
equivalence.

First note that Y := Y (W ) := (I−W )−1(I+W )X is a continuous mapping from
the space of skew-symmetric matrices onto Stiefel manifold. This allows us to affirm
that given ε > 0 there exists δ(ε) > 0 such that for all V satisfying ‖V −W‖F < δ we
then have ‖Y (V )−Y (W )‖F < ε. This argument is enough to prove that if Y (W ) is
a minimizer of F then W has to be a minimizer of HX . Unfortunately, the converse
requires more effort to be proven.

For our purposes, consider X ∈ St(n, n) and define

Y := Y(W ) = (I −W )−1(I +W )X .

We can apply the Inverse Function Theorem to this mapping in order to obtain an
inverse continuous function.

Theorem 6 (Inverse Function Theorems for Manifolds). [33] SupposeM and
N are smooth manifolds, and F :M→N is a smooth map. If p ∈M is point such
that the differential of F , dFp, is invertible, then there are connected neighborhoods
U of p and V of F (p) such that F |U : U → V is a diffeomorphism.

Corollary 4.1. Let W ∈ Rn×n a skew-symmetric matrix and X ∈ St(n, n). Then,
there is an open neighborhood U of W such that the mapping

Y : Rn×n → St(n, n)

W 7→ Y(W ) = (I −W )−1(I +W )X

restricted to U is a diffeomorphism.

Proof. The differential of Y at W is given by (see Equation (4.10))

dYW = ((X + Y)> ⊗ (I −W )−1)Sn,

which maps skew-symmetric matrices, in their vech form, to vectorized tangent
vectors in TXSt(n, n). Explicitly, we have

vec(η) = ((X + Y)> ⊗ (I −W )−1)Snvech(V )

and
1

2
S>n ((X + Y)−> ⊗ (I −W ))vec(η) = vech(V ),

hence, dYW is a linear isomorphism and by Theorem 6, the result follows.
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On the other hand, the exponential of a skew-symmetric matrix is an orthogonal
matrix and this mapping is surjective [11]. Hence, given ε > 0, continuity of the
exponential mapping yields the existence of δ = δ(ε) > 0 such that if ‖S‖F < δ then

‖eSY − Y ‖F ≤ ‖eS
[
Y Y ⊥

]
−
[
Y Y ⊥

]
‖F < ε,

where S> = −S. Note that surjectivity of the exponential mapping makes eSY a
parametrization of Stiefel manifold, in particular, a parametrization of a neighbor-
hood of Y .

We are ready to present the main result in this section. To simplify notation
we will denote the ball of radius γ > 0 centered at a matrix M as BM(γ) := {N :
‖N −M‖F < γ}.

Theorem 7. Let W ∈ Rn×n be a skew-symmetric matrix and X ∈ St(n, p). Let
Y = (I −W )−1(I +W )X ∈ St(n, p). Then Y is a local minimizer of F if, and only
if, W is a local minimizer of HX .

Proof. (⇒) Let Y (W ) be a local minimizer of F , that is, there exists ε > 0 such that
F(Y ) < F(Z) for any Z ∈ BY (W )(ε). Suppose that W is not a minimizer of HX

so that any neighborhood of W contains a matrix V such that HX(V ) < HX(W ).
Consider δ = δ(ε) > 0 from the definition of continuity of Y and V ∈ BW (δ) such
that HX(V ) < HX(W ). Let L = (I −W )−1(I + V )X, we have

F(L) = HX(V ) < HX(W ) = F(Y (W )),

where L ∈ BY (W )(ε) by continuity. This implies that Y (W ) is not a local minimizer,
which is a contradiction.

(⇐) We consider X =
[
X X⊥

]
in order to define the mapping Y(W ) = (I −

W )−1(I + W )X ∈ St(n, n). Now, there exists a neighborhood U of W where the
inverse of Y exists and it is continuous, by Corollary 4.1. Let γ > 0 be such that
BW (γ) ⊂ U and W is a minimizer ofHX in BW (γ). In order to build a contradiction,
suppose that Y (W ) is not a minimizer so that every neighborhood of Y (W ) contains
an element Z ∈ St(n, p) such that F(Z) < F(Y (W )).

Existence and continuity of the inverse of Y yields the existence of ε = ε(γ) > 0
such that if ‖Z − Y(W )‖F < ε then there exits a V ∈ BW (γ) such that Z = Y(V ).

Hence, given ε > 0 there exists δ = δ(ε) > 0 such that ‖S‖F < δ implies
‖eS

[
Y Y ⊥

]
−
[
Y Y ⊥

]
‖F < ε. Since Y is not a local minimizer and without loss

of generality, suppose that F(eSY ) < F(Y ). Last two arguments yield the existence
of V ∈ BW (γ) such that

eS
[
Y Y ⊥

]
= (I − V )−1(I + V )X ,

that is,
eSY = (I − V )−1(I + V )X.
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We have

HX(V ) = F(eSY ) < F(Y ) = HX(W ),

which is a contradiction because V ∈ BW (γ) and W is local minimizer.

4.2 Transportless conjugate gradient on Stiefel man-

ifold

As said before, in order to find a solution to (1.1) we solve (4.3). This problem
is defined over a linear space and can be solved using classical (non Riemannian)
conjugate gradient methods. This is the reason why we call it transportless conjugate
gradient.

In order to have a comparison with Zhu’s method [52], we consider the nonmono-
tone conjugate gradient method of Dai [13].

Input of the algorithm requires an element X ∈ St(n, p). We consider W0 = 0 so
that Y (W0) = X and our algorithm starts at HX(W0) = F(X), hence, comparison
with Riemannian methods is transparent considering X0 = X as starting point of
these methods.

Conjugacy condition is given by Dai’s beta defined as

βDk+1 =
‖∇HX(Wk+1)‖2

max{〈yk, ηk〉, 〈−∇HX(Wk), ηk〉}
, (4.18)

where yk = ∇HX(Wk+1)−∇HX(Wk) and ηk = −∇HX(Wk) + βDk ηk−1 is the conju-
gate direction. We use the following algorithm to solve (4.3).

Algorithm 4.1 Dai’s nonmonotone CG algorithm in the context of (4.3)

Input: ε, δ, λ ∈ (0, 1), m ∈ N+, αmax > α0 > αmin > 0, X ∈ St(n, p), W0 = 0,
η0 = −∇HX(W0), k = 0.

1: while ‖∇HX(Wk)‖F > ε do
2: if HX(Wk + αkηk) ≤ max{HX(Wk), · · · ,HX(Wk−min{m−1,k})} +
δαk〈∇HX(Wk), ηk〉 then

3: Set Wk+1 = Wk + αkηk
4: else
5: Set αk = λαk and go to line 2;
6: end if
7: Compute ηk+1 = −∇HX(Wk+1) + βk+1ηk, where βk+1 ∈ [0, βDk+1] with βDk+1

computed as in (4.18).
8: Update αk+1 ∈ [αmin, αmax] and set k ← k + 1
9: end while
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Following the implementation of Zhu [52] we compute the beta of Fletcher-Reeves
(2.7) at every iteration and select βk+1 as the minimum between βFRk+1 and βDk+1. The
initial guess for the step-size α0

k is computed according to the Barzilai-Borwein step-
size [9],

α0
k =

Tr[s>k sk]

|Tr[s>k yk]|
, (4.19)

where sk = Wk+1 −Wk and yk∇HX(Wk+1)−∇HX(Wk).
Although we have said that there is no need for a vector transport using this

method, there are some disadvantages that have to be commented. First, we con-
sider the case p � n as in [52] and, as a consequence, our method will require a
greater computational effort to perform inner products than Riemmanian methods.
Our method needs to compute inner products between two n-by-n matrices whilst
Riemannian methods perform inner products between n-by-p matrices.

Actually, in order to use the SMW formula (2.1) to compute the inverse of I−W
we have to save in memory two n-by-2p matrices corresponding to the factorization
of the gradient ∇HX(Wk) = UkV

>
k , for each iteration k. Even if we were willing

to save all these matrices, the application of the SMW formula (2.1) would imply a
recursive implementation increasing its complexity as k increases itself.

4.2.1 Transportless Conjugate Gradient (TCG)

TCG stands for Transportless Conjugate Gradient and we will use this name to refer
to the implementation of Algorithm 4.1 where no decomposition of W is considered
when computing (I −W )−1.

Once Wk is computed, there are two instances where (I −Wk)
−1 is needed. The

first one appears in
Yk = (I −Wk)

−1(I +Wk)X, (4.20)

and the second one appears in the gradient of ∇HX(Wk), explicitly,

∇HX(Wk) = (I −Wk)
−>Gk(X + Yk)

> − (X + Yk)G
>
k (I −Wk)

−1. (4.21)

Note that actually computing (I −Wk)
−1 would be more complex than solving two

linear systems, namely,

(I −Wk)Z = (I +Wk)X, for Z, (4.22)

and
(I −Wk)

>Ẑ = Gk, for Ẑ. (4.23)

Hence, we propose to compute the LU decomposition of I −Wk and use this de-
composition to solve systems (4.22) and (4.23). However, this approach obviously
has a high computational cost and the backtracking procedure could represent an
increment on this cost.
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Regarding inner products, Definition 2.4 implies that 〈A,B〉 = vec(A)>vec(B) =∑
iA
>
i Bi where Ai and Bi are the i-th column of A and B, respectively. So that,

when computing 〈A,B〉 = Tr[A>B], we do not perform the matrix multiplication
A>B and then compute its trace. We perform a sum of inner products

∑
iA
>
i Bi,

which is faster.
When computing ‖∇HX(Wk)‖2

F the properties of Theorem 1 yield

Tr[∇HX(Wk)
>∇HX(Wk)] = Tr[VkU

>
k UkV

>
k ]

= Tr[U>k UkV
>
k Vk]

= 〈U>k Uk, V >k Vk〉, (4.24)

where Uk =
[
(I −Wk)

−>Gk −(X + Yk)
]

and Vk =
[
(X + Yk) (I −Wk)

−>Gk

]
.

Now, computing
∑

i∇HX(Wk)
>
i ∇HX(Wk)i requires to perform n dot products in

Rn. However, with Uk, Vk ∈ Rn×2p the computation of U>k Uk requires (2p)2 =
4p2 dot products in Rn, same as the computation of V >k Vk. Hence, if (4.24) is
computed as

∑
i[U
>
k Uk]

>
i [V >k Vk]i another p dot products in Rp have to be computed.

Therefore, if p satisfies 8p2 + p < n, is more efficient to compute ‖∇HX(Wk)‖2
F by∑

i[U
>
k Uk]

>
i [V >k Vk]i. When 8p2 + p ≥ n we consider

∑
i∇HX(Wk)

>
i ∇HX(Wk)i.

Finally, every kr = 10 iterations we will make X = Yk, Wk = 0 and βk+1 = 0
and restart the algorithm. We can do this for three reasons. First one is to avoid
the possibility where the minimizer can not be reached by only one rotation of X
generated by the Cayley Transform. Second reason is that the conjugate directions
are known to lose their properties after some iterations and it is a good idea to
restart the conjugate gradient method. The third and main reason is to benefit
from composite rotations because we have notice that this is one of the features
that makes Wen and Yin’s method [48] so effective.

4.3 A Steepest Descent Method

Since computational cost of TCG algorithm is high due to lack of an efficient way
to compute (I −W )−1, we consider a steepest descent method for only one n-by-n
matrix has to be stored in each iteration in order to have an efficient way to compute
(I −W )−1.

The iterative scheme is

Wk+1 = Wk − αk∇HX(Wk), (4.25)

where the gradient can be decomposed as

∇HX(Wk) = (I −Wk)
−>Gk(X + Yk)

> − (X + Yk)G
>
k (I −Wk)

−1 (4.26)

=
[
(I −Wk)

−>Gk −(X + Yk)
] [

(X + Yk) (I −Wk) (I −Wk)
−>Gk

]>
(4.27)
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= UkV
>
k , (4.28)

where Yk := (I −Wk)
−1(I +Wk)X. Define Ck := (I −Wk)

−1, we have

(I −Wk+1)−1 = (I − (Wk − αkUkV >k ))−1

= Ck − αkCkUk(I2p + αkV
>
k CkUk)

−1V >k Ck (4.29)

where the last inequality is obtained using the SMW formula (2.1). This means
that (I −Wk+1)−1 can be efficiently computed if (I −Wk)

−1 is available in memory.
Moreover, considering W0 = 0 we have (I −W0)−1 = I.

The iterative scheme is as follows (see Appendix C for details)

Yk+1 = Yk − αkCkUk(I2p + αkV
>
k CkUk)

−1V >k (X + Yk). (4.30)

The following algorithm is proposed.

Algorithm 4.2 Gradient descent method for (4.3)

Input: ε, δ, λ ∈ (0, 1), α > 0, X ∈ St(n, p), W0 = 0, η0 = −∇HX(W0), k = 0.
1: while ‖∇HX(Wk)‖F > ε do
2: αk = α
3: if HX(Wk + αkηk) ≤ HX(Wk) + δαk〈∇HX(Wk), ηk〉 then
4: Set Wk+1 = Wk + αkηk
5: else
6: Set αk = λαk and go to line 2;
7: end if
8: ηk+1 = −∇HX(Wk+1).
9: Set k ← k + 1

10: end while

For this algorithm, we also consider the Barzilai-Borwein step-size compute as
in Equation (4.19) as initial guess for the backtracking procedure as acceleration
strategy. As well, the implementation will consider restarting the algorithm after
every kr = 10 iterations, by taking X = Yk, Wk = 0 and Ck = I.

Once again, ‖∇HX(Wk)‖2
F can be computed considering Equation (4.24), when

p is sufficiently small, in order to reduce computational time.

4.4 Convergence analysis

Convergence analysis for both unconstrained optimization methods is available in
literature. In order to make this document self-contained we reproduce the conver-
gence analysis in [13] for Algorithm 4.1. For Algorithm 4.3 the convergence analysis
is based on [10].
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4.4.1 Convergence of TCG

Throughout this section, we make the following assumption.

Assumption 4.1. The objective function HX is continuously differentiable and
there exists a Lipschitzian constant L > 0 such that

|DHX(W + tη)[η]−DHX(W )[η]| ≤ Lt

for all skew-symmetric matrix η, ‖η‖ = 1, t > 0.

The following two lemmas are crucial for the final convergence theorem.

Lemma 4.1. Suppose Algorithm 4.1 does not terminate in finitely many iterations.
Then we have, for all k,

〈HX(Wk), ηk〉 < 0. (4.31)

Therefore, βDk+1 > 0 and βk+1 ∈ [0, βDk+1] is well defined.

Proof. We proceed by induction. Since η0 = −∇HX(W0), (4.31) holds immediately
for k = 0. Suppose (4.31) holds for some k. Then βDk+1 > 0 according to (4.18) and

therefore βk+1 is well defined and the ratio rk+1 = βk+1

βDk+1
lies in [0, 1]. Consider the

definition of βDk+1, (4.18), we have

〈∇HX(Wk+1), ηk+1〉
= 〈∇HX(Wk+1),−∇HX(Wk+1) + βk+1ηk〉
= 〈∇HX(Wk+1), βk+1ηk〉 − 〈∇H(Wk+1),∇HX(Wk+1)〉
= rk+1〈∇HX(Wk+1), βDk+1〉 − 〈∇H(Wk+1),∇HX(Wk+1)〉

=
rk+1〈∇HX(Wk+1), ηk〉 −max{〈yk, ηk〉, 〈−∇HX(Wk), η〉}

max{〈yk, ηk〉, 〈−∇HX(Wk), η〉}
‖∇HX(Wk+1)‖2 (4.32)

If 〈∇HX(Wk+1), η〉 ≥ 0, it follows from the induction hypothesis that

〈∇HX(Wk+1), ηk〉 − 〈∇HX(Wk), ηk〉 = 〈yk, ηk〉 > 0

and, by (4.32) and last inequation,

〈∇HX(Wk+1), ηk+1〉 =
(rk+1 − 1)〈∇HX(Wk+1), ηk〉+ 〈∇HX(Wk), ηk〉

〈yk, ηk〉
‖∇HX(Wk+1)‖2

< 0.

If 〈∇HX(Wk+1), ηk〉 < 0, it follows from (4.32) that

〈∇HX(Wk+1), ηk+1〉 = −〈∇HX(Wk), ηk〉+ rk+1〈∇HX(Wk+1), ηk〉
〈∇HX(Wk), ηk〉

‖∇HX(Wk+1)‖2 < 0.

Therefore, (4.31) holds for k + 1 in both cases. By induction, we conclude (4.31) is
true for all k.
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Lemma 4.2. Suppose that HX satisfies Assumption 4.1. Then there exists a positive
constant µ > 0 for Algorithm 4.1 such that

αk ≥ min

{
αinit
k ,−µ〈∇HX(Wk), ηk〉

‖ηk‖
for all k,

}
(4.33)

where αinit
k denotes the initial steplength at iteration k. Furthermore, we have∑

j≥1

min
i=1,··· ,m

{−αmj+i−2〈∇HX(Wmj+i−2), ηmj+i−2〉} < +∞. (4.34)

Proof. It follows from Taylor’s Theorem that

HX(Wk + αkηk)−HX(Wk) = αk〈∇HX(Wk), ηk〉+

∫ αk

0

(DHX(Wk + tηk)[ηk]−DHX(Wk)[ηk])dt

≤ αk〈∇HX(Wk), ηk〉+

∫ αk

0

|DHX(Wk + tηk)[ηk]−DHX(Wk)[ηk]|dt

≤ αk〈∇HX(Wk), ηk〉+

∫ αk‖ηk‖

0

Ltdt

= αk〈∇HX(Wk), ηk〉+
1

2
Lα2

k‖ηk‖2,

where the last inequality uses the Lipschitzian property in Assumption 4.1. By
Lemma 4.1, 〈∇HX(Wk), ηk〉 < 0. Thus

αk ≤
2(δ − 1)〈∇HX(Wk), ηk〉

L‖ηk‖2

implies
HX(Wk+1) ≤ HX(Wk) + δαk〈∇HX(Wk), ηk〉.

The nonmonotone condition is

HX(Wk+1) ≤ max{HX(Wk), · · · ,HX(Wk−min{m−1,k})}+ δαk〈∇HX(Wk), ηk〉 (4.35)

hence (4.35) holds for µ = 2(δ−1)λ
L

, where λ is the reduction factor for the steplength.
The proof of the second part is as follows. For j ≥ 0, define

Hj = max{HX(Wmj),HX(Wmj+1), · · · ,HX(Wmj+m−j)}.

