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Abstract

The demand for reliable small area estimates derived from survey data has increased
greatly in recent years due to, among other factors, their growing use in formulating
policies and programs, allocation of government funds, regional planning, small area
business decisions and other applications.

Following the definition given by Rao (2003), the term small area or small domain
refers to a subpopulation for which the domain-specific sample is not large enough to
produce direct estimates with reliable precision. This subpopulation can be a small
geographical area (county, state, district, etc.), a demographic group within a geo-
graphical region (specific sex-age group, etc.) or any subdivision of the population.
Most surveys provide little information on individual small areas since they are gen-
erally designed to produce accurate estimates at a higher level of aggregation. Small
area estimation methods are well suited for settings that involve many domains, with
small (or no) samples from individual domains. In this setting, traditional design-
based direct survey estimates based only on samples from individual small areas are
not reliable. In order to improve on the traditional estimates based on individual
area sample, one may ”borrow strength” from neighboring or related small areas,
or other correlated dependent variables and relevant covariate information available
from other sources, such as administrative records, to produce accurate small area
estimates (Molina and Rao, 2015).

Most of the methods proposed in literature, to estimate small-area quantities, as-
sume that the variable of interest follows a linear model and the linking covariates are
available at population element (or observational unit) level or area level (Pereira and
Coelho, 2012; Marhuenda et al., 2013; Pfeffermann, D., 2013; Petrucci and Pratesi,
2014; Berg and Chandra, 2014; Rao and Molina , 2015). This assumption is not
common, as it is plausible that some variables of interest in various surveys can be
skewed distributed (Molina and Rao, 2010; Karlberg, 2014). Besides, it is not always
easy to link the covariates obtained from other sources (censuses and/or other sur-
veys) to those associated with the characteristic of interest (Datta and Ghosh, 1991).

In this thesis, we consider small area estimation (SAE) techniques focusing primarily
on estimating and predicting skewed (lognormal) distributed data. A brief review
on the theory of Linear Mixed Models is given. Estimation of a small area popula-
tion mean under a two-fold nested error lognormal model is proposed. Closed form
expressions for an empirical Bayes (EB) predictor and its bias-corrected estimator,
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as well as approximated analytical expression of the associated mean squared er-
ror (MSE) together with its bootstrap bias-corrected estimator, are obtained. To
improve the performance of the simple bootstrap, we propose a double parametric
bootstrap method for bias-correction. Under simulation experiments, the bias of
empirical Bayes predictors is studied. We demonstrate that the suggested predictor,
under the assumption of lognormal model, behaved well according to prediction.
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Chapter 1

Introduction

This preface introduces the general idea of small area estimation, focusing on different
works of various authors and shows the importance of small area estimation in a wide
variety of situations.

1.1 Background and current status of the topic

Public and private sectors use survey information, provided by statistical agencies, to
support government policies and business decisions, position a product on the mar-
ket, etc. Typically these surveys are designed to produce information for the target
sampling population and for large population subgroups. The standard sampling es-
timates for large population subgroups of a finite population are called design-based
estimates or direct estimates because the estimation is based only on the sampling
data and the selection probabilities for the sample in the subgroup of interest. Unlike
what happens in most areas of statistics, the statistical inference under a sampling
design does not depend on the validity of a statistical model (Sarndal et al., 1992).
This situation is advantageous in its estimation, since it is not necessary to suppose
an a prior model of the data. However, inference under a sampling design becomes
problematic when the sample size in the subgroups of interest is very small or even
zero.

Following the definition given by Rao (2003), the term small area or small domain
refers to a subpopulation for which the domain-specific sample is not large enough to
produce direct estimates with reliable precision. This subpopulation can be a small
geographical area (county, state, district, etc.), a demographic group within a geo-
graphical region (specific sex-age group, etc.) or any subdivision of the population.

1
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Most surveys provide little information on individual small areas since they are gen-
erally designed to produce accurate estimates at a higher level of aggregation. Small
area estimation methods are well suited for settings that involve many domains, with
small (or no) samples from individual domains. In this setting, traditional design-
based direct survey estimates based only on samples from individual small areas are
not reliable. In order to improve on the traditional estimates based on individual
area sample, one may ”borrow strength” from neighboring or related small areas,
or other correlated dependent variables and relevant covariate information available
from other sources, such as administrative records, to produce accurate small area
estimates (Molina and Rao, 2015).

Due to the lack of precision of the direct estimators of small area parameters, new
estimation procedures have been developed. A number of model-based methods have
been proposed and are increasingly needed to adjust the variables of interest and as-
sociated covariates to produce so-called small area estimators or indirect estimators.
Rao (2003), Pfeffermann (2013) and Rao and Molina (2015) give comprehensive and
detailed description on the theory of small area estimation.

The statistical techniques of small area estimation (SAE) have been a topic of
great interest and focus for various authors in the context of sample surveys. There
is an over-growing demand for reliable estimates of small area populations of differ-
ent types. Over the past three decades, this demand has increased in different areas
of application, including income and expenditure, poverty, education, health, and
agriculture ( Rao and Molina, 2015; Pfeffermann, 2013; Esteban et al., 2012; Molina
and Rao, 2010; Rao, 2003; Battese et al., 1988; Fay and Herriot, 1979). The main
reason of this growth in need is the recent trend involving social objective policies
and economic programs of different countries at a more local level. Some of these
policies and programs include determination of state funding allocations, formation
and evaluation of policies and programs, regional planning, administrative planning,
and disease mapping (Rao and Molina, 2015).