We show by induction that

HX(Wmj+i−1) ≤ Hj−1 + δαmj+i−2〈∇HX(Wmj+i−2), ηmj+i−2〉 for all i = 1, · · · ,m.
(4.36)

By (4.35), it is easy to see that (4.36) holds for i = 1. Assume (4.36) holds for all
i = 1, · · · , l for some 1 ≤ l ≤ m− 1. Then it follows from 〈∇HX(Wk), ηk〉 that

HX(Wmj+i−1) ≤ Hj−1 for all i = 1, · · · l.
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This, together with (4.35), implies that

HX(Wmj+l) ≤ max{HX(Wmj+l−1),HX(Wmj+l−2), · · · ,HX(Wmj+l−m)}
+ δαmj+l−1〈∇HX(Wmj+l−1), ηmj+l−1〉
≤ Hj−1 + δαmj+l−1〈∇HX(Wmj+l−1), ηmj+l−1〉

which means (4.36) holds for l + 1 and therefore holds for i = 1, · · · ,m. By (4.36)
and the definition of Hj, we have

Hj ≤ Hj−1 + δ max
i=1,··· ,m

{αmj+i−2〈∇HX(Wmj+i−2), ηmj+i−2〉}. (4.37)

Since Assumption 4.1 implies {Hj} is bounded below, we deduce by summing (4.37)
over j that (4.34) is true.

Theorem 8. Suppose Assumption 4.1 holds and Algorithm 4.1 does not terminate
in finitely many iterations. Then the sequence {Wk} generated by Algorithm 4.1
converges in the sense that

lim inf
k→∞

‖∇HX(Wk)‖ = 0. (4.38)

Proof. We prove this theorem by contradiction. Suppose lim infk→∞ ‖∇HX(Wk)‖ 6=
0. This means that there exists a constant γ ∈ (0, 1) such that

‖∇HX(Wk)‖ ≥ γ for all k. (4.39)

It can be seen from (4.32) that the formula (4.18) of βDk+1 can be rewritten as

βDk+1 =
〈∇HX(Wk+1), ηk+1〉

rk+1〈∇HX(Wk+1), ηk〉 −max{〈yk, ηk〉, 〈−∇HX(Wk), η〉}

=
〈∇HX(Wk+1), ηk+1〉

〈∇HX(Wk+1), ηk〉 −max{(1− rk+1)〈∇HX(Wk+1), ηk〉,−rk+1〈∇HX(Wk+1), ηk〉}
,

which, together with the results of Lemma 4.1, yields

0 ≤ βk+1 ≤ βDk+1 ≤
〈∇HX(Wk+1), ηk+1〉
〈∇HX(Wk), ηk〉

. (4.40)

Using ηk+1 = −∇HX(Wk+1) + βk+1ηk, we have

‖ηk+1‖2 = −2〈∇HX(Wk+1), ηk+1〉 − ‖∇HX(Wk+1)‖2 + β2
k+1‖ηk‖2. (4.41)

Dividing (4.41) by 〈∇HX(Wk+1), ηk+1〉2 and using (4.40), we obtain

‖ηk+1‖2

〈∇HX(Wk+1), ηk+1〉2
= − 2

〈∇HX(Wk+1), ηk+1〉
− ‖∇HX(Wk+1)‖2

〈∇HX(Wk+1), ηk+1〉2



62 CHAPTER 4. NEW OPTIMIZATION APPROACH

+
‖ηk‖2

〈∇HX(Wk+1), ηk〉2

= −
(

‖HX(Wk+1)‖
〈∇HX(Wk+1), ηk+1〉

+
1

‖∇HX(Wk+1)‖

)2

+
1

‖∇HX(Wk+1)‖2
+

‖ηk‖2

〈∇HX(Wk+1), ηk〉2

≤ 1

‖∇HX(Wk+1)‖2
+

‖ηk‖2

〈∇HX(Wk+1), ηk〉2
. (4.42)

Combining the recursion (4.42) and assumption (4.39), we obtain

‖ηk‖2

〈∇HX(Wk), ηk〉
≤

k∑
i=1

1

‖∇HX(Wi)‖2
+

‖η0‖2

〈∇HX(W0), η0〉2

=
k∑
i=1

1

‖∇HX(Wi)‖2
+ 1

≤ k + 1

γ2.
(4.43)

Then
〈∇HX(Wk), ηk〉2

‖ηk‖2
≥ γ2

k + 1
. (4.44)

On the other hand, from the first inequality in (4.42) and (4.43), we have

‖∇HX(Wk)‖2

〈∇HX(Wk), ηk〉2
+

2

〈∇HX(Wk), ηk〉
≤ ‖ηk−1‖2

〈∇HX(Wk−1), ηk−1〉2
≤ k

γ2
,

which yields

k

γ2
〈∇HX(Wk), ηk〉2 ≥ 2〈∇HX(Wk), ηk〉+ ‖∇HX(Wk)‖2. (4.45)

If

−〈∇HX(Wk), ηk〉 ≤
3

8
‖∇HX(Wk)‖2,

it follows from (4.45) that

〈∇HX(Wk), ηk〉2 ≥
γ2

4k
‖∇HX(Wk)‖2.

Therefore, we have from (4.31) and (4.39) that

−〈∇HX(Wk), ηk〉 ≥ min

{
3γ2

8
,
γ2

2
√
k

}
. (4.46)
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Using αinit
k ≥ αmin, (4.33), (4.44) and (4.46), we have∑

j≥1

min
i=1,··· ,m

{−αmj+i−2〈∇HX(Wmj+i−2), ηmj+i−2〉}

∑
j≥1

min
i=1,··· ,m

min

{
−αmj+i−2〈∇HX(Wmj+i−2), ηmj+i−2〉, µ

〈∇HX(Wmj+i−2), ηmj+i−2〉2

‖ηmj+i−2‖2

}
≥
∑
j≥1

min
i=1,··· ,m

min

{
3γ2αmin

8
,

γ2αmin

2
√
mj + i− 2

,
µγ2

mj + i− 1

}

≥ min

{
3γ2αmin

8
,

γ2αmin

2
√
m(j + 1)

,
µγ2

m(j + 1)

}
= +∞,

which contradicts (4.34). Therefore (4.39) is impossible and (4.38) follows.

Note that we are considering convergence in the space of skew-symmetric matri-
ces. Nevertheless, Theorem 7 assures that if we find a minimizer W ∗ of HX then a
minimizer of F can be found by taking Y (W ∗).

On the other hand, convergence in the Riemannian sense follows from the above
analysis in the following manner.

The nonmonotone condition in Algorithm 4.1

HX(Wk + αkηk) ≤ max{HX(Wk), · · · ,HX(Wk−min{m−1,k})}+ δαk〈∇HX(Wk), ηk〉

can be written as

F(Yk+1) ≤ max{F(Yk), · · · ,F(Yk−min{m−1,k})}+ δαk〈∇HX(Wk), ηk〉. (4.47)

Moreover, Lemma 4.1 assures 〈∇HX(Wk), ηk〉 < 0 for all k. Then there exists
δ̂ ∈ (0, 1) such that

δαk〈∇HX(Wk), ηk〉 ≤ δ̂αk〈F(Yk), ξk〉, for all k,

where ∇F(Yk) is the Riemannian gradient of F , ξk = −∇F(Yk) + ηkTαk−1ξk−1
(ξk−1)

is the conjugate direction corresponding to Riemannian conjugate gradient in Al-
gorithm 3.3. The existence of δ̂ is assured since we have 〈F(Yk), ξk〉 < 0 for all k,
according to generalization of Lemma 4.1 made in [52]. Now, (4.47) can be written
as

F(Yk+1) ≤ max{F(Yk), · · · ,F(Yk−min{m−1,k})}+ δ̂αk〈∇F(Yk), ξk〉. (4.48)

On the other hand, convergence of Algorithm 3.3 is proven in [52]. Since (4.48)is
the same nonmonotone condition of Algorithm 3.3 and it is satisfied for all k, we
have

lim
k→∞
‖∇F(Yk)‖ = 0. (4.49)
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Now, our implementation considers and actualization of X every kr iterations. Let
us index with r every change on X, so that, we have functions HXr , r = 1, 2, ...
Each HXr(Wk) is equivalent to F(Yk), where Yk = (I −Wk)

−1(I + Wk)Xr. Since
all Wk is generated satisfying the nonmonotone condition (4.47), expression (4.48)
also holds for {F(Yk) = HXr(Wk)}. Therefore, (4.49) holds and our implementation
with actualizations on X converges.

4.4.2 Convergence of line-search methods using Armijo con-
dition

Convergence analysis of this method assumes the sequence {ηk} to be gradient re-
lated to {Wk}, according to the following definition.

Definition 4.1. Let {Wk} a sequence of iterates and the corresponding sequence of
search directions {ηk}. The sequence {ηk} is gradient related to {Wk} if, for any
subsequence {Wk}k∈K that converges to a nonstationary point, the corresponding
sequence {ηk}k∈K is bounded and satisfies

lim sup
k→∞,k∈K

〈∇HX(Wk), ηk〉 < 0.

Theorem 9. Let {Wk} be a sequence generated by Algorithm 4.3. Then every
accumulation point of {Wk} is a critical point of HX .

Proof. By contradiction. Suppose that there is a subsequence {Wk}k∈K converging
to some W∗ with ∇HX(W∗) 6= 0. Since {HX(Wk)} is nonincreasing, it follows that
the whole sequence converges to HX(W∗). Hence,

HX(Wk)−HX(Wk+1)→ 0.

By definition of the Armijo rule, we have

HX(Wk)−HX(Wk+1) ≥ −δαk〈∇HX(Wk), ηk〉. (4.50)

Since {ηk} is gradient related, we must have {αk}k∈K → 0. Hence, by the definition
of the Armijo rule, we must have for some index k̄ ≥ 0

HX(Wk)−HX(Wk + (αk/λ)ηk) < −δ
αk
λ
〈∇HX(Wk), ηk〉, ∀k ∈ K, k ≥ k̄, (4.51)

that is, the initial stepsize will be reduced at least once for all k ∈ K, k ≥ k̄. Denote

pk =
ηk
‖ηk‖

, ᾱk =
αk‖ηk‖
λ

.

Since {ηk} is gradient related, {‖ηk‖}K is bounded, it follows that

{ᾱk} → 0.
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Since ‖pk‖ = 1 for all k ∈ K, there exists a subsequence {pk}K̄ of {pk}K such that

{pk}K̄ → p̄,

‖p̄‖ = 1. From (4.51), we have

∇HX(Wk)−∇HX(Wk + ᾱkpk)

ᾱk
< δ〈∇HX(Wk), pk〉, ∀k ∈ K̄, k ≥ k̄.

By using the mean value theorem, this relation is written as

−〈∇HX(Wk + α̃kpk), pk〉 < −δ〈∇HX(Wk), pk〉, ∀k ∈ K̄, k ≥ k̄,

where α̃k is a scalar in the interval [0, ᾱk]. Taking limits in the above equation we
obtain

−〈HX(W∗), p̄〉 ≤ −δ〈HX(W∗), p̄〉

or

0 ≤ (1− δ)〈HX(W∗), p̄〉.

Since δ < 1, it follows that

0 ≤ 〈HX(W∗), p̄〉 (4.52)

On the other hand, we have

〈∇HX(Wk), ηk〉 =
〈∇HX(Wk), ηk〉

‖ηk‖
.

By taking limit as k ∈ K̄, k →∞,

〈∇HX(W∗), p̄〉 < 0,

which contradicts (4.52).

Corollary 4.2. Let {Wk} be an infinite sequence of iterates generated by Algorithm
4.3. Assume that the level set L = {W : ∇HX(W ) ≤ ∇HX(W0)} is compact. Then
lim
k→∞
‖∇HX(Wk)‖ = 0.

Proof. By contradiction, assume the contrary. Then there is a subsequence {Wk}k∈K
and ε > 0 such that ‖∇HX(Wk)‖ > ε for all k ∈ K. Because is nonincreasing
on {Wk}, it follows that Wk ∈ L for all k. Since L is compact, {Wk}kK has an
accumulation point W∗ in L. By the continuity of ∇HX , one has ‖∇HX(W∗)‖ ≥ ε,
i.e., W∗ is not critical, a contradiction to Theorem 9.
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4.5 Transportless Conjugate Gradient using the

Polar Decomposition

As an alternative to Y = (I −W )−1(I + W )X, we can parametrize St(n, p) using
the Polar Decomposition as

Y P = M(M>M)−1/2, M ∈ Rn×p, rank(M) = p. (4.53)

It is clear that Y P is a surjective mapping from dom(Y P ) ⊂ Rn×p onto St(n, p).
Hence, it makes sense to define

H(M) : dom(Y P )→ R
M 7→ H(M) := F(Y P (M)),

and work on the optimization of H instead of F in order to apply Euclidean opti-
mization methods. Since we have to maintain all iterates in dom(Y P ) all M>

k Mk

should be invertible and we deal with this in the implementation of the algorithm.
Details on this implementation will be given after the next section.

On the other hand, it is clear that the computational cost of the eigendecompo-
sition of M>M is reasonable for small p, which makes this approach cheaper than
our approach using the Cayley Transform. Nevertheless, computing the gradient of
H requires the solution of a p2-by-p2 linear system. Hence, this approach works fine
for our experiments since small p is being considered, but may not be competitive
for large p.

4.5.1 Gradient of H(M)

Let A ∈ Rp×p be a symmetric matrix. We have

Ip2 =
dA1/2A1/2

dA

= (A1/2 ⊗ Ip)
dA1/2

dA
+ (Ip ⊗ A1/2)

dA1/2

dA
,

hence,
dA1/2

dA
= [(A1/2 ⊗ Ip) + (Ip ⊗ A1/2)]−1 = (A1/2 ⊕ A1/2)−1.

Now,

0 =
dA1/2A−1/2

dA

= (A−1/2 ⊗ Ip)(A1/2 ⊕ A1/2)−1 + (Ip ⊗ A1/2)
dA−1/2

dA
,
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so that,

dA−1/2

dA
= −(A−1/2 ⊗ A−1/2)(A1/2 ⊕ A1/2)−1.

We are interested in

d(M>M)−1/2

dM
=

d(M>M)−1/2

dM>M

dM>M

dM
= −((M>M)−1/2 ⊗ (M>M)−1/2)((M>M)1/2 ⊕ (M>M)1/2)−1

[(M> ⊗ Ip)Tn,p + (Ip ⊗M>)],

and

dY P

dM
=

dM(M>M)−1/2

dM
= ((M>M)−1/2 ⊗ Ip)
− ((M>M)−1/2 ⊗M(M>M)−1/2)((M>M)1/2 ⊕ (M>M)1/2)−1

[(M> ⊗ Ip)Tn,p + (Ip ⊗M>)].

The chain rule yields

∇H(M) =

[
dF(Y P )

dY p

dY P

dM

]>
= G(M>M)−1/2 −M(Z> + Z), (4.54)

where G is the Euclidean gradient of F and Z ∈ Rp×p is the solution to

(M>M)1/2Z + Z(M>M)1/2 = (M>M)−1/2M>G(M>M)−1/2. (4.55)

Note that Z can be found by solving the Sylvester Equation (4.55) or by solving the
sparse linear system

((M>M)1/2 ⊕ (M>M)1/2)vec(Z) = vec((M>M)−1/2M>G(M>M)−1/2). (4.56)

The size of the linear system (4.56) is p2, so that, for p2 < n it is less expensive
using Y P = M(M>M)−1/2 than Y = (I −W )−1(I + W )X, which requires to solve
a n-by-n linear system.

4.5.2 Non-singularity of M>M

For any X ∈ St(n, p), we have

∇H(X) = G−X
(
X>G+G>X

2

)
, (4.57)
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that is, ∇H coincides with the Riemannian gradient of F at X [4]. In this regard, if
M = X − α∇H(X) is the new trial point we can assure that M>M is not singular
since

M>M = (X − αH(X))>(X − αH(X))

= (X − α∇F(X))>(X − α∇F(X))

= Ip − α∇F(X)>X − αX>∇F(X) + α2∇F(X)>∇F(X)

= Ip + α2∇F(X)>∇F(X),

that is, M>M is a positive definite matrix. Thus, from M0 it is always possible to
generate the next iterate M1 using this scheme. However, when X 6∈ St(n, p) we can
not assure that M>M is not singular.

If the trial point M = Mk +αηk is such that M>M is singular we can restart the
algorithm by taking Mk = X(Mk) and ηk = ∇H(Mk). Although, it is unlikely for
the stepsize to be chosen such that M>M is singular. However, we have notice that
using the Riemannian gradient as search direction can accelerate the convergence of
our method and for our implementation we restart the algorithm every 10 iterations.

Since the numerical experiments will consider only low-rank cases, this approach
based on the Polar Decomposition is expected to be more efficient than the one
based on the Cayley Transform.

Once again, we will use Dai’s nonmonotone conjugate gradient for unconstrained
optimization [13]. Note that convergence of this method, proved in Section 4.4.1 for
HX , can be easily adapted forH. A noticeable advantage ofH is that inner products
〈H(M), ηk〉 are computed for n-by-p matrices, which for a small p is less expensive
than inner products between n-by-n matrices corresponding to optimization over
the space of skew-symmetric matrices. .

Implementation of Algorithm 4.1 considers a restarting strategy every kr iter-
ations. This strategy is experimentally proved to enhance the performance of the
algorithm. Considering this, we use the same strategy for the implementation used
in the implementation based on the Cayley Transform. In the case of the Polar
Decomposition, after every kr iterations we take M = Y P and βk+1 = 0.



Chapter 5

Numerical experiments

In this chapter we analyze the performance of our two optimization methods in
several instances of problem (1.1). The experiments are simulated and inspired on
those presented in [52]. Also, a comparison between the performance of algorithms
of Chapter 3 and our method is presented in this chapter.

5.1 Implementation Details

All experiments were executed using MATLAB R2014a in an ASUS laptop with an
Intel Corei5-8250U processor, 3.4GHz, 1TB of HD and 8GB of RAM.

In order to have fare comparisons, we will use the same constant parameters for
all algorithms whenever possible. The initial step-size is set up as α0 =1e-3. The
value δ =1e-4 corresponds to the constant in Armijo condition. For the backtracking
procedure, the current step-size will be diminished by a factor of λ =0.2. The
nonmonotone line search backward integer for consecutive previous function values
is set up as m =2. The constants that appear specifically in just one algorithm are
kept to default in the author’s implementation.

Regarding stopping criteria, although our algorithm works in the space of skew-
symmetric matrices, we will use the same conditions of Riemannian methods in
order to have a fare comparison. Tolerance on the norm gradient will consider
‖∇cF(Yk)‖F < ε where Yk = (I−Wk)

−1(I+Wk)X and ∇cF(Yk) is the Riemannian
gradient under the canonical metric

∇cF(Yk) = Gk − YkG>k Yk,

where Gk is the Euclidean gradient of F at Yk. The norm of the difference between
two iterates will be computed as ‖Yk+1−Yk‖F . Regarding the difference of the value
of objective function between iterates there is no confusion since F(Yk+1)−F(Yk) =
HX(Wk+1)−HX(Wk).

We let our algorithms run up to K iterations and stop at iteration k < K if one
of the following stopping criteria is satisfied:

69
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1. tolGk := ‖∇cF(Yk)‖F < ε

2. tolxk := ‖Yk+1−Yk‖F√
n

< xtol and tolfk := |F(Yk+1)−F(Yk)|
|F(Yk)|+1

< ftol

3. mean([tolxk−min(k,T )+1, · · · , tolxk]) < 10xtol and mean([tolfk−min(k,T )+1, · · · , tolfk ]) <
10ftol

For our experiments we use ε = 1e− 6, xtol = 1e− 6 and ftol = 1e− 12, K = 1000
and T = 5.

The results of experiments will be reported considering:

• Nfe: Number of function evaluations

• Nitr: Number of iterations

• Time: CPU time in seconds

• NrmG: Norm of the Riemannian gradient under the canonical metric

• Fval: Objective function value

• Feasi: Feasibility, defined as ‖X>X − Ip‖F and reported for the las iterate
generated by the algorithm

We use the following names to denote algorithms being compared. We refer to
Wen and Yin’s method from Section 3.1 as OptiStiefelGBB. Riemannian conjugate
gradient method from Section 3.3 will be denoted as OptiStiefelCGC as in [52].
Ad-Moul will denote the algorithm based on the Adam-Moulton scheme in Section
3.2. Our Transportless Conjugate Gradient methods will be denoted as CTCG, for
the one based on the Cayley Transform, and PTCG, the one based on the Polar
Decomposition. Our Steepest Descent method is denoted as GDW .

Zhu [52] tested the Riemannian conjugate gradient for low-rank matrices because
there is an efficient manner to compute the inverse matrix appearing in the Cayley
Transform. Therefore, values of p = 10 or p = 5 are common in the experiments
presented in [52]. For n the values 500, 1000, 5000 and 10000 are used. Nevertheless,
our CTCG method has no efficient way to compute the required inverse matrix
and the computational cost of this inversion depends on n. Hence, we limit our
experiments to n = 500, 1000.

5.2 Linear Eigenvalue Problem

Our first test problem is the linear eigenvalue problem formulated as

max
X∈Rn×p

Tr[X>AX] s.t. X>X = Ip, (5.1)
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where A is a symmetric n-by-n matrix. The corresponding objective function and
its Euclidean gradient are

F(X) = −Tr[X>AX] and G = −2AX. (5.2)

Optimum value of F is F(X∗) =
∑p

i=1 λi, i = 1, ..., p, are the leading eigenvalues
of A. Note that F has several minimizers since, for any given minimizer X∗ and
Q ∈ St(p, p), trace properties yield

F(X∗Q) = −Tr[Q>X>∗ AX∗Q]

= −Tr[X>∗ AX∗QQ
>]

= −Tr[X>∗ AX∗]

= F(X∗).

So that, is unlikely that two different optimization methods starting at the same
initial iterate would converge to the same minimizer.

5.2.1 Linear Eigenvalue problem: Experiment 1

First numerical experiment appearing in [52] considers a A = diag(1, 2, · · · , n). We
consider n = 500 and p = 10 for this experiment. Note that A is ill-conditioned.

We present statistics for 100 executions in Table 5.1, each of them starting at
different random initial iterates X0 ∈ St(n, p).

Regarding objective function, OptiStiefelCGC has smaller variance than other
methods. However, greater value of variance belongs to GDW with 1.97e-2 which is
still acceptable.

Feasibility is always maintained below 1e-13 since implementation of all algo-
rithms use the modified Gram-Schmidt process for last iterate when its feasibility
is above 1e-13. For this experiment, CTCG had the maximum value of feasibility
with 6.12e-14 which us still under 1e-13. So that, all algorithms performed satis-
factorily in this regard. In average, our GDW had the smallest value for feasibility
very close to the corresponding value for OptiStiefelGBB; variance is also similar
for both algorithms and smaller than those of other algorithms.

In average, gradient norm is in order of 1e-3 for all algorithms but is smaller
for OptiStiefelGBB. Note that our GDW method has a minimum value of 2.55e-
5 for gradient norm, which is smaller than the corresponding minimums of other
algorithms.

Number of iterations is an important feature concerning performance of the al-
gorithms. Regarding this aspect, state-of-the-art algorithms have similar results and
they are better than those of our algorithms. Nevertheless, note that the minimum
value for CTCG is 129 which is close 127, the minimum number of iterations for
OptiStiefelCGC. But the variance is greater for our methods, same for the mean
number of iterations.



72 CHAPTER 5. NUMERICAL EXPERIMENTS

All methods have to evaluate the objective function at least once per iteration.
However, additional evaluations imply higher computational cost. Note that number
of iterations and number of function evaluations is close for OptiStiefelGBB and
Ad-Moul meaning that stepsize estimation is fine in both algorithms. On the other
hand, our methods and OptiStiefelCGC need 100 more function evaluations than
the number of iterations which means that the backtracking procedure is invoked
many times increasing computational cost.

Regarding computational time, CTCG was expected to be the slowest method
and this is confirmed by the results. While CTCG takes 3.53 seconds to solve
the problem, all other methods need less than a second. The fastest method is
OptiStiefelGBB with an average of 0.21 seconds. Note that PTCG is comparable
with Ad-Moul concerning computational time.

Algorithm Fval Feasi NrmG Nitr Nfe Time
mean -4.9550e+03 5.89e-15 5.61e-03 190.0 290.3 0.40

PTCG min -4.9550e+03 3.51e-15 1.28e-03 141.0 216.0 0.30
max -4.9550e+03 9.66e-15 3.31e-02 295.0 457.0 0.62
var 1.8574e-13 1.21e-30 2.50e-05 734.2 1952.7 0.00

mean -4.9550e+03 1.46e-14 6.10e-03 187.2 286.8 3.83
CTCG min -4.9550e+03 8.94e-16 1.19e-03 129.0 184.0 2.52

max -4.9550e+03 6.12e-14 3.09e-02 287.0 459.0 6.03
var 2.2797e-13 3.93e-29 2.87e-05 913.1 2542.0 0.42

mean -4.9550e+03 7.53e-16 3.90e-03 202.6 319.8 0.76
GDW min -4.9550e+03 5.05e-16 2.55e-05 133.0 208.0 0.49

max -4.9550e+03 1.09e-15 2.23e-02 311.0 503.0 1.19
var 1.9782e-12 1.24e-32 1.30e-05 1447.4 3944.5 0.02

mean -4.9550e+03 7.59e-16 3.58e-03 172.3 184.0 0.21
OptiStiefelGBB min -4.9550e+03 5.57e-16 1.74e-04 123.0 128.0 0.15

max -4.9550e+03 1.13e-15 2.65e-02 258.0 275.0 0.31
var 7.1860e-13 1.37e-32 1.48e-05 540.7 656.1 0.00

mean -4.9550e+03 3.34e-15 4.57e-03 169.5 179.7 0.47
Ad-Moul min -4.9550e+03 1.64e-15 4.82e-04 115.0 118.0 0.31

max -4.9550e+03 8.66e-15 3.53e-02 242.0 256.0 0.67
var 1.1441e-12 1.86e-30 3.51e-05 559.0 697.1 0.00

mean -4.9550e+03 5.08e-15 5.24e-03 176.3 260.5 0.32
OptiStiefelCGC min -4.9550e+03 3.38e-15 4.58e-04 127.0 179.0 0.22

max -4.9550e+03 7.56e-15 1.42e-02 242.0 379.0 0.49
var 9.7389e-14 7.29e-31 9.14e-06 594.6 1653.6 0.00

Table 5.1: Results of experiment 1 for Linear Eigenvalue Problem
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Figure 5.1: Linear Eigenvalue Problem Experiment 1: Average gradient norm

Figure 5.2: Linear Eigenvalue Problem Experiment 1: Average objective function



74 CHAPTER 5. NUMERICAL EXPERIMENTS

Aside of results in Table 5.1, we show graphics of the average descending process
of gradient norm and objective function. We let algorithms run for 350 iterations
without other stopping criteria. Figures 5.1 and 5.2 show that Ad-Moul and Op-
tiStiefelGBB have faster overall descending rates than other methods, which agree
with results of Table 5.1. Nevertheless, our GDW and CTCG methods descend
faster for the first ten iterations.

Results Summary: Linear Eigenvalue Problem Experiment 1

Results in Table 5.1 and Figures 5.1 and 5.2 show OptiStiefelGBB and Ad-Moul to
have a better performance in this ill-conditioned experiment. Mainly, smaller num-
ber of iterations and computational time are the features that make these methods
better than others. However, OptiStiefelCGC and our PTCG method have com-
parable performances, specifically they are close to OptiStiefelGBB and Ad-Moul
regarding computational time.

5.2.2 Linear Eigenvalue problem: Experiment 2

As said before, matrixA = diag(1, 2, · · ·n) of the first experiment is an ill-conditioned
matrix. In order to test performance of algorithms in a well conditioned problem,
we keep a diagonal matrix but built as A = diag(2 ∗ ones(n, 1) + rand(n, 1)), that
is, the elements in the diagonal of A are numbers between 2 and 3. Dimensions of
the problem are kept as n = 500 and p = 10.

Results displayed in Table 5.2 show statistic for 100 executions of this problem,
starting at different random initial iterates.

Observe in the Fval column that OptiStiefelCGC, PTCG and GDW did not
reach the optimal value in all occasions. Also, variance for these methods is large,
being above 1e-10 while CTCG, OptiStiefelGBB and Ad-Moul have variance below
1e-15. Our CTCG method has the smaller variance.

Note that NrmG, the gradient norm, is larger for those algorithms that did not
reach the solution every time, i.e., PTCG, GDW and OptiStiefel have maximum
value of NrmG in the order of 1e-3, while this value for other methods other methods
is around 1e-5.

Number of iterations and number of function evaluations are significantly larger
for PTCG, GDW y OptiStiefelCGC. In average, these methods required 1000 it-
erations in order to reach an optimal solution but other methods have an average
number of iterations below 250.

Regarding CPU time, note that GDW requires more time that TCGC in average,
which was not expected since GDW is less expensive. However, large number of
iterations for GDW makes it slower for this experiment. Still, average time for TCGC
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is around 19 times the time of OptiStiefelGBB, that is, we have no comparison with
state-of-the art algorithms in this experiment.

Figure 5.3 shows that after 250 iterations GDW, PTCG and OptiStiefelCGC
practically stopped descending. On the other hand, Figure 5.4 shows that the value
of objective function descends faster for GDW and CTCG considering only the first
ten iterations.

Results summary: Linear Eigenvalue Problem Experiment 2

This experiment revealed that GDW, PTCG and OptiStiefelCGC have a bad perfor-
mance for this well-conditioned problem. Again, OptiStifelGBB and Ad-Moul are
the best algorithms. Our CTCG is close regarding number of iterations but there is
no comparison concerning computational time.

Algorithm Fval Feasi NrmG Nitr Nfe Time
mean -2.9881e+01 5.37e-15 7.15e-05 978.0 979.0 1.51

PTCG min -2.9881e+01 3.16e-15 1.24e-05 671.0 672.0 1.02
max -2.9880e+01 8.50e-15 1.39e-03 1000.0 1001.0 1.60
var 6.9497e-09 8.97e-31 2.59e-08 3190.8 3190.8 0.01

mean -2.9881e+01 2.63e-14 2.25e-05 223.3 302.6 4.22
CTCG min -2.9881e+01 2.19e-15 3.50e-06 161.0 213.0 3.00

max -2.9881e+01 9.66e-14 8.92e-05 296.0 409.0 5.65
var 3.1094e-17 2.23e-28 2.89e-10 874.5 1698.2 0.33

mean -2.9881e+01 7.85e-16 1.76e-04 990.1 1276.9 10.42
GDW min -2.9881e+01 5.12e-16 1.51e-05 728.0 941.0 6.77

max -2.9879e+01 1.15e-15 1.70e-03 1000.0 1298.0 11.17
var 2.4764e-08 1.70e-32 8.34e-08 1322.2 2175.0 0.32

mean -2.9881e+01 1.97e-15 1.12e-05 200.7 216.9 0.24
OptiStiefelGBB min -2.9881e+01 7.25e-16 1.13e-06 149.0 165.0 0.18

max -2.9881e+01 4.23e-15 9.57e-05 271.0 288.0 0.34
var 1.1003e-16 4.87e-31 1.62e-10 734.1 827.0 0.00

mean -2.9881e+01 5.11e-15 1.14e-05 197.7 212.3 0.54
Ad-Moul min -2.9881e+01 1.92e-15 2.62e-06 133.0 141.0 0.36

max -2.9881e+01 1.19e-14 5.84e-05 275.0 289.0 0.75
var 1.2471e-16 4.36e-30 7.33e-11 643.8 721.3 0.00

mean -2.9881e+01 8.03e-15 6.56e-05 967.3 968.3 1.32
OptiStiefelCGC min -2.9881e+01 5.16e-15 1.21e-05 635.0 636.0 0.85

max -2.9880e+01 1.06e-14 1.25e-03 1000.0 1001.0 1.42
var 1.9377e-09 1.08e-30 2.86e-08 4762.1 4762.1 0.01

Table 5.2: Results of experiment 2 for Linear Eigenvalue Problem
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Figure 5.3: Linear Eigenvalue Problem Experiment 2: Average gradient norm

Figure 5.4: Linear Eigenvalue Problem Experiment 2: Average objective function
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5.2.3 Linear Eigenvalue problem: Experiment 3

For our third experiment, we repeat experiment 1 changing the problem size. Let
n = 1000 and p = 5, we consider the ill-conditioned matrix A = diag(1, 2, · · · , n).
Results of this experiment are displayed in Table 5.3.

Column Fval of Table 5.3 shows that optimal objective function value is reached
by all algorithms. Also, variance is small for all algorithms although, OptiStiefelCGC
has the smallest.

Note that both gradient descent algorithms, GDW and OptiStiefelGBB, have
smaller average value for feasibility. Nevertheless, all algorithms maintain feasibility
under 1e-13.

Average of gradient norm is in order of 1e-3 for all algorithms. However, GDW,
OptiStiefelGBB and Ad-Moul have minimum values of gradient norm in order of
1e-4. Variance for this feature is similar for all methods.

Algorithm Fval Feasi NrmG Nitr Nfe Time
mean -4.9900e+03 2.96e-15 9.00e-03 271.1 428.8 1.73

PTCG min -4.9900e+03 1.28e-15 1.94e-03 192.0 304.0 1.23
max -4.9900e+03 6.17e-15 2.81e-02 402.0 675.0 2.71
var 4.1388e-12 7.77e-31 3.52e-05 1852.8 5113.6 0.08

mean -4.9900e+03 1.45e-14 8.65e-03 267.2 423.1 22.63
CTCG min -4.9900e+03 5.87e-15 1.56e-03 171.0 259.0 14.05

max -4.9900e+03 5.32e-14 2.74e-02 356.0 574.0 30.51
var 1.1021e-12 4.96e-29 3.16e-05 1320.8 3769.3 10.27

mean -4.9900e+03 4.77e-16 7.01e-03 281.4 454.1 4.18
GDW min -4.9900e+03 2.22e-16 2.48e-04 175.0 277.0 2.58

max -4.9900e+03 8.97e-16 3.15e-02 421.0 675.0 6.24
var 1.0963e-11 1.45e-32 4.00e-05 2833.2 7814.4 0.64

mean -4.9900e+03 4.80e-16 5.14e-03 231.6 248.3 0.99
OptiStiefelGBB min -4.9900e+03 2.65e-16 8.90e-04 160.0 169.0 0.67

max -4.9900e+03 8.05e-16 4.70e-02 356.0 384.0 1.52
var 6.0724e-12 9.90e-33 3.26e-05 1319.5 1583.2 0.02

mean -4.9900e+03 1.71e-15 5.52e-03 235.3 252.1 2.33
Ad-Moul min -4.9900e+03 4.87e-16 4.86e-04 164.0 176.0 1.62

max -4.9900e+03 4.84e-15 3.30e-02 315.0 332.0 3.13
var 1.1229e-11 5.61e-31 3.59e-05 1183.3 1376.9 0.12

mean -4.9900e+03 3.79e-15 9.24e-03 242.0 374.9 1.52
OptiStiefelCGC min -4.9900e+03 1.65e-15 1.27e-03 183.0 280.0 1.14

max -4.9900e+03 6.19e-15 2.26e-02 313.0 518.0 2.08
var 6.0712e-13 8.38e-31 2.40e-05 804.3 2330.1 0.04

Table 5.3: Results of experiment 3 for Linear Eigenvalue Problem
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Figure 5.5: Linear Eigenvalue Problem Experiment 3: Average gradient norm

Figure 5.6: Linear Eigenvalue Problem Experiment 3: Average objective function
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Ad-Moul and OptiStiefelGBB are the methods with smaller number of iterations,
again. Also, the number of function evaluations is close to the number of iterations
which means that the backtracking procedure is invoked few times. Our methods
need 35 more iterations than OptiStiefelGBB or Ad-Moul, but the most important
thing to notice is the large number of function evaluations in our methods.

Concerning computational time, only our PTCG algorithm is comparable to
state-of-the-art algorithms. Actually, in spite of the larger number of iterations and
function evaluations, PTCG takes less time than Ad-Moul and slightly more time
than OptiStiefelCGC. As expected, CTCG is the worst algorithm in this regard,
with average CPU time of 22.63 seconds. Furthermore, variance for this algorithm
is 10.27 which is too large.

Results summary: Linear Eigenvalue Problem Experiment 3

OptiStiefelCGC, OptiStiefelGBB and Ad-Moul have the best results for this exper-
iment regarding number of iterations and function evaluations. Nevertheless, the
value p = 5 makes our PTCG competitive regarding computational time, since it is
faster than Ad-Moul and slightly slower than OptiStiefelCGC.

5.2.4 Linear Eigenvalue problem: Experiment 4

Since experiment 2 has shown OptiStiefelCGC, PTCG and GDW had a bad per-
formance for the well-conditioned problem, we repeat the experiment changing the
problem size. We consider n = 1000 and p = 5 and the well-conditioned matrix
A = diag(2 ∗ ones(n, 1) + rand(n, 1)).

Column Fval of Table 5.4 shows that PTCG, OptiStiefelCGC and GDW fail to
reach the optimal value of F for some iterations. Also, these algorithms have a large
variance compared to others.

Moreover, PTCG, OptiStiefelCGC and GDW stopped because the maximum
number of iterations was reached. Hence, these algorithms are have better perfor-
mance for ill-conditioned problems of experiments 1 and 3 than for well-conditioned
problems of experiments 2 and 4.

Performance of our CTCG method is closer to the performance of OptiStiefel-
GBB and Ad-Moul but it is still unsatisfactory. Note that variance for CTCG is
high for Nitr, Nfe and Time which makes this method unreliable. Furthermore,
mean time is 40.83 seconds which is not comparable to 4.03 seconds corresponding
to Ad-Moul.
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Results summary: Linear Eigenvalue Problem Experiment 4

Ad-Moul and OptiStiefelGBB are the only two methods that solved this problem
satisfactorily. All features are similar for these two methods except for computa-
tional time. OptiStiefelGBB is faster with mean time of 1.68 while Ad-Moul has a
mean time of 4.03.

Algorithm Fval Feasi NrmG Nitr Nfe Time
mean -1.4991e+01 2.80e-15 3.15e-04 1000.0 1001.0 4.18

PTCG min -1.4991e+01 1.37e-15 5.16e-05 1000.0 1001.0 4.16
max -1.4990e+01 5.01e-15 9.94e-04 1000.0 1001.0 4.22
var 2.0379e-08 6.71e-31 2.13e-08 0.0 0.0 0.00

mean -1.4991e+01 3.14e-14 1.74e-05 530.1 716.5 40.83
CTCG min -1.4991e+01 1.19e-15 4.43e-06 246.0 323.0 18.69

max -1.4991e+01 9.73e-14 5.99e-05 921.0 1231.0 70.48
var 3.0512e-16 4.89e-28 1.58e-10 17323.4 31131.5 101.57

mean -1.4990e+01 5.50e-16 5.70e-04 1000.0 1292.2 25.52
GDW min -1.4991e+01 1.81e-16 1.13e-04 1000.0 1284.0 24.62

max -1.4990e+01 1.03e-15 2.79e-03 1000.0 1300.0 26.31
var 2.7031e-08 2.31e-32 1.46e-07 0.0 13.2 0.11

mean -1.4991e+01 1.24e-15 1.03e-05 399.4 424.0 1.68
OptiStiefelGBB min -1.4991e+01 4.30e-16 1.46e-06 212.0 232.0 0.92

max -1.4991e+01 3.75e-15 4.66e-05 643.0 682.0 2.70
var 1.2031e-15 3.29e-31 4.32e-11 6597.9 7133.9 0.11

mean -1.4991e+01 2.45e-15 8.67e-06 408.5 431.7 4.03
Ad-Moul min -1.4991e+01 7.49e-16 9.07e-07 223.0 231.0 2.17

max -1.4991e+01 6.60e-15 2.27e-05 671.0 711.0 6.64
var 1.4407e-15 9.34e-31 9.68e-12 8796.4 9462.2 0.85

mean -1.4991e+01 5.33e-15 2.92e-04 1000.0 1001.0 4.15
OptiStiefelCGC min -1.4991e+01 2.45e-15 3.93e-05 1000.0 1001.0 4.11

max -1.4990e+01 8.21e-15 1.05e-03 1000.0 1001.0 4.22
var 1.7706e-08 1.32e-30 2.09e-08 0.0 0.0 0.00

Table 5.4: Results of experiment 4 for Linear Eigenvalue Problem



5.2. LINEAR EIGENVALUE PROBLEM 81

Figure 5.7: Linear Eigenvalue Problem Experiment 4: Average gradient norm

Figure 5.8: Linear Eigenvalue Problem Experiment 4: Average objective function
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5.2.5 Linear Eigenvalue problem: Experiment 5

The next experiment has size n = 500 and p = 10. Symmetric matrix A is not
diagonal like in the last four experiments. A full symmetric matrix is built taking
M = randn(n) and A = M>M .

Results in Table 5.5 show that this problem was more easy to solve for all meth-
ods. First column, Fval, shows that all algorithms reached the optimal value in all
occasions. Actually, variance for this feature is similar and small for all methods.

Regarding feasibility all methods have values below 1e-13. Also variance is in
the order of 1e-30, so that, results for feasibility are satisfactory.

Algorithm Fval Feasi NrmG Nitr Nfe Time
mean -1.8399e+04 5.86e-15 1.98e-02 111.6 161.6 0.22

PTCG min -1.8399e+04 3.67e-15 1.97e-03 75.0 101.0 0.14
max -1.8399e+04 8.59e-15 8.41e-02 170.0 257.0 0.34
var 3.5418e-13 1.06e-30 2.28e-04 245.8 693.2 0.00

mean -1.8399e+04 4.01e-15 1.75e-02 112.7 162.1 2.22
CTCG min -1.8399e+04 2.76e-15 2.90e-03 79.0 108.0 1.51

max -1.8399e+04 6.11e-15 7.44e-02 172.0 252.0 3.43
var 3.3753e-13 4.44e-31 1.73e-04 259.9 721.4 0.12

mean -1.8399e+04 1.99e-15 1.19e-02 124.4 189.2 0.45
GDW min -1.8399e+04 9.43e-16 3.82e-05 87.0 130.0 0.31

max -1.8399e+04 3.08e-15 7.25e-02 206.0 322.0 0.76
var 3.1074e-12 1.78e-31 1.48e-04 549.2 1457.4 0.01

mean -1.8399e+04 2.04e-15 1.11e-02 104.0 107.8 0.12
OptiStiefelGBB min -1.8399e+04 5.18e-16 6.45e-04 62.0 65.0 0.08

max -1.8399e+04 3.00e-15 1.30e-01 192.0 205.0 0.23
var 9.7493e-13 2.30e-31 3.12e-04 306.2 350.6 0.00

mean -1.8399e+04 3.86e-15 1.22e-02 106.9 109.6 0.29
Ad-Moul min -1.8399e+04 2.04e-15 6.58e-04 64.0 66.0 0.18

max -1.8399e+04 7.71e-15 1.53e-01 157.0 167.0 0.43
var 1.7559e-12 1.70e-30 3.29e-04 292.2 344.0 0.00

mean -1.8399e+04 4.70e-15 1.84e-02 106.0 147.2 0.18
OptiStiefelCGC min -1.8399e+04 3.03e-15 3.77e-03 78.0 104.0 0.13

max -1.8399e+04 6.68e-15 9.17e-02 169.0 263.0 0.31
var 1.3080e-13 6.43e-31 1.74e-04 234.1 682.1 0.00

Table 5.5: Results of experiment 5 for Linear Eigenvalue Problem

Average gradient norm is in order of 1e-2 which is not so small but all algorithms
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have similar values for this feature. However, our GDW method obtained a minimum
value of 3.82e-5 which is smaller than other minimums.

Note that average number of iterations for state-of-the-art algorithms is similar,
around 105. Our PTCG and CTCG methods are slightly above this number with
an average of 112 iterations. In this sense, our methods are comparable with state-
of-the-art algorithms.

Once again, Ad-Moul and OptiStiefelGBB have the smaller number of function
evaluations. Our methods are closer to OptiStiefelCGC in this manner.

OptiStiefelGBB is faster than all other algorithms, with an average CPU time
of 0.12. Second faster algorithm is OptiStiefelCGC with 0.18 seconds. Third faster
algorithm is our PTCG method with 0.22 seconds which is close to the time of
OptiStiefelCGC and less than the time of Ad-Moul. In this regard, our PTCG
method is competitive with state-of-the-art algorithms.

Figure 5.9 shows behavior of methods without stopping criteria running for 350
iterations. Note that Ad-Moul is the only method that keeps descending over all the
process. Our methods and OptiStiefelCGC stop descending around iteration 150.

Results summary: Linear Eigenvalue Problem Experiment 5

Considering results of Table 5.5, the performance of OptiStiefelGBB is best of all.
However, OptiStiefelCGC, Ad-Moul and PTCG have competitive performances.

Figure 5.9: Linear Eigenvalue Problem Experiment 5: Average gradient norm
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Figure 5.10: Linear Eigenvalue Problem Experiment 5: Average objective function

OptiStiefelGBB, OptiStiefelCGC and Ad-Moul have similar performance consid-
ering number of iterations. But regarding computational time, our PTCG method is
slightly slower than OptiStiefelCGC and slightly faster than Ad-Moul which makes
it competitive for this problem.

On the other hand, Figure 5.9 show Ad-Moul to have better descending prop-
erties than other algorithms on asymptotic behavior. Actually, is the only method
that did not stop descending over all the process.

5.2.6 Linear Eigenvalue problem: Experiment 6

For this last experiment, we consider M = randn(n) and A = M>M but problem
size is n = 1000 and p = 5.

Table 5.6 shows similar results than last experiment, except for computational
time. First, Fval column shows that all algorithms reached optimal solutions every
time. Also, all algorithms had a small value for variance.

As said before, feasibility of last iterate is always checked and if it is above 1e-13
a modified Gram-Schmidt process is applied in order to reduce it. In this regard, all
values in Feasi column are expected to be below 1e-13. Actually, mean values are
in the order of 1e-15.

Average gradient norm is in the order of 1e-2 for all methods, however, Ad-Moul
had a minimum value of 6.35e-4, one order below others. Note that GDW had a
maximum value of 1.08e-1 which is one order above others.
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State-of-the-art algorithms have very similar values for number of iterations. The
minimum number of iterations belongs to OptiSteifelGBB with 75. Nevertheless,
OptiStiefelCGC and Ad-Moul are close with 77 and 78 iterations, respectively. Re-
garding our methods, the minimum number of iterations for CTCG is 7, same as
OptiStiefelCGC. For GDW and PTCG we have 84 and 86 iterations respectively.

A bigger difference appears in the Nfe column since OptiStiefelGBB and Ad-
Moul have a minimum of 77 and 79 evaluations, respectively. For our methods,
minimum number of function evaluations is above 105 in all cases.

Comparison in computational time shows our PTCG to be competitive with
state-of-the-art algorithms since its mean value is 0.68 seconds, above OptiStiefel-
CGC which has 0.59 and below Ad-Moul which has 1.05. GDW and CTCG are non
comparable in this regard.

Figure 5.11 shows that Ad-Moul have better descending properties since it is the
only algorithm that does not stop descending after 200 iterations.

Algorithm Fval Feasi NrmG Nitr Nfe Time
mean -1.9352e+04 3.12e-15 2.48e-02 114.1 165.9 0.68

PTCG min -1.9352e+04 1.41e-15 3.20e-03 86.0 114.0 0.47
max -1.9352e+04 5.40e-15 9.88e-02 171.0 251.0 1.02
var 2.1084e-13 6.66e-31 3.05e-04 246.8 663.0 0.01

mean -1.9352e+04 2.47e-15 2.56e-02 111.3 160.8 8.96
CTCG min -1.9352e+04 1.43e-15 5.12e-03 77.0 108.0 6.11

max -1.9352e+04 4.31e-15 7.13e-02 148.0 225.0 12.45
var 2.8957e-13 4.45e-31 2.39e-04 183.7 498.0 1.40

mean -1.9352e+04 1.94e-15 1.73e-02 124.7 190.2 1.82
GDW min -1.9352e+04 6.29e-16 6.29e-04 84.0 128.0 1.23

max -1.9352e+04 3.78e-15 1.08e-01 187.0 286.0 2.72
var 3.9038e-12 3.82e-31 4.73e-04 342.8 882.5 0.07

mean -1.9352e+04 2.07e-15 1.56e-02 106.8 110.9 0.44
OptiStiefelGBB min -1.9352e+04 5.60e-16 1.08e-03 75.0 77.0 0.31

max -1.9352e+04 4.53e-15 9.69e-02 156.0 166.0 0.66
var 1.1801e-12 5.75e-31 3.02e-04 246.5 285.7 0.00

mean -1.9352e+04 2.62e-15 1.73e-02 107.4 110.7 1.05
Ad-Moul min -1.9352e+04 8.89e-16 6.35e-04 78.0 79.0 0.75

max -1.9352e+04 4.75e-15 8.23e-02 151.0 165.0 1.53
var 1.2080e-12 6.95e-31 3.03e-04 229.1 275.9 0.02

mean -1.9352e+04 3.71e-15 2.98e-02 105.6 144.7 0.59
OptiStiefelCGC min -1.9352e+04 1.56e-15 5.59e-03 77.0 98.0 0.40

max -1.9352e+04 5.85e-15 9.28e-02 134.0 194.0 0.79
var 2.0494e-13 7.62e-31 3.79e-04 135.1 379.2 0.01

Table 5.6: Results of experiment 6 for Linear Eigenvalue Problem
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Figure 5.11: Linear Eigenvalue Problem Experiment 6: Average gradient norm

Figure 5.12: Linear Eigenvalue Problem Experiment 6: Average objective function
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Results summary: Linear Eigenvalue Problem Experiment 6

This experiment has shown that our PTCG can be competitive with state-of-the-art
algorithms regarding computational time. Nevertheless, OptiStiefelGBB has better
results than all other algorithms and our methods are still far from showing that
level of performance. Asymptotic behavior is better for Ad-Moul which shows great
descending properties.

CTCG is shown to have a fine performance without considering computational
time.

5.2.7 Results summary: Linear Eigenvalue Problem

Results of all six experiments have shown that performance of GDW, PTCG and
OptiStiefelCGC in experiments 2 and 4 (well-conditioned diagonal matrices) was not
always satisfactory. For thess experiments, OptiStiefelGBB and Ad-Moul are the
methods with best performance. Our CTCG method had a satisfactory performance
is we are not to consider computational time, i.e., main disadvantage of this method
is its elevate computational cost.

For experiments 1, 3, 5 and 6, all state-of-the-art algorithms have satisfactory
performance, being OptiStiefelGBB and Ad-Moul the best. Our methods have a
fine performance for these experiments but computational cost of GDW and CTCG
makes them non comparable with state-of-the-art algorithms. Nevertheless, our
PTCG is shown to be competitive since its computational time is close to that
of OptiStiefelGBB, Ad-Moul and OptiStiefelCGC. An important comment is that
PTCG has higher number of function evaluations in general, so that, for more com-
plex functions the performance of PTCG could be non satisfactory.

5.3 Orthogonal Procrustes Problem

Orthogonal Procrustes Problem, OPP, is formulated as

min
X∈Rn×p

‖AX −B‖2
F s.t. X>X = Ip,

where A ∈ Rl×n and B ∈ Rl×p.
Since

‖AX −B‖2
F = Tr[(AX −B)>(AX −B)]

= Tr[X>A>AX − 2B>AX +B>B],
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the objective function for this problem is

F(X) = Tr[X>A>AX − 2B>AX] (5.3)

and its gradient is

G = 2A>AX − 2A>B (5.4)

(see Appendix B for details).

5.3.1 OPP: Experiment 1

First experiment is taken from [52] where a simple OPP is generated considering
n = 1000, p = 5, A = In and B = ones(1000, 5)/sqrt(1000).

Results are displayed in Table 5.7. Column Fval shows that all algorithms
reached optimal solutions with a small variance, in the order of 1e-26 or smaller.

Algorithm Fval Feasi NrmG Nitr Nfe Time
mean 5.2786e-01 2.56e-15 1.09e-06 20.3 21.3 0.03

PTCG min 5.2786e-01 1.18e-15 2.06e-07 18.0 19.0 0.02
max 5.2786e-01 5.54e-15 3.23e-06 26.0 27.0 0.05
var 4.9365e-26 7.23e-31 4.85e-13 1.5 1.5 0.00

mean 5.2786e-01 2.64e-15 4.03e-07 26.9 29.6 1.77
CTCG min 5.2786e-01 1.10e-15 1.05e-07 20.0 22.0 1.30

max 5.2786e-01 4.40e-15 3.38e-06 31.0 34.0 2.03
var 1.6427e-26 4.79e-31 1.46e-13 3.0 4.6 0.01

mean 5.2786e-01 1.42e-14 1.40e-07 18.9 21.5 0.19
GDW min 5.2786e-01 6.14e-16 8.34e-11 16.0 17.0 0.16

max 5.2786e-01 9.83e-14 8.61e-07 19.0 22.0 0.21
var 8.8546e-28 8.81e-28 3.25e-14 0.3 0.9 0.00

mean 5.2786e-01 1.22e-14 7.95e-08 11.4 13.5 0.01
OptiStiefelGBB min 5.2786e-01 9.52e-16 6.23e-14 9.0 10.0 0.01

max 5.2786e-01 9.37e-14 9.44e-07 14.0 17.0 0.06
var 6.5023e-28 5.46e-28 3.26e-14 1.7 3.5 0.00

mean 5.2786e-01 2.40e-15 6.23e-08 11.5 12.8 0.08
Ad-Moul min 5.2786e-01 8.78e-16 1.93e-13 9.0 10.0 0.06

max 5.2786e-01 4.15e-15 8.20e-07 13.0 16.0 0.14
var 1.1275e-28 4.71e-31 2.76e-14 1.0 1.8 0.00

mean 5.2786e-01 1.27e-14 7.74e-07 18.9 19.9 0.02
OptiStiefelCGC min 5.2786e-01 7.73e-15 2.84e-07 18.0 19.0 0.02

max 5.2786e-01 1.86e-14 1.63e-06 19.0 20.0 0.04
var 9.7054e-28 5.45e-30 8.13e-14 0.1 0.1 0.00

Table 5.7: Results of experiment 1 for Orthogonal Procrustes Problem
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Note that gradient norm is smaller for this experiment than for all experiments
concerning the Linear Eigenvalue Problem. The minimum gradient norm for Op-
tiStiefelGBB is 6.23e-14, being the smallest minimum value for all algorithms. How-
ever, our algorithms are far from this value since the minimum gradient norm for
PTCG is 2.06e-7, for CTCG is 1.05e-7 and for GDW is 8.34e-11.

Regarding number of iterations, OptiStiefelGBB and Ad-Moul outperformed all
other methods since their average number of iterations is around 11.5 and other
methods have an average number above 18 iterations. Number of iterations of Op-
tiStiefelGBB and Ad-Moul is close to their number of function evaluations, which
means that stepsize estimation is good in these methods and the backtracking pro-
cedure is invoked few times. Aside of having large number of iterations, our methods
have large number of function evaluations.

Time comparison shows that CTCG and GDW are too expensive and need more
time than other methods to solve this simple problem. PTCG is the fastest algorithm
among our methods being slightly slower than OptiStiefelCGC and slightly faster
than Ad-Moul.

Figure 5.13 shows behavior of gradient norm when we let the algorithms run for
70 iterations, without other stopping criteria. Note that Ad-Moul and OptiStiefel-
GBB descend faster than other algorithms. Behavior of our PTCG is close to the
behavior of OptiStiefelCGC. Our GDW and CTCG methods stop descending early
in the process.

Figure 5.13: OPP 1: Average gradient norm
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Figure 5.14: OPP 1: Average objective function

Results summary: OPP Experiment 1

OptiStiefelGBB and Ad-Moul outperformed other methods. Main features of these
algorithms are small number of iterations and function evaluations. However, Op-
tiStiefelCGC and PTCG methods are competitive regarding computational time.
Figure 5.14 shows the objective function descending faster for our PTCG than other
methods, during the first ten iterations.

5.3.2 OPP: Experiment 2

Experiment 2 for the Orthogonal Procrustes Problem considers n = 500 and p = 10.
The corresponding matrices are built as A = randn(n)/sqrt(n) and B = randn(n, p).

Results in Table 5.8 show that the value of objective function -4.1054 was always
reached by the algorithms with a variance in the order of 1e-20 or smaller.

Gradient norm is comparable for all algorithms. Smallest gradient norm value
corresponds to our PTCG method with 4.26e-6. However, largest gradient value
also corresponds to one of our algorithms, CTCG.

Comparison concerning number of iterations shows that our PTCG method is
close to OptiStiefelGBB and Ad-Moul. While OptiStiefelGBB and Ad-Moul have
17.9 and 18 iterations in average, PTCG has 17.3. For other algorithms this value
is larger, for example, CTCG and OptiStiefelCGC need 28.7 and 27.4 iterations,
respectively.
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Regarding CPU time, our PTCG method have a competitive value with those
of the state-of-the-art algorithms. Mean value of 0.02 seconds is above of 0.01, for
OptiStiefelGBB, equal to 0.02, for OptiStiefelCGC, and below 0.04, for Ad-Moul.

Figure 5.15 shows asymptotic behavior of gradient norm. Note that Ad-Moul has
the best descending rate. Our GDW y CTCG methods practically stop descending
after 30 iterations. In this regard, our best method is PTCG which keeps descending
but not as much as Ad-Moul.

Results summary: OPP Experiment 2

Due to the small value p = 10, our PTCG method is competitive with state-of-the-
art algorithms for this experiment. Number of iterations, function evaluations and
computational time are similar for OptiStiefelGBB, Ad-Moul and PTCG and also
these algorithms have the best performance for this experiment.

Algorithm Fval Feasi NrmG Nitr Nfe Time
mean -4.1054e+02 6.08e-15 1.71e-05 17.3 19.3 0.02

PTCG min -4.1054e+02 3.83e-15 4.26e-06 16.0 18.0 0.01
max -4.1054e+02 8.82e-15 4.47e-05 20.0 22.0 0.02
var 2.4091e-23 1.52e-30 1.07e-10 0.3 0.3 0.00

mean -4.1054e+02 3.61e-15 1.09e-04 28.7 40.6 0.54
CTCG min -4.1054e+02 2.38e-15 3.31e-05 24.0 36.0 0.46

max -4.1054e+02 4.89e-15 7.66e-04 34.0 47.0 0.64
var 4.2851e-20 2.82e-31 8.59e-09 6.2 6.5 0.00

mean -4.1054e+02 2.34e-14 8.13e-05 21.3 28.6 0.05
GDW min -4.1054e+02 1.26e-14 6.69e-06 19.0 23.0 0.05

max -4.1054e+02 4.10e-14 7.11e-04 23.0 33.0 0.07
var 2.0103e-20 3.59e-29 7.70e-09 1.0 4.6 0.00

mean -4.1054e+02 1.49e-14 3.81e-05 17.9 18.9 0.01
OptiStiefelGBB min -4.1054e+02 7.17e-15 1.08e-05 17.0 18.0 0.01

max -4.1054e+02 2.30e-14 1.24e-04 19.0 20.0 0.01
var 4.7594e-22 8.16e-30 3.02e-10 0.1 0.1 0.00

mean -4.1054e+02 4.49e-15 6.22e-05 18.0 19.0 0.04
Ad-Moul min -4.1054e+02 2.35e-15 1.05e-05 17.0 18.0 0.03

max -4.1054e+02 7.78e-15 3.17e-04 19.0 20.0 0.05
var 6.4445e-22 1.84e-30 1.13e-09 0.1 0.1 0.00

mean -4.1054e+02 1.11e-14 2.05e-05 27.4 44.9 0.02
OptiStiefelCGC min -4.1054e+02 6.91e-15 1.27e-05 22.0 34.0 0.02

max -4.1054e+02 1.84e-14 2.95e-05 34.0 58.0 0.03
var 1.5492e-24 5.12e-30 8.58e-12 5.0 19.6 0.00

Table 5.8: Results of experiment 2 for Orthogonal Procrustes Problem
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Figure 5.15: OPP 2: Average gradient norm

Figure 5.16: OPP 2: Average objective function
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5.3.3 OPP: experiment 3

Experiment 3 for the Orthogonal Procrustes Problem considers n = 1000 and p = 5.
The corresponding matrices are built as A = randn(n)/sqrt(n) and B = randn(n, p).
Note that difference between this experiment and the last one is the problem size.
Parameter n increased but p diminished, so that, our GDW and CTCG methods
are expected to take more time solving this problem since their computational cost
relies mainly in the value of n.

Note that mean number of iterations is smaller for GDW than PTCG and CTCG,
that is, the gradient descent method is faster than the conjugate gradient methods in
this regard. However, PTCG and GDW are close to OptiStiefelGBB and Ad-Moul
concerning number of iterations.

Note that CTCG and OptiStiefelCGC have the largest mean values of function
evaluations, 33.1 and 34.1, respectively. Meanwhile, OptiStiefelGBB, Ad-Moul and
PTCG have a mean value of 16.1, 16.2 and 19.3, respectively.

Algorithm Fval Feasi NrmG Nitr Nfe Time
mean -3.0578e+02 3.17e-15 1.19e-05 17.1 19.3 0.02

PTCG min -3.0578e+02 1.48e-15 2.39e-06 15.0 18.0 0.02
max -3.0578e+02 6.40e-15 3.03e-05 18.0 20.0 0.03
var 2.5113e-24 7.74e-31 5.15e-11 0.6 0.3 0.00

mean -3.0578e+02 2.46e-15 8.66e-05 24.3 33.1 1.78
CTCG min -3.0578e+02 1.25e-15 8.23e-06 21.0 30.0 1.56

max -3.0578e+02 4.04e-15 7.02e-04 33.0 40.0 2.26
var 1.1479e-20 4.94e-31 5.55e-09 5.1 4.2 0.02

mean -3.0578e+02 9.64e-15 4.03e-05 16.7 21.6 0.17
GDW min -3.0578e+02 2.70e-15 3.21e-06 15.0 19.0 0.15

max -3.0578e+02 1.70e-14 1.39e-04 19.0 26.0 0.19
var 5.4846e-22 8.07e-30 1.03e-09 0.6 1.8 0.00

mean -3.0578e+02 7.65e-15 4.39e-05 15.1 16.1 0.01
OptiStiefelGBB min -3.0578e+02 2.57e-15 2.42e-06 13.0 14.0 0.01

max -3.0578e+02 1.55e-14 1.51e-03 18.0 19.0 0.02
var 1.9128e-19 6.03e-30 2.23e-08 0.2 0.2 0.00

mean -3.0578e+02 2.54e-15 5.17e-05 15.2 16.2 0.10
Ad-Moul min -3.0578e+02 1.28e-15 3.79e-06 15.0 16.0 0.10

max -3.0578e+02 4.72e-15 1.23e-04 18.0 19.0 0.12
var 7.8154e-22 4.85e-31 6.44e-10 0.2 0.2 0.00

mean -3.0578e+02 6.04e-15 1.66e-05 21.7 34.1 0.03
OptiStiefelCGC min -3.0578e+02 1.87e-15 2.87e-06 15.0 20.0 0.02

max -3.0578e+02 1.39e-14 2.49e-05 40.0 70.0 0.06
var 3.6461e-24 6.33e-30 8.44e-11 29.4 115.3 0.00

Table 5.9: Results of experiment 3 for Orthogonal Procrustes Problem
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Figure 5.17: OPP 3: Average gradient norm

Figure 5.18: OPP 3: Average objective function
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Note that, to the set precision, PTCG and OptiStiefelGBB did not incremented
computational time with respect to last experiment. This was expected for PTCG
since p diminished from 10 to 5 and therefore a smaller matrix have to be inverted.
In this regard, PTCG is still comparable with state-of-the-art algorithms for this
experiment.

Figures 5.17 and 5.17 are similar to those of last experiment, regarding that
Ad-Moul has the best descending rate.

Results summary: OPP Experiment 3

Results for this experiment are very similar to those of the last experiment. Main
difference concerns GDW having a small number of iterations, close to state-of-the-
art algorithms. As expected, computational cost of GDW makes it not competitive.
On the other hand, our PTCG method maintained its features and its competi-
tiveness. Nonetheless, OptiStiefelGBB and Ad-Moul are confirmed to be the best
algorithms because of their descending properties.

5.3.4 OPP: Experiment 4

Last experiment of this type also considersA = randn(n)/sqrt(n) andB = randn(n, p)
but problem size is increased to n = 1000 and p = 10.

Table 5.10 shows that all algorithms reached the same value of objective function
in all times with a variance lesser than 1e-19.

Note that our PTCG method has the smallest minimum value of gradient norm
with 4.43e-6. Nevertheless, all algorithms performed satisfactory in this regard.

Note that, once again, GDW needed a smaller number of iterations than CTCG.
Actually, CTCG has the largest mean number of iterations. GDW and PTCG
have mean number of iterations of 17.8 and 17.4, respectively, which is not much
more than the 15.1 iterations of OptiStiefelGBB. Actually, both our algorithms have
values below 21.4, the mean number of iterations of OptiStiefelCGC.

Regarding computational time, PTCG augmented its mean value, with respect
to last experiment, but this was expected since p augmented form 5 to 10 and a p2

linear system has to be solved for each iteration of this method. Nonetheless, the
mean value of 0.3 for PTCG is still smaller than the CPU times of OptiStiefelCGC
and Ad-Moul.

Figures 5.19 and 5.19 are similar to those of last experiment, regarding that
Ad-Moul has the best descending rate.
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Algorithm Fval Feasi NrmG Nitr Nfe Time
mean -6.1947e+02 5.94e-15 1.94e-05 17.4 19.4 0.03

PTCG min -6.1947e+02 3.76e-15 4.43e-06 15.0 18.0 0.03
max -6.1947e+02 8.39e-15 3.95e-05 18.0 20.0 0.04
var 1.5505e-23 1.18e-30 1.57e-10 0.4 0.3 0.00

mean -6.1947e+02 4.15e-15 1.25e-04 24.3 34.1 1.83
CTCG min -6.1947e+02 2.71e-15 1.83e-05 21.0 31.0 1.64

max -6.1947e+02 6.16e-15 8.36e-04 29.0 40.0 2.19
var 4.7870e-20 5.03e-31 1.53e-08 3.6 3.1 0.01

mean -6.1947e+02 1.82e-14 9.95e-05 17.8 22.4 0.19
GDW min -6.1947e+02 8.53e-15 1.08e-05 16.0 20.0 0.17

max -6.1947e+02 3.01e-14 8.87e-04 19.0 26.0 0.21
var 3.0037e-20 2.28e-29 1.59e-08 0.7 1.3 0.00

mean -6.1947e+02 1.39e-14 1.13e-04 15.1 16.1 0.02
OptiStiefelGBB min -6.1947e+02 6.57e-15 3.42e-05 15.0 16.0 0.02

max -6.1947e+02 2.27e-14 1.81e-04 16.0 17.0 0.02
var 4.1752e-21 7.52e-30 9.49e-10 0.1 0.1 0.00

mean -6.1947e+02 3.71e-15 9.89e-05 15.9 16.9 0.11
Ad-Moul min -6.1947e+02 2.15e-15 6.11e-06 15.0 16.0 0.10

max -6.1947e+02 5.96e-15 1.81e-04 17.0 18.0 0.12
var 5.1483e-21 6.90e-31 1.36e-09 0.2 0.2 0.00

mean -6.1947e+02 9.13e-15 7.24e-06 21.4 32.8 0.04
OptiStiefelCGC min -6.1947e+02 4.79e-15 6.17e-06 16.0 22.0 0.03

max -6.1947e+02 1.70e-14 8.30e-06 30.0 50.0 0.07
var 9.1805e-25 5.33e-30 2.38e-13 15.7 62.9 0.00

Table 5.10: Results of experiment 4 for Orthogonal Procrustes Problem

Results summary: OPP Experiment 4

Ad-Moul and OptiStiefelGBB outperformed other methods regarding number of it-
erations and number of function evaluations. However, CPU time for PTCG and
OptiStiefelCGC is sufficiently small to be competitive with Ad-Moul and OptiStiefel-
GBB. Our GDW method does not perform badly but its computational cost makes
it not competitive.
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Figure 5.19: OPP 4: Average gradient norm

Figure 5.20: OPP 4: Average objective function
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5.4 Heterogeneous Quadratics Minimization Prob-

lem

Heterogeneous Quadratics Minimization Problem, HQM, is formulated as

min
X∈Rn×p

p∑
i=1

X>[i]AiX[i] s.t. X>X = Ip,

where Ai, i = 1, ..., p, are n-by-n symmetric matrices and X[i] denotes the i-th
column of X.

The objective function and its gradient are

F(X) =

p∑
i=1

X>[i]AiX[i] and G = [2AiX[i]]i. (5.5)

5.4.1 HQM: experiment 1

This experiment considers matrices Ai defined as in the experiments of [52], that is,

Ai = diag

(
(i− 1)n+ 1

p
:

1

p
:
in

p

)
. (5.6)

For the size problem we consider n = 500 and p = 10.
Results for this experiment are displayed in Table 5.11. Fval column shows all

algorithms to have reached similar values of the objective function with a variance
in the order of 1e-13 or less.

Mean values of gradient norm are smaller for OptiStiefelGBB and Ad-Moul, in
the order of 1e-4, meanwhile other algorithms have a mean value in the order of 1e-3.
However, all algorithms have small variance of gradient norm which is desirable.

Mean number of iterations is very similar for OptiStiefelGBB and OptiStiefel-
CGC around 163 iterations. However, Ad-Moul have a lesser number of iterations
with 156.7. This value is higher for our methods: 180.9 for PTCG, 172.3 for CTCG
and 200.2 for GDW.

One noticeable disadvantage of PTCG, CTCG, GDW and OptiStiefelCGC is
the high number of function evaluations. OptiStiefelGBB and Ad-Moul have mean
number of function evaluations close to the mean number of iterations, that is,
the backtracking procedure is invoked only a few times. Nonetheless, the ratio
between number of iterations and number of function evaluations indicate that the
backtracking procedure is invoked in every iteration.
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Regarding computational time, our CTCG method is expensive as expected with
a mean value of 3.54 seconds. This is a large value considering that none of the other
algorithms needed more than a second. Our GDW method is faster because of the
use of the SMW formula, but it is still not competitive. From our algorithms, only
PTCG is fast enough to be competitive with state-of-the-art algorithms. OptiStiefel-
GBB is the fastest algorithm with an average of 0.09 seconds. Then OptiStiefelCGC
is the second fastest with 0.14 seconds. Our PTCG method takes 0.23 seconds in
average and Ad-Moul needs 0.31 seconds.

On the other hand, Ad-Moul has better descending properties as seen in Figure
5.21, actually, is the only algorithms that keeps descending over all the process.
Note that our PTCG and CTCG methods are comparable with OptiStiefelCGC in
this sense.

Algorithm Fval Feasi NrmG Nitr Nfe Time
mean 2.2555e+03 6.09e-15 1.21e-03 180.9 272.0 0.23

PTCG min 2.2555e+03 3.80e-15 2.87e-04 118.0 168.0 0.13
max 2.2555e+03 9.40e-15 4.47e-03 298.0 457.0 0.39
var 4.3850e-14 1.00e-30 7.27e-07 838.1 2312.5 0.00

mean 2.2555e+03 2.94e-14 1.24e-03 172.3 262.4 3.54
CTCG min 2.2555e+03 5.27e-15 2.30e-04 121.0 179.0 2.43

max 2.2555e+03 9.04e-14 6.54e-03 293.0 445.0 6.02
var 5.4467e-14 1.60e-28 9.37e-07 843.6 2258.5 0.39

mean 2.2555e+03 1.42e-15 1.10e-03 200.2 313.4 0.49
GDW min 2.2555e+03 5.95e-16 8.24e-05 131.0 205.0 0.33

max 2.2555e+03 3.80e-15 6.92e-03 283.0 451.0 0.70
var 4.2393e-13 4.00e-31 1.20e-06 1212.0 3248.0 0.01

mean 2.2555e+03 3.31e-15 7.25e-04 163.7 176.0 0.09
OptiStiefelGBB min 2.2555e+03 8.64e-16 5.14e-05 110.0 115.0 0.06

max 2.2555e+03 6.55e-15 6.49e-03 213.0 234.0 0.14
var 2.5597e-13 1.78e-30 7.50e-07 536.3 686.8 0.00

mean 2.2555e+03 7.47e-15 7.76e-04 156.7 166.6 0.31
Ad-Moul min 2.2555e+03 2.89e-15 9.60e-05 110.0 118.0 0.22

max 2.2555e+03 1.60e-14 5.42e-03 214.0 230.0 0.45
var 2.2636e-13 7.01e-30 7.61e-07 483.0 575.5 0.00

mean 2.2555e+03 5.85e-15 1.18e-03 163.6 243.8 0.14
OptiStiefelCGC min 2.2555e+03 3.75e-15 2.49e-04 114.0 158.0 0.10

max 2.2555e+03 8.62e-15 5.12e-03 214.0 342.0 0.20
var 2.4748e-14 9.97e-31 7.86e-07 484.0 1491.0 0.00

Table 5.11: Results of experiment 1 for Heterogeneous Quadratic Minimization
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Figure 5.21: HQM 1: Average gradient norm

Figure 5.22: HQM 1: Average objective function
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Results summary: HQM Experiment 1

OptiStiefelGBB and Ad-Moul outperformed other algorithms. Principal features of
OPtiStiefelGBB are the small number of iterations and its small CPU time. Ad-
Moul has a larger CPU time but smaller number of iterations. Our CTCG method
is comparable in number of iterations but not in computational time. PTCG is
competitive regarding computational time and number of iterations.

5.4.2 HQM: experiment 2

For this experiment we keep matrices Ai defined as in (5.6) but change the size
problem to n = 1000 and p = 5.

Similar results to those of the last experiment are expected since only the problem
size has changed. Table 5.12 reflects this changes mainly on the number of iterations
and computational time.

Algorithm Fval Feasi NrmG Nitr Nfe Time
mean 2.0030e+03 3.04e-15 2.12e-03 269.3 426.8 0.26

PTCG min 2.0030e+03 1.59e-15 4.00e-04 188.0 280.0 0.16
max 2.0030e+03 5.57e-15 6.81e-03 426.0 679.0 0.39
var 2.1287e-13 7.12e-31 2.07e-06 1642.2 4564.0 0.00

mean 2.0030e+03 1.95e-14 2.55e-03 261.8 413.1 21.14
CTCG min 2.0030e+03 6.27e-15 3.32e-04 185.0 293.0 15.02

max 2.0030e+03 7.48e-14 1.31e-02 368.0 588.0 29.88
var 3.1958e-13 1.13e-28 4.65e-06 1441.0 3994.3 10.16

mean 2.0030e+03 1.24e-15 1.74e-03 275.8 444.1 2.44
GDW min 2.0030e+03 3.48e-16 1.16e-04 191.0 301.0 1.70

max 2.0030e+03 5.03e-15 6.90e-03 422.0 694.0 3.70
var 1.7207e-12 5.49e-31 1.63e-06 2046.0 5960.4 0.16

mean 2.0030e+03 2.53e-15 1.44e-03 232.4 249.3 0.10
OptiStiefelGBB min 2.0030e+03 4.53e-16 2.13e-04 172.0 181.0 0.07

max 2.0030e+03 6.80e-15 1.08e-02 360.0 385.0 0.17
var 1.0667e-12 1.86e-30 1.85e-06 1395.7 1680.7 0.00

mean 2.0030e+03 4.06e-15 1.41e-03 226.9 241.8 1.37
Ad-Moul min 2.0030e+03 1.14e-15 1.29e-04 171.0 177.0 1.00

max 2.0030e+03 1.13e-14 6.96e-03 297.0 319.0 1.82
var 9.8438e-13 4.43e-30 1.58e-06 761.9 884.6 0.03

mean 2.0030e+03 4.24e-15 2.67e-03 242.7 377.2 0.19
OptiStiefelCGC min 2.0030e+03 1.88e-15 5.27e-04 165.0 233.0 0.12

max 2.0030e+03 7.04e-15 1.42e-02 375.0 604.0 0.32
var 7.0161e-14 1.05e-30 4.11e-06 1245.4 3677.6 0.00

Table 5.12: Results of experiment 2 for Heterogeneous Quadratic Minimization
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Figure 5.23: HQM 2: Average gradient norm

Figure 5.24: HQM 2: Average objective function
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Fval column shows all algorithms to have reached similar values of the objective
function with a variance in the order of 1e-12 or less. However, OptiStiefelCGC has
the smallest variance with 7.01e-14.

Values for gradient norm are similar for all algorithms, with a mean gradient
norm in the order of 1e-3.

Larger number of iterations is expected with respect to the last experiment since
the size of the problem increased. The smallest mean value belongs to Ad-Moul
with 226.9 iterations. Considering only our methods, CTCG have the smallest
mean value with 261.8 iterations. In general, state-of-the-art algorithms needed a
smaller number of iterations than our methods to solve the problem.

Note that maximum value of Time for CTGC is 29.88 seconds, so that, this
method has become extremely expensive for this problem. Our GDW reduces the
computational time to 2.44 seconds in average but it is still not competitive. Con-
cerning this feature, PTCG is the only one of our algorithms that can be competitive
with state-of-the-art methods. The mean value of 0.26 for PTCG is close to 0.19
corresponding to OptiStiefelCGC.

Average behavior of gradient norm is shown in Figure 5.23 where it is seen
that Ad-Moul has better descending properties than all other algorithms. Our two
conjugate gradient methods have similar behavior and end close to OptiSteifelCGC.

Results summary: HQM Experiment 2

For this experiment, behavior of algorithms were similar to that of the last experi-
ment. However, incrementing the problem size did increment a lot the cost of our
CTCG which has a mean Time of 21.14 seconds. Ad-Moul and OptiStiefelGBB were
the best methods and our PTCG method is comparable regarding computational
time.

5.4.3 HQM: experiment 3

This experiment adds a random element to the matrices Ai considering

Ai = diag

(
(i− 1)n+ 1

p
:

1

p
:
in

p

)
+Bi +B>i , (5.7)

where Bis were random matrices generated by Bi = 0.1randn(n). First size problem
is n = 500 and p = 10.

Results in Table 5.13 show that all algorithms reached the value of 4.7049e2 for
the objective function, with a variance in the order of 1e-14 or lesser.

Note that state-of-the-art algorithms have a minimum value of gradient norm in
the order of 1e-5 while our algorithms have a minimum value of gradient norm in
the order of 1e-4.
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For this experiment, OptiStiefelCGC have the smaller mean number of iterations
with 251.4. Our PTCG and CTCG methods have 272.3 and 278.7, respectively.
These values are similar to those of OptiStiefelGBB and Ad-Moul which are 271.1
and 270.3, respectively.

Note that mean values for Time column are all above 5 seconds. Slowest al-
gorithms are CTCG and GDW with 13.28 and 11.91, respectively. Our PTCG
method is faster with a value of 7.46 seconds but still not faster than state of the
art algorithms. OptiStiefelGBB is the fastest algorithm followed by Ad-Moul.

Once again, Figure 5.25 shows that Ad-Moul have better descending properties
since it does not stop descending when the algorithms run for 600 iterations. Our
PTCG and CTCG descend slower but are close to OptiStiefelCGC.

Algorithm Fval Feasi NrmG Nitr Nfe Time
mean 4.7049e+02 5.80e-15 5.69e-04 272.3 418.9 7.46

PTCG min 4.7049e+02 3.59e-15 1.41e-04 207.0 308.0 5.53
max 4.7049e+02 8.73e-15 1.79e-03 376.0 587.0 10.48
var 5.0867e-15 1.33e-30 1.54e-07 1583.4 4077.6 1.27

mean 4.7049e+02 1.99e-14 5.55e-04 278.7 437.8 13.28
CTCG min 4.7049e+02 3.97e-15 1.04e-04 204.0 315.0 9.59

max 4.7049e+02 8.35e-14 2.05e-03 381.0 603.0 18.28
var 4.7732e-15 1.23e-28 1.52e-07 1160.2 3032.8 2.75

mean 4.7049e+02 2.79e-15 5.52e-04 401.2 634.0 11.91
GDW min 4.7049e+02 1.11e-15 1.54e-04 287.0 447.0 8.33

max 4.7049e+02 4.31e-15 1.65e-03 593.0 937.0 17.66
var 6.1842e-14 5.70e-31 1.23e-07 4833.3 12594.5 4.51

mean 4.7049e+02 2.90e-15 3.35e-04 271.1 289.0 5.05
OptiStiefelGBB min 4.7049e+02 1.33e-15 8.64e-05 212.0 221.0 3.85

max 4.7049e+02 4.13e-15 1.28e-03 368.0 389.0 6.69
var 3.2837e-14 4.68e-31 5.63e-08 975.3 1056.4 0.32

mean 4.7049e+02 5.34e-15 3.47e-04 270.3 287.0 5.49
Ad-Moul min 4.7049e+02 2.53e-15 6.61e-05 216.0 229.0 4.36

max 4.7049e+02 9.35e-15 1.36e-03 370.0 389.0 7.41
var 2.9616e-14 2.42e-30 7.19e-08 1016.5 1086.1 0.40

mean 4.7049e+02 5.31e-15 6.03e-04 251.4 387.9 6.82
OptiStiefelCGC min 4.7049e+02 3.67e-15 8.29e-05 194.0 291.0 5.14

max 4.7049e+02 8.23e-15 2.88e-03 333.0 529.0 9.34
var 2.6015e-15 1.20e-30 2.41e-07 798.4 2426.3 0.76

Table 5.13: Results of experiment 3 for Heterogeneous Quadratic Minimization
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Figure 5.25: HQM 3: Average gradient norm

Figure 5.26: HQM 3: Average objective function
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Results summary: HQM Experiment 3

None of our algorithms outperformed state-of-the-art algorithms. However, per-
formance of PTCG is satisfactory regarding number of iterations and CPU time.
Nonetheless, OptiStiefelGBB and Ad-Moul have the best performance for this ex-
periment, with smaller number of iterations and CPU time.

5.4.4 HQM: experiment 4

For this experiment we consider a problem size of n = 1000 and p = 5. The matrices
Ai, i = 1, ..., p, are defined as

Ai = diag

(
(i− 1)n+ 1

p
:

1

p
:
in

p

)
+Bj +B>j ,

where Bj = randn(n).
Results of Table 5.14 show a small variance for all algorithms regarding the value

of the objective function. Our PTCG method have the minimum value of variance,
0.2463e-14, while all other algorithms have a value in the order of 1e-13.

Regarding gradient norm OptiStiefelGBB and Ad-Moul have the smallest mean
values with 9.32e-4 and 9.88e-4, respectively. This value is slightly higher for all
other algorithms, in the order of 1e-3.

OptiStiefelCGC has the smallest mean number of iterations. However, the num-
ber of function evaluations is high and this makes it a solwer algorithm, regarding
computational time. For OPtiStiefelGBB and Ad-Moul the number of function eval-
uations are close to the number of iterations, that is, stepsize estimation is better
for these algorithms. Hence, these are the fastest algorithms.

Concerning our methods, CTCG became to expensive for this experiment since
it could take up to 96.92 seconds to solve an instance of the problem. GDW reduces
CPU time to a maximum of 59.46 seconds but is still slow. Only our PTCG method
has a comparable CPU time with a mean value of 26.53 seconds. However, the
number of function evaluations for PTCG is still larger than those of state-of-the-
art algorithms.

Note that Figure 5.27 shows less difference in the behavior of all algorithms,
compared with last experiment. That is, the reached values of gradient norm are
not so different between algorithms.

Results summary: HQM Experiment 4

OptiStiefelGBB and Ad-Moul outperformed the other algorithms. Mainly, number
of function evaluations slowed down our algorithms and OptiStiefelCGC. Our PTCG
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method have a mean CPU time of 26.53 which is not far from the 23.69 seconds
corresponding to OptiStiefelCGC. However, variance of Time for our PTCG method
is high making it less reliable.

Algorithm Fval Feasi NrmG Nitr Nfe Time
mean 5.8336e+02 3.26e-15 1.81e-03 442.0 712.2 26.53

PTCG min 5.8336e+02 1.41e-15 4.45e-04 303.0 471.0 17.51
max 5.8336e+02 6.85e-15 4.77e-03 747.0 1214.0 45.30
var 9.2463e-14 1.22e-30 1.10e-06 8776.7 24647.0 34.21

mean 5.8336e+02 1.45e-14 2.04e-03 436.0 703.2 61.53
CTCG min 5.8336e+02 6.73e-15 5.73e-04 300.0 472.0 41.50

max 5.8336e+02 3.60e-14 4.67e-03 686.0 1109.0 96.92
var 8.2006e-13 3.32e-29 1.35e-06 5400.7 14951.0 112.45

mean 5.8336e+02 2.71e-15 1.43e-03 577.8 936.0 40.30
GDW min 5.8336e+02 5.88e-16 3.25e-04 352.0 558.0 24.26

max 5.8336e+02 4.82e-15 5.15e-03 853.0 1385.0 59.46
var 8.3931e-13 6.23e-31 1.23e-06 12904.2 35195.8 64.33

mean 5.8336e+02 2.71e-15 9.32e-04 398.9 421.4 15.64
OptiStiefelGBB min 5.8336e+02 1.30e-15 1.77e-04 281.0 297.0 11.00

max 5.8336e+02 5.90e-15 2.63e-03 554.0 577.0 21.31
var 5.1096e-13 8.45e-31 3.13e-07 4202.9 4609.8 6.29

mean 5.8336e+02 4.02e-15 9.88e-04 401.9 423.7 18.16
Ad-Moul min 5.8336e+02 1.99e-15 2.06e-04 286.0 302.0 12.90

max 5.8336e+02 9.64e-15 4.16e-03 594.0 610.0 26.38
var 5.2338e-13 2.29e-30 5.60e-07 4263.6 4518.2 8.42

mean 5.8336e+02 3.62e-15 1.61e-03 394.4 633.1 23.69
OptiStiefelCGC min 5.8336e+02 2.04e-15 2.87e-04 280.0 440.0 16.40

max 5.8336e+02 6.27e-15 5.19e-03 527.0 860.0 32.20
var 6.4149e-13 1.06e-30 1.21e-06 3202.2 8880.0 12.44

Table 5.14: Results of experiment 4 for Heterogeneous Quadratic Minimization
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Figure 5.27: HQM 4: Average gradient norm

Figure 5.28: HQM 4: Average objective function
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5.5 Joint Diagonalization Problem

In this section we solve some simulated instances of the Joint Diagonalization Prob-
lem, JDP, formulated as

max
X∈Rn×p

N∑
j=1

‖diag(X>AjX)‖2
2 s.t. X>X = Ip,

where Aj, j = 1, ..., N , are symmetric matrices.
Objective function and gradient corresponding to this problem are

F(X) = −
N∑
j=1

‖diag(X>AjX)‖2
2 and G =

[
−4

N∑
j=1

(X>[i]AjX[i])AjX[i]

]
. (5.8)

5.5.1 JDP: experiment 1

Data matrices Ajs for this problem are

Aj = diag(
√
n+ 1,

√
n+ 2, · · · ,

√
2n) +Bj +B>j , (5.9)

where Bjs are random matrices generated by Bj = randn(n).
For the first experiment we consider n = 500, p = 3 and N = 3.
From the results in Table 5.15 we can deduce that this problem requires more

computational effort than the former ones, since we are considering a small problem
size and the smallest minimum CPU time is 1.94 seconds, for Ad-Moul.

Moreover, the Fval column shows that algorithms failed to reach the optimum
value of the objective function in all repetitions. Actually, variance is above one for
all algorithms, which never happened on past experiments.

We can also note that mean gradient norm is in the order of 1e-1 which can
be considered a large value for this feature. The smallest mean gradient norm are
obtained by GDW and OptiStiefelGBB with 9.65e-2 and 9.23e-2, respectively.

Regarding number of iterations, OptiStiefelGBB and Ad-Moul have the smallest
mean values with 237.0 and 236.1, respectively. Nevertheless, oue CTCG method has
a mean number of 247.5 iterations which is not far from those of OptiStiefelGBB and
Ad-Moul, actually, is less than 328.2, the corresponding value for OptiStiefelCGC.

Moreover, the mean number of function evaluations is 385.2 for CTCG and
521.4 for OptiStiefelCGC, that is, our CTCG method have fine performance in this
experiment except for the CPU time.

Regarding Time, OptiStiefelGBB and Ad-Moul are the fastest algorithms. Time
difference between these algorithms and the others is noticeable. For example, the
fastest of our methods, PTCG, have a mean time value of 6.11 while Ad-Moul have
a mean time value of 3.05 seconds.
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In Figure 5.29 it can be seen that Ad-Moul and OPtiStiefelGBB have better
descending rates than other algorithms. However, for this experiment our CTCG
method have a better descending rate than OptiStiefelCGC and is close to Op-
tiStiefelGBB and Ad-Moul for the first iterations.

Results summary: JDP Experiment 1

Our CTCG method is competitive with OptiStiefelCGC if computational time is not
considered. Considering computational time only our PTCG method is comparable
with state-of-the-art algorithms.

Ad-Moul and OptiStiefelGBB are again the best algorithms, regarding all fea-
tures.

Algorithm Fval Feasi NrmG Nitr Nfe Time
mean -3.5832e+04 1.78e-15 1.83e-01 363.7 580.4 6.11

PTCG min -3.5832e+04 5.05e-16 2.79e-02 214.0 328.0 3.50
max -3.5830e+04 3.78e-15 5.15e-01 503.0 820.0 8.48
var 1.4172e+00 5.27e-31 1.59e-02 6304.7 18245.8 1.98

mean -3.5831e+04 1.75e-15 1.30e-01 247.5 385.2 9.19
CTCG min -3.5832e+04 9.36e-16 1.82e-02 173.0 265.0 6.31

max -3.5830e+04 3.22e-15 3.71e-01 327.0 527.0 12.46
var 1.5671e+00 3.88e-31 6.28e-03 1318.2 3751.7 2.04

mean -3.5832e+04 1.02e-15 9.65e-02 342.3 540.4 6.41
GDW min -3.5832e+04 3.15e-16 2.65e-02 215.0 336.0 4.00

max -3.5830e+04 2.17e-15 1.63e-01 466.0 768.0 9.06
var 1.4172e+00 2.66e-31 1.43e-03 4406.0 11788.0 1.64

mean -3.5832e+04 9.65e-16 9.23e-02 237.0 256.3 2.70
OptiStiefelGBB min -3.5832e+04 3.84e-17 2.08e-02 173.0 188.0 1.99

max -3.5830e+04 2.52e-15 3.14e-01 341.0 374.0 3.88
var 1.4997e+00 2.89e-31 4.16e-03 2283.9 2660.1 0.29

mean -3.5832e+04 1.23e-15 1.08e-01 236.1 254.2 3.05
Ad-Moul min -3.5832e+04 1.27e-16 2.89e-02 148.0 159.0 1.94

max -3.5830e+04 2.53e-15 3.23e-01 306.0 333.0 3.97
var 1.4172e+00 2.99e-31 6.37e-03 1650.6 1985.2 0.28

mean -3.5832e+04 2.31e-15 1.53e-01 328.2 521.4 5.50
OptiStiefelCGC min -3.5832e+04 6.78e-16 2.13e-02 216.0 334.0 3.51

max -3.5830e+04 3.87e-15 4.33e-01 495.0 790.0 8.38
var 1.2072e+00 7.09e-31 1.19e-02 5479.6 15114.2 1.63

Table 5.15: Results of experiment 1 for Joint Diagonalization Problem
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Figure 5.29: JDP 1: Average gradient norm

Figure 5.30: JDP 1: Average objective function
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5.5.2 JDP: experiment 2

The second experiment considers n = 500, p = 5 and N = 5. Matrices Ais are
defined as in (5.9).

Note that the only change with respect to the last experiment is that two more
matrices Aj are added to the problem. Nonetheless, this change was enough to
reduce the variance of the Fval column for all algorithms, as seen in Table 5.16. In
this experiment variance of Fval is in the order of 1e-10 or less, which is much lesser
than 1e0 corresponding to the last experiments.

On the other hand, mean value for gradient norm continues to be in the order
of 1e-1. The smallest value corresponds to Ad-Moul with 8.00e-2.

Regarding number of iterations, the smallest mean value corresponds to our
CTCG method with 218.1. However, OptiStiefelGBB and Ad-Moul are close with
223.6 and 227.2 iterations, respectively.

Algorithm Fval Feasi NrmG Nitr Nfe Time
mean -4.6044e+04 1.57e-15 1.95e-01 291.6 459.0 8.06

PTCG min -4.6044e+04 4.25e-16 5.42e-02 231.0 363.0 6.31
max -4.6044e+04 3.02e-15 4.73e-01 393.0 641.0 11.29
var 7.0750e-11 3.95e-31 9.20e-03 1868.7 5365.0 1.73

mean -4.6044e+04 1.76e-15 1.75e-01 218.1 335.6 10.46
CTCG min -4.6044e+04 6.78e-16 4.11e-02 153.0 230.0 7.16

max -4.6044e+04 4.04e-15 5.10e-01 333.0 525.0 16.27
var 3.7886e-11 5.92e-31 1.23e-02 1723.6 4628.2 4.38

mean -4.6044e+04 8.16e-16 1.08e-01 302.0 473.9 9.01
GDW min -4.6044e+04 2.24e-16 1.33e-02 192.0 289.0 5.48

max -4.6044e+04 1.81e-15 5.30e-01 545.0 860.0 16.31
var 1.8825e-10 1.87e-31 9.18e-03 7247.1 19017.0 6.81

mean -4.6044e+04 8.24e-16 1.31e-01 223.6 241.5 4.26
OptiStiefelGBB min -4.6044e+04 1.20e-16 2.14e-02 179.0 191.0 3.32

max -4.6044e+04 1.41e-15 4.13e-01 310.0 337.0 5.95
var 2.6045e-10 9.95e-32 1.38e-02 1420.4 1632.4 0.51

mean -4.6044e+04 1.17e-15 8.00e-02 227.2 243.0 4.60
Ad-Moul min -4.6044e+04 4.02e-16 8.59e-03 168.0 180.0 3.41

max -4.6044e+04 1.84e-15 4.35e-01 342.0 366.0 6.89
var 1.0527e-10 1.14e-31 6.18e-03 2022.7 2291.6 0.83

mean -4.6044e+04 2.92e-15 1.60e-01 265.2 409.4 7.23
OptiStiefelCGC min -4.6044e+04 1.12e-15 2.21e-02 214.0 326.0 5.73

max -4.6044e+04 6.32e-15 6.78e-01 433.0 678.0 11.90
var 4.0553e-11 1.36e-30 1.74e-02 2120.8 5619.9 1.71

Table 5.16: Results of experiment 2 for Joint Diagonalization Problem
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Figure 5.31: JDP 2: Average gradient norm

Figure 5.32: JDP 2: Average objective function
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Mean number of function evaluations is lesser for CTCG than for OptiStiefelCGC,
the corresponding values are 335.6 and 409.4. However, the corresponding values for
OptiStiefelGBB and Ad-Moul are 241.5 and 243.0, respectively. These values show
that CTCG and OptiStiefelCGC have worst performance than OptiStiefelGBB and
Ad-Moul in this regard.

As always, the main issue for our algorithms is computational time. CTCG has
a mean value of 10.46 seconds which is more than double the time of Ad-Moul, 4.60
seconds. The fastest of our algorithms is PTCG and it has a mean time of 8.06
seconds, which is still far from Ad-Moul or OptiStiefelGBB.

Added to the small number of iterations and function evaluations, CTCG also
has a fine descending rate as shown in Figure 5.31. However, OptiStiefelGBB and
Ad-Moul have better descending rates than all other algorithms.

Results summary: JDP Experiment 2

Ad-Moul and OptiStiefelGBB outperformed all other methods. These algorithms
have the small mean values for number of iterations, function evaluations and com-
putational time. If computational time is not considered then our CTCG method
has a fine performance since it has a small number of iterations.

Considering computational time, PTCG is our fastest algorithm and its compu-
tational time is comparable with that of OptiStiefelCGC.

5.5.3 JDP: experiment 3

This experiment also considers the matrices Ais to be defined as in (5.9). We now
increase the size of the problem considering n = 1000, p = 3 and N = 3.

Results for this experiment are displayed in Table 5.17. Fval column have small
variance for all algorithms, in the order of 1e-8 or less.

There is one important detail in the NrmG column. For PTCG, OptiStiefelGBB,
Ad-Moul and OptiStiefelCGC the maximum value is in the order of 1e0 which is
large value for this feature. Our CTCG and GDW have a maximum value in the
order of 1e-1, which is one order less.

Number of iterations for CTCG is actually comparable with that of OptiStiefel-
GBB and Ad-Moul. Although, OptiStiefelGBB and Ad-Moul have lesser number of
function evaluations.

Nonetheless, the mean time for CTCG is 41.12 seconds which is almost four
times the 12.32 seconds corresponding to OPtiStiefelGBB. This seems to be the
main weakness of our method.

Our fastest algorithm is PTCG which has a mean time of 27.47, this value is still
far from 13.89, the mean time corresponding to Ad-Moul.
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Behavior of gradient norm for our CTCG method shows faster descending rate
than that of OptiStiefelCGC but both algorithms end at a similar value, this is
seen in figure 5.33. OptiStiefelGBB and Ad-Moul are the algorithms with better
descending properties.

Results summary: JDP Experiment 3

Ad-Moul and OptiStiefelGBB outperformed all other methods. However, the per-
formance of CTCG is fine without regarding computational time. Main features of
CTCG in this experiment are small number of iterations and maximum gradient
norm in the order of 1e-1. Our PTCG method is the fastest of our algorithms but
is still far from being competitive.

Algorithm Fval Feasi NrmG Nitr Nfe Time
mean -7.2687e+04 1.53e-15 3.41e-01 408.3 655.2 27.47

PTCG min -7.2687e+04 4.05e-16 5.30e-02 263.0 413.0 17.15
max -7.2687e+04 3.61e-15 1.14e+00 639.0 1043.0 44.21
var 1.6491e-09 5.37e-31 4.32e-02 6653.2 18744.8 33.53

mean -7.2687e+04 1.66e-15 2.87e-01 274.8 434.2 41.12
CTCG min -7.2687e+04 3.92e-16 1.16e-01 190.0 296.0 28.09

max -7.2687e+04 2.81e-15 7.04e-01 384.0 621.0 58.59
var 3.0476e-10 3.97e-31 2.76e-02 2411.1 6648.2 58.06

mean -7.2687e+04 1.26e-15 2.57e-01 397.8 635.7 30.81
GDW min -7.2687e+04 5.56e-16 2.17e-02 212.0 325.0 15.83

max -7.2687e+04 2.23e-15 9.56e-01 633.0 1009.0 48.95
var 3.2030e-09 2.16e-31 4.93e-02 9087.1 24183.9 56.62

mean -7.2687e+04 1.35e-15 1.91e-01 270.8 295.1 12.32
OptiStiefelGBB min -7.2687e+04 3.34e-16 2.53e-02 214.0 235.0 9.67

max -7.2687e+04 2.64e-15 1.30e+00 358.0 387.0 16.24
var 1.3347e-09 3.11e-31 4.90e-02 1717.4 1989.4 3.46

mean -7.2687e+04 1.59e-15 2.81e-01 266.9 288.7 13.89
Ad-Moul min -7.2687e+04 6.25e-16 6.24e-02 183.0 204.0 9.62

max -7.2687e+04 3.10e-15 1.10e+00 385.0 420.0 20.33
var 7.4544e-09 4.87e-31 5.57e-02 2088.8 2445.9 5.82

mean -7.2687e+04 2.96e-15 4.50e-01 361.3 578.3 24.18
OptiStiefelCGC min -7.2687e+04 1.46e-15 8.03e-02 236.0 371.0 15.85

max -7.2687e+04 4.86e-15 1.44e+00 488.0 786.0 32.84
var 3.0539e-08 1.14e-30 1.01e-01 3470.4 9863.7 17.32

Table 5.17: Results of experiment 3 for Joint Diagonalization Problem
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Figure 5.33: JDP 3: Average gradient norm

Figure 5.34: JDP 3: Average objective function
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5.5.4 JDP: experiment 4

For our last experiment we consider the same matrices Ais, that is, defined as in
(5.9). Main change is the augmentation of N from 3 to 5, i.e., the size of the problem
is n = 1000, p = 3 and N = 5.

For this experiment, none of the algorithms had a maximum gradient norm below
1e0, which is a large value for this feature. Although, the mean value for the gradient
norm is in the order of 1e-1 for all algorithms.

Note that mean number of iterations is smaller for our CTCG method than for
OptiStiefelCGC. Actually, this value for CTCG is not far from the corresponding
value for Ad-Moul and OptiStiefelGBB. OptiStiefelGBB have the smallest mean
value with 284.5 iterations.

Algorithm Fval Feasi NrmG Nitr Nfe Time
mean -9.2089e+04 1.60e-15 3.99e-01 438.8 711.2 51.89

PTCG min -9.2089e+04 3.72e-16 1.01e-01 258.0 402.0 29.22
max -9.2089e+04 3.82e-15 1.60e+00 607.0 980.0 71.32
var 1.2475e-08 6.29e-31 1.23e-01 6801.5 19219.5 101.26

mean -9.2089e+04 1.82e-15 3.72e-01 301.6 476.2 59.10
CTCG min -9.2089e+04 4.16e-16 1.40e-01 208.0 321.0 40.11

max -9.2089e+04 3.55e-15 1.06e+00 418.0 669.0 82.80
var 2.2443e-09 6.25e-31 6.74e-02 2488.9 6840.1 103.66

mean -9.2089e+04 1.37e-15 2.89e-01 410.8 657.2 51.91
GDW min -9.2089e+04 2.23e-16 2.52e-02 273.0 433.0 34.26

max -9.2089e+04 2.55e-15 1.35e+00 525.0 850.0 66.94
var 3.1953e-09 2.31e-31 6.90e-02 4561.2 12711.5 78.04

mean -9.2089e+04 1.52e-15 3.30e-01 284.5 307.3 21.83
OptiStiefelGBB min -9.2089e+04 4.59e-16 6.64e-02 224.0 238.0 16.74

max -9.2089e+04 2.50e-15 3.78e+00 421.0 459.0 32.71
var 1.3276e-09 2.70e-31 4.37e-01 1713.7 2115.7 11.05

mean -9.2089e+04 1.69e-15 2.70e-01 293.9 317.8 25.08
Ad-Moul min -9.2089e+04 7.13e-16 6.33e-02 190.0 208.0 16.17

max -9.2089e+04 3.52e-15 1.31e+00 378.0 403.0 31.92
var 8.0600e-09 5.35e-31 6.57e-02 2177.8 2628.7 16.11

mean -9.2089e+04 3.66e-15 5.16e-01 385.8 617.9 43.89
OptiStiefelCGC min -9.2089e+04 1.47e-15 1.19e-01 275.0 429.0 30.55

max -9.2089e+04 8.63e-15 1.30e+00 518.0 863.0 61.32
var 5.3951e-09 2.76e-30 9.64e-02 3602.0 10069.7 50.53

Table 5.18: Results of experiment 4 for Joint Diagonalization Problem
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Figure 5.35: JDP 4: Average gradient norm

Figure 5.36: JDP 4: Average objective function

Note that our PTCG method has the largest mean value of function evaluations
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with 711.2 which slowed down its performance. Actually, its mean computational
time is almost equal to that of GDW, which is a more expensive algorithm. In
this experiment none of our algorithms have a value of CPU time comparable with
state-of-the-art algorithms.

From Figure 5.35 it is seen that CTCG have a comparable descending rate with
those of Ad-Moul and OptiStiefelGBB.

Results summary: JDP Experiment 4

All of our algorithms had a large computational time in this experiment, therefore,
none of them performed satisfactorily. Nevertheless, CTCG has a fine performance
when Time is not considered. Actually, its number of iterations and descending
rate is close to those of OptiStiefelGBB and Ad-Moul, the best algorithms for this
experiment.

5.6 Conclusions for numerical experiments

Experiments 2 and 4 of the Linear Eigenvalue Problem showed that a diagonal
well-conditioned matrix can affect the performance of algorithms. From our meth-
ods, only CTCG performed satisfactorily in this experiments. However, its high
computational cost makes it not competitive. Moreover, experiments for the Joint
Diagonalization problem proved our CTCG method to have a fine performance on
this challenging problem if computational time is not considered.

Our PTCG algorithm is fast and performed satisfactorily in most experiments
but it is seen that the most difficult problems can affect its performance and slow
it down because the number of iterations and function evaluations increases consid-
erably.

For all experiments OptiStiefelGBB and Ad-Moul have a fine performance and
are fastest in general. Our methods are still far from having this level of performance.
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Chapter 6

Ideas for future work

In this work we studied problem (1.1) from a different non-Riemannian perspective.
As a consequence, we have learn some interesting things about optimization over
Stiefel manifold.

In this chapter we present ideas generated from our investigation that hold po-
tential but due to lack of time had no further development.

These ideas comprehend a non-Riemannian Quasi-Newton method for optimiza-
tion on St(n, p), deduction of a retraction using Givens rotation matrices, use of
Householder transformation matrices for optimization on St(n, p) and a non- Rie-
mannian optimization method for optimization over the manifold of rank-k matrices.

6.1 Non-Riemannian Quasi-Newton Method for

Optimization on St(n, p)

In Chapter 4 we used a composite function HX(W ) and computed its gradient w.r.t.
a skew-symmetric matrix W ∈ Rn×n. However, in order to obtain this gradient we
used the vech form of W and differentiated only w.r.t. the n(n − 1)/2 variables
below diagonal of W . See Appendix B) for details.

Actually, HX(W ) can be seen as function of vech(W ) ∈ Rn(n−1)/2 instead of a
function of W . Then, the gradient would be

vec

∇ HX(W ) = vech((In −W )−>G(X + Y )> − (X + Y )G>(In −W )−1) (6.1)

and the Quasi-Newton equation would yield the search direction

pk = −Hk

vec

∇ HX(Wk), (6.2)

and the iterative scheme

vech(Wk+1) = vech(Wk) + αkpk. (6.3)

121
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As usual, the matrices Hk are symmetric and satisfy the secant equation

Hk+1yk = sk, (6.4)

where sk = vech(Wk+1 −Wk) and yk =
vec

∇ HX(Wk+1)−
vec

∇ HX(Wk).
The proposed Quasi-Newton method has some disadvantages that have to be

commented. First, in order to evaluate Y (Wk) = (I −Wk)
−1(I + Wk)X we need

to generate Wk from vech(Wk). Also, computing
vec

∇ HX(Wk) implies computing
vech(Wk). So that, computational cost is increased by the use of the vech operator.

On the other hand, the matrices Hk are squared so they are n(n − 1)/2-by-
n(n− 1)/2 matrices. Hence, for large n this method is impracticable for the needed
memory is larger than the available in a standard PC. As an example, in the ex-
periments of Chapter 5 we have n = 1000 which would require a 499500-by-499500
matrix Hk , approximately 1858.9GB.

So we write these ideas as a possible research topic such as using of large scale
techniques or modifications of Hk to make it a sparse matrix. However, this research
is beyond the scope of this work.

6.2 Givens retraction for St(n, p)

Wen and Yin used the Crank-Nicolson scheme to find a new trial point of the iterative
process [48]. The result is a feasible scheme that generates a rotation matrix using
the Cayley Transform (I −W )−1(I +W ). However, W is given as a definition with
no further explanation on how to choose said matrix.

We have notice that our approach is equivalent to Wen and Yin’s under some
conditions, i.e., using the Cayley retraction is equivalent to use the chain rule and
taking the derivative of F(Y (W )) and, thus, the selection of W corresponds to a
line-search in the direction of the gradient w.r.t. W . We explain ourselves in the
next paragraph.

From Appendix B we have that

∇HX(W ) = (I −W )−>G(X + Y )> − (X + Y )G>(I −W )−1,

which evaluated at W = 0 yields

∇HX(0) = 2(GX> −XG>). (6.5)

Note that (6.5) is the same search direction defined by Wen and Yin. Hence, instead
of thinking of a retraction we can think of a composite function evaluated at Wk = 0
in each iteration and generating a rotation of Xkk as next iterate.

Actually, a new method can be defined regarding the above.
Suppose that Q := Q(M), is a rotation matrix that depends on the parameter M ,

matrix or vector, such that Q(0) = I. We define Y (M) := QX, so that Y (0) = X.
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Notice that in the case of the Cayley retraction Q is the Cayley transform and
W is the matrix parameter such that when equaling zero we have Y (0) = X and
Q(0) = I.

A possible choice for Q is to use Givens rotations. For an n-by-n skew-symmetric
matrix W , let Giv(W ) =

∏
1≤i≤j≤nR(i, j,Wij), where the order of multiplication

is any fixed order and where R(i, j, θ) is the Givens rotation of angle θ in the (i, j)
plane, namely, R(i, j, θ) is the identity matrix with the substitutions e>i R(i, j, θ)ei =
e>j R(i, j, θ)ej = cos(θ) and e>i R(i, j, θ)ej = −e>j R(i, j, θ)ei = sin(θ).

A retraction based on Givens rotations has already been defined for the orthog-
onal group [4], St(n, n), as

RX(XW ) = XGiv(W ),

where η = XW ∈ TXSt(n, n). Nevertheless, we define a new Givens retraction for
St(n, p) as

RX(η) = Giv(W )X, (6.6)

where W = W (η) is chosen as follows.
Note that ∑

1≤i≤j≤n

dvec(R(i, j,Wij))

dvech(W )

∣∣∣∣∣
W=0

= Sn, (6.7)

where Sn is defined as in (4.5). On the other hand, R(i, j, θ) = I for 1 ≤ i ≤ j ≤ n.
Now, defining YG := YG(W ) = Giv(W )X yields

dvec(YG(W ))

dvech(W )

∣∣∣∣
W=0

= (X> ⊗ I)Sn, (6.8)

and therefore for HX(W ) = F(Y (W )) we have

• HX(0) = F(X)

• ∇HX(0) = GX> −XG>.

These last two properties allow us to define a very similar method to that of Wen
and Yin’s using YG . The iterative process would be defined by

Xk+1 = Giv(−αk(GkX
>
k −XkG

>
k ))Xk. (6.9)

The problem about using Given rotation matrices is that we have to compute the
product of n(n−1)/2 Givens matrices, although this can be programmed efficiently,
for large n it becomes expensive.

Other important detail is that there is no need to invert a matrix like in the
Cayley transform but the sine and cosine of n(n−1)/2 variables has to be calculated
at each iteration. Again, the line-search procedure can elevate the cost of these
calculations.
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6.3 Housholder reflections for optimization on St(n, p)

The ideas in the last two sections are theoretically fine but impractical. We now
present some ideas that are practical but need further theoretical development.

Considering thatXk+1 = QkXk is a feasible scheme, where Qk is a rotation
matrix, we propose to use the product of two Householder reflectors to get a rotation
matrix.

Define the following curve on St(n, p) for a given non-null u ∈ Rn, t > 0 and
v ∈ Rn such that u+ tv 6= 0,

Yv;u(t) =

(
I − 2

(u+ tv)(u+ tv)>

(u+ tv)>(u+ tv)

)(
I − 2

uu>

u>u

)
X. (6.10)

The curve (6.10) has the property Yv;u(0) = X for any u and v. However, choosing
u, v is a difficult problem. We proceed using the following manner to obtain a feasible
iterative scheme.

Suppose u 6= 0 is given and make

Yu(v) =

(
I − 2

(u+ v)(u+ v)>

(u+ v)>(u+ v)

)(
I − 2

uu>

u>u

)
X. (6.11)

ComputeGv := ∇F(Yu(v))|v=0, then, make v = 0−tGv in (6.11) so that a line-search
procedure can be done over t and next feasible iterate is obtained. Obviously, there
are a lot of other choices for v that yield feasible optimization schemes. Nevertheless,
there are also infinite choices for u and our numerical experiments have shown that
a good selection of u is critical to obtain an effective optimization procedure.

We have not found a solution to the problem of choosing u. A first approach could
be to differentiate (6.10) w.r.t. t and consider Ẏv;u(0) ∈ TXSt(n, p), the velocity of
the curve at X, to choose u as the solution of

min
u
〈∇F(X), Ẏv;u(0)〉 s.t. u>u = 1,

which can be a difficult problem.
We think that further research in the use of Householder reflectors can be worth

the effort since the corresponding iterative scheme is feasible and does not require
the inversion of any matrix. Moreover, applying a Householder reflection to an
n-by-p matrix when p� n can be done in a efficient not-expensive manner.

6.4 Simplified Cayley Transform

The advantage of Cayley Transform based Retraction is that any tangent vector can
be decomposed as η = UV > where U, V ∈ Rn×2p and the use of SMW formula (2.1)
only requires the inversion of a 2p-by-2p matrix. Nevertheless, this is only practical
when p < n/2 and the cost is dependent on p.
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We have tried to generate a scheme where the SMW formula (2.1) is always
practical since only the inversion of a 2-by-2 matrix is needed, independent of the
value of p. In order to accomplish this, we consider r, l ∈ Rn and define

Y := Y (r, l) = (I − (rl> − lr>))−1(I + rl> − lr>)X. (6.12)

In this manner, we are forcing W = rl> − lr> to have the decomposition

W = UV > =
[
l −r

] [
r l

]>
,

and V >U is a 2-by-2 matrix, so that inverting (I−(rl>−lr>)) can be done efficiently
using the SMW formula.

Naturally, there are a few details to be considered. First, if we want to use Y
in a similar way to the Cayley retraction we should begin the iteration at Wk = 0
and then perform a line-search to find Wk+1 = 0−αk(rkl>k − rkl>k ) but suitable rk, lk
have to be found.

Our first try consisted in setting a fixed rk and taking lk = rk so that Y = X.
Then, the gradient w.r.t. l, Gl , is computed and evaluated at lk = rk. Taking
lk+1 = lk − αkGl, for some αk > 0 and Y (uk, lk+1) = Xk+1 we get a feasible iterate
Xk+1 with a lower value of the objective function. However, this approach generates
rotation matrices near to the identity, (I − (rl> − lr>))−1(I + rl> − lr>) ≈ I, and,
therefore, the descending process is slow.

Our best proposal is to select u ∈ Rn such that u /∈ null(GX> − XG>) and
l = (GX> −XG>)r. The following arguments justify our proposal

. We have shown that ∇HX(0) = GkX
>
k −XkG

>
k can be regarded as the gradient

of a composite function w.r.t. W , evaluated at Wk = 0. Then, Wk+1 = Wk −
αk(GkkX

>
k −XkG

>
k ) generates a new iterate Xk+1 via the Cayley Transform. Note

that

〈∇HX(0), rr>∇HX(0)> −∇HX(0)rr>〉 = Tr[∇HX(0)>rr>∇HX(0)>]

− Tr[∇HX(0)>∇HX(0)rr>]

= −Tr[r∇HX(0)>∇HX(0)r]

− Tr[r∇HX(0)>∇HX(0)r]

= −2‖∇HX(0)r2‖2
2

< 0,

since ∇HX(0) is a skew-symmetric matrix. Hence, rr>∇HX(0) −∇HX(0)rr> is a
descent direction for any r such that ∇HX(0)r 6= 0.

Once again, the problem is to select r in a clever way. One option to begin the
study on r is to consider the curve

Y (t) = (I− t(rr>∇HX(0)>−∇HX(0)rr>))−1(I+ t(rr>∇HX(0)>−∇HX(0)rr>))X
(6.13)

and its velocity Ẏ (0) ∈ TXSt(n, p) in order to find a fine choice for r.
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6.5 Optimization over the manifold of fixed-rank

matrices

Building the composite function HX(W ) an take the derivative w.r.t. W is an idea
that can be used to perform optimization over the manifold of rank-k matrices.

Consider the problem

minF(Z) s.t. Z ∈Mk (6.14)

where

Mk = {M ∈ Rm×n|rank(M) = k} (6.15)

= {UΣV > : U ∈ St(m, k), V ∈ St(n, k),Σ = diag(σi), σ1 ≥ · · · ≥ σk > 0, }
(6.16)

be the manifold of fixed-rank matrices. Since Mk is a Riemannian manifold, Rie-
mannian methods can be used to solve optimization problems over Mk, such as
low-rank matrix completion [50].

Similar to the case of St(n, p), feasibility is maintained using a retraction for
tangent vectors. Actually, a projection operator can be used as a retraction, since
the truncated SVD of a tangent vector gives the desired projection. This means
that at each iteration at least one SVD has to be computed. We propose a method
that does not need computation of any SVD besides the one to generate the first
iterate.

Let

Z(WU ,WV ) = (I −WU)−1(I +WU)UΣ[(I −WV )−1(I +WV )V ]> ∈Mk, (6.17)

so that
Z(0, 0) = UΣV > ∈Mk.

The proposed method considers alternate descending as follows.

1. W k+1
U ≈ arg minWU

HUk(WU)|WU=0

2. Uk+1 = (I −W k+1
U )−1(I +W k+1

U )Uk

3. Σk+1 ≈ arg minΣF(Uk+1ΣV >k )|Σ=Σk

4. W k+1
V ≈ arg minWV

HVk(WV )|WV =0

5. Vk+1 = (I −W k+1
V )−1(I +WV k+1)Vk



Chapter 7

Conclusions

We have shown, theoretically and experimentally, that classical conjugate gradient
method can be used to solve (1.1) while maintaining a feasible iterative scheme. The
Cayley Transform was successfully applied to find minimizers of functions defined
over the space of skew-symmetric matrices. In order to have an equivalent problem,
the minimizers of F should not be a rotation of X ∈ St(n, p) with some eigenvalue
equal to -1. This situation was avoided using composite rotations.

We are conscious that CTCG is an expensive algorithm and its main weakness
is its elevated execution time. Nevertheless, we remark that, as far as we know, this
is the first effort made to solve optimization problems over Stiefel manifold using
this technique. We believe in the possibility of this work leading to further inves-
tigation where more efficient schemes are developed. Particularly, use of the Polar
Decomposition in order to formulate the PTCG algorithm is a first idea inspired by
CTCG which achieved the reduction of computational cost.

This work did not comprehend experiments where p > 10 because of the following
reason. It was important to prove that CTCG algorithm could be competitive
regarding all aspects but complexity, that is, a reasonable number of iterations was
needed in order to obtain convergence. Since this was proven by the numerical
experiments in Chapter 5, we think that it is worth the effort to continue this
investigation and search for more efficient schemes and, then, experiment with larger
problems.

An immediate topic of research is step-size estimation since the Barzilai-Borwein
step-size produced a large number of function evaluations for our algorithms. More-
over, each function evaluation needs the computation of a LU decomposition which
is expensive. Reducing this cost could be the first step to produce a more efficient
algorithm.

Performance of CTCG method through numerical experiments showed an expen-
sive yet fine algorithm that is susceptible of improvement. For starters, we think that
this work opens an investigation line where Riemannian concepts are combined with
this kind of parametric generation of rotation matrices where classical derivatives
can be used. The very first examples are presented in Chapter 6, where practical
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ideas are given but need further theoretical development. We treasure these and all
the ideas contained in this document for they hold potential.



Appendix A

Cayley Transform

Proposition A.1 (Cayley Transform). Let W ∈ Rn×n be a skew-symmetric
matrix, i.e., W> = −W . Then I−W is nonsingular and the matrix (I−W )−1(I+W )
is orthogonal. This is known as the Cayley Transform of W .

Proof. Let v ∈ Rn, v 6= 0. Note that R 3 v>Wv = 0 since

v>Wv = (v>Wv)>

= v>W>v

= −v>Wv.

Moreover,
v>(I −W )v = v>v − v>Wv = v>v = ‖v‖2

2 > 0.

Since v is arbitrary, I −W is a positive definite matrix and, therefore, it is nonsin-
gular.

To see that Q = (I −W )−1(I +W ) is an orthonormal matrix is enough to prove
that Q>Q = QQ> = I. We have

[(I −W )−1(I +W )]>(I −W )−1(I +W ) = (I +W )>(I −W )−>(I −W )−1(I +W )

= (I −W )(I +W )−1(I −W )−1(I +W )

= (I +W )−1(I −W )(I −W )−1(I +W )

= I
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Appendix B

Matrix calculus

In Section 2.4 we defined the matrix Sn as

Sn :=
dvec(W )

dvech(W )
.

We now present an example of the computation of Sn and its use for computation
of derivatives w.r.t. skew-symmetric matrices.

Let wji = −wij ∈ R for i, j = 1, 2, 3, 4. Hence, we have the skew-symmetric
matrix

W =


0 w12 w13 w14

w21 0 w23 w24

w31 w32 0 w34

w41 w42 w43 0

 =


0 −w21 −w31 −w141

w21 0 −w32 −w42

w31 w32 0 −w43

w41 w42 w43 0

 ,
the vec and vech forms of W are

vec(W ) =



0
w21

w31

w41

w12

0
w32

w42

w13

w23

0
w43

w14

w24

w34

0



and vech(W ) =


w21

w31

w41

w32

w42

w43

 .
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Then

S4 =
dvec(W )

dvech(W )
=



∂0
∂w21

∂0
∂w31

∂0
∂w41

∂0
∂w32

∂0
∂w42

∂0
∂w43

∂w21

∂w21

∂w21

∂w31

∂w21

∂w41

∂w21

∂w32

∂w21

∂w42

∂w21

∂w43
∂w31

∂w21

∂w31

∂w31

∂w31

∂w41

∂w31

∂w32

∂w31

∂w42

∂w31

∂w43
∂w41

∂w21

∂w41

∂w31

∂w41

∂w41

∂w41

∂w32

∂w41

∂w42

∂w41

∂w43
∂w12

∂w21

∂w12

∂w31

∂w12

∂w41

∂w12

∂w32

∂w12

∂w42

∂w12

∂w43
∂0
∂w21

∂0
∂w31

∂0
∂w41

∂0
∂w32

∂0
∂w42

∂0
∂w43

∂w32

∂w21

∂w32

∂w31

∂w32

∂w41

∂w32

∂w32

∂w32

∂w42

∂w32

∂w43
∂w42

∂w21

∂w42

∂w31

∂w42

∂w41

∂w42

∂w32

∂w42

∂w42

∂w42

∂w43
∂w13

∂w21

∂w13

∂w31

∂w13

∂w41

∂w13

∂w32

∂w13

∂w42

∂w13

∂w43
∂w23

∂w21

∂w23

∂w31

∂w23

∂w41

∂w23

∂w32

∂w23

∂w42

∂w23

∂w43
∂0
∂w21

∂0
∂w31

∂0
∂w41

∂0
∂w32

∂0
∂w42

∂0
∂w43

∂w43

∂w21

∂w43

∂w31

∂w43

∂w41

∂w43

∂w32

∂w43

∂w42

∂w43

∂w43
∂w14

∂w21

∂w14

∂w31

∂w14

∂w41

∂w14

∂w32

∂w14

∂w42

∂w14

∂w43
∂w24

∂w21

∂w24

∂w31

∂w24

∂w41

∂w24

∂w32

∂w24

∂w42

∂w24

∂w43
∂w34

∂w21

∂w34

∂w31

∂w34

∂w41

∂w34

∂w32

∂w34

∂w42

∂w34

∂w43
∂0
∂w21

∂0
∂w31

∂0
∂w41

∂0
∂w32

∂0
∂w42

∂0
∂w43



=



0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
−1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 −1 0 0 0 0
0 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 −1 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
0 0 0 0 0 0
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Note that for M ∈ R4×4 we have

S>4 vec(M) =


0 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 1 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1 0





m11

m21

m31

m41

m12

m22

m32

m42

m13

m23

m33

m43

m14

m24

m34

m44



=


m21 −m12

m31 −m13

m41 −m14

m32 −m23

m42 −m24

m43 −m34


= vech(M −M>).

From above example and the definition of Sn, we can easily deduce that

S>n vec(M) = vech(M −M>), M ∈ Rn×n.

B.1 Derivatives of the objective functions used in

the experiments

Details about the computation of gradient for the objective functions used in the
numerical experiments are given in this section.

We start by taking the derivative of

F(X) = Tr[X>M ], X ∈ St(n, p),M ∈ Rn×p,

since it will be useful to compute other derivatives. Note that

F(X) = Tr[X>M ] =
∑
i

[X>M ]ii =

p∑
i=1

n∑
j=1

X>ijMji =

p∑
i=1

n∑
j=1

XjiMji, (B.1)
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and
∂F(X)

∂Xuv

= Muv.

Hence, the gradient of F(X) = Tr[X>M ] is

G := ∇F(X) = M. (B.2)

Linear Eigenvalue Problem. The objective function of this problem is

F(X) =Tr [X>AX], X ∈ St(n, p), A ∈ Rn×n, A> = A. (B.3)

The gradient of (B.3) can be easily calculated using property 3 in Theorem 2.1 and
applying (B.2) twice with M = AX. Therefore, we have

G := ∇F(X) = −2AX. (B.4)

Orthogonal Procrutes Problem. The objective function of this problem is

F(X) = Tr[X>A>AX − 2B>AX], X ∈ St(n, p), A ∈ Rl×n, B ∈ Rl×p. (B.5)

In this case, we use properties in Theorem 2.1 to write

F(X) = Tr[X>A>AX − 2A>B] (B.6)

and use (B.2) to obtain

G := F(X) = 2A>AX − 2A>B. (B.7)

Heterogeneous Quadratics Minimization. The objective function of this prob-
lem is

F(X) =

p∑
i=1

X>[i]AiX[i], X ∈ St(n, p), Ai ∈ Rn×n, (B.8)

where X[i] denotes the i-th column of X. Note that this derivative can also be
calculated using (B.2) for each i and considering M = AiX[i] ∈ Rn. Therefore, the
gradient is

G := ∇F(X) = [2AiX[i]]. (B.9)

Joint Diagonalization Problem. The objective function of this problem is

F(X) = −
N∑
j=1

‖diag(X>AjX)‖2
F , X ∈ St(n, p), Aj ∈ Rn×n. (B.10)
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First note that for A ∈ Rn×n we have

diag(X>AX) =


X>[1]AX[1]

X>[2]AX[2]

...
X>[p]AX[p]

 ,
so that

‖diag(X>AX)‖2
2 = diag(X>AX)>diag(X>AX)

=
[
X>[1]AX[1] X>[2]AX[2] · · · X>[p]AX[p]

]

X>[1]AX[1]

X>[2]AX[2]

...
X>[p]AX[p]


=

p∑
i=1

(X>[i]AX[i])
2.

So that (B.10) can be written as

F(X) = −
N∑
j=1

p∑
i=1

(X>[i]AjX[i])
2, (B.11)

which gradient is

G := ∇F =

[
−4

N∑
j=1

(X>[i]AjX[i])AjX[i]

]
. (B.12)
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Appendix C

Details on the iterative scheme of
steepest descent method

Consider Wk+1 = Wk−αk∇H(Wk) and the following decomposition of the gradient

∇HX(Wk) = (I −Wk)
−>Gk(X + Yk)

> − (X + Yk)G
>
k (I −Wk)

−1

=
[
(I −Wk)

−>Gk −(X + Yk)
] [

(X + Yk) (I −Wk)
−>Gk

]>
= UkV

>
k ,

where Yk := (I −Wk)
−1(I +Wk)X. Define Ck := (I −Wk)

−1. we have

Yk+1 = (I −Wk+1)−1(I +Wk+1)X

= (I − (Wk − αk∇HX(Wk)))
−1(I +Wk − αk∇HX(Wk))X

= (I −Wk + αkUkV
>
k )−1(I +Wk − αkUkV >k )X

= [Ck − αkCkUk(I2p + αkV
>
k CkUk)

−1V >k Ck](I +Wk − αkUkV >k )X

= Yk − αkCkUk(I2p + αkV
>
k CkUk)

−1V >k Yk − αkCkUkV >k X
+ αkCkUk(I2p + αkV

>
k CkUk)

−1V >k Ck(αkUkV
>
k )X

= Yk − αkCkUk(I2p + αkV
>
k CkUk)

−1V >k Yk

− αkCkUk[I2p + (I2p + αkV
>
k CkUk)

−1V >k Ck(αkUk)]V
>
k X

= Yk − αkCkUk(I2p + αkV
>
k CkUk)

−1V >k Yk

− αkCkUk(I2p + αkV
>
k CkUk)

−1[I2p + αkV
>
k CkUk − αkV >k CkUk]V >k X

= Yk − αkCkUk(I2p + αkV
>
k CkUk)

−1V >k Yk − αkCkUk(I2p + αkV
>
k CkUk)

−1V >k X

= Yk − αkCkUk(I2p + αkV
>
k CkUk)

−1V >k (X + Yk).
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