One of the objectives of SAE is to provide estimators that, without increasing the
size of the sample, allow to obtain good estimators; i.e, the estimation error is smaller
than that of the direct estimators. An appropriate consideration of the response vari-
able given the available covariates is extremely important. When covariates related
to the variable of interest are available at the unit level, a model, widely used in the
literature of small area estimation and in numerous applications, is the basic Battese
et al. (1988) model. This model is a one-fold nested error linear model. It was
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used to obtain empirical best linear unbiased prediction (EBLUP) estimates of areas
under corn and soyabeans for each of the 12 counties in North-Central Iowa under
normal distribution assumption.

Small area methods based on the ideas of non-normal distributions have been
considered by some authors. Slud and Maiti (2006) proposed an empirical Bayes
(EB) or best predictor for a small area mean assuming that the area-level direct
estimators have a lognormal distribution. Ghosh and Maiti (2004) discussed a small
area unit-level model based on natural exponential quadratic variance function fam-
ilies, where they assumed that the covariates are the same across units in a single
small area. Chandra and Chambers (2011) considered a lognormal distribution as a
basis for constructing a model-based direct estimator for a small area mean. Their
model is a weighted sum of sampled units in which the weights are defined to give
the minimum mean squared error linear predictor of the population mean when the
parameters of the lognormal distribution were known. Berg and Chandra (2014)
proposed a model-based indirect estimator that follows the framework of Chandra
and Chambers (2011) under the assumption that the covariates are available at the
unit-level.

Small area estimation procedures under two-fold nested error linear models, ap-
propriate for two-stage sampling in each of the small areas, were considered in differ-
ent literature. Datta and Ghosh (1991) and Pfeffermann and Barnard (1991) used
the two-fold model for the special case of cluster-specific covariates. In estimating
the model mean squared error, Stukel and Rao (1999) extended the results of Prasad
and Rao (1990) and Stukel (1991) to general two-fold nested error regression models,
considering the unit-level covariates to be available.

The work presented in this thesis can be divided into two broad categories. In
the first, under a log-normal distribution, we propose a two-fold nested error lognor-
mal model. This model extends the number of models previously considered in this
area (Stukel and Rao 1999, Datta and Ghosh 1991, Pfeffermann and Barnard 1991,
Berg and Chandra 2014 ). The proposed model is different from that of Berg and
Chandra (2014) because we work with a two-fold nested error instead of one-fold
nested error data. It is also different from Stukel and Rao (1999), since their model
is a two-fold nested error under a linear case. Furthermore, considering that we need
to combine information from different sources where it is not possible to find an con-
nector item (identifier) between information regarding each observational unity from
those sources, we adapt the case of cluster-specific covariates as in Datta and Ghosh
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(1991) and Pfeffermann and Barnard (1991). In the second category, we derive the
closed-form expression for mean squared error (MSE). We derive its bias-corrected
estimator based on a bootstrap approach and we provide its approximated expression
under a double parametric bootstrap. The suggested methods are computationally
simple because the predictor and mean squared error estimator have closed form
expressions.

1.2 Objectives of the thesis

1.2.1 General objectives of the thesis

Most of the methods proposed in literature, to estimate small-area quantities, as-
sume that the variable of interest follows a linear model and the linking covariates are
available at population element (or observational unit) level or area level (Pereira and
Coelho, 2012; Marhuenda et al., 2013; Pfeffermann, D., 2013; Petrucci and Pratesi,
2014; Berg and Chandra, 2014; Rao and Molina , 2015). This assumption is not
common, as it is plausible that some variables of interest in various surveys can be
skewed distributed (Molina and Rao, 2010; Karlberg, 2014). Besides, it is not always
easy to link the covariates obtained from other sources (censuses and/or other sur-
veys) to those associated with the characteristic of interest (Datta and Ghosh, 1991).

Under the assumption that a population charateristic of interest is skewed (log-
normal) distributed, and focusing on the model-based theory of estimation in small
areas, the research carried out in this thesis aims to propose a methodology for ob-
taining a predictor of population mean at small-area level. Because of the potentially
large effect of decisions that are made by using survey results, it is important that
estimates be reported together with their precisions, and the mean-squared error
(MSE) is the measure of precision which has become standard in the small area field
(Rao, 2003). For bias-corrected empirical Bayes predictor small area point estima-
tors, mean-squared error formulae and estimators are provided. The behavior of
these mean-squared error estimators is illustrated by a simulation study.

1.2.2 Specific objectives

The objectives on which we will focus our work are the following:

i. To estimate population mean of the characteristic of interest at small-area level
when the sample data was obtained from a two-stage sampling design.
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ii. In the case of skewed data, to extend a two-fold nested error model by including
random effects explaining heterogeneity at the two levels of aggregation.

iii. To propose a small area estimation method for skewed data under the assump-
tion that a lognormal model is a reasonable distribution of the original response
variable given cluster-level covariates.

iv. To derive the closed form expressions for an empirical Bayes (EB) predictor
and the associated mean squared error estimator.

1.3 Content of the thesis

This thesis investigates the applicability of mixed lognormal models with two nested
random factors to estimate small area parameters. Public statistics particularly so-
cioeconomic statistics are interested in the use of this type of models. However, there
are also relevant applications in the field of environmental statistics, in modeling of
agricultural data, as mentioned above.

The present document consists of six chapters and appendices distributed as
follows:

In Chapter 1, we introduce the notion of small area estimation, providing a
comprehensive description of the background and current status of the topic.
We also highlight the general as well as the specific objectives of the thesis.

In Chapter 2 we give an overview of approaches to small area estimation, ex-
plaining the two types of small area estimation: direct and indirect estimation.

In Chapter 3, we briefly review general concepts pertaining to the theory of
linear mixed models necessary to address later chapters, and stress the general
theory of prediction, in the methodology of fitting a linear mixed models and
obtaining mean square error of predictors.

In Chapter 4, a new model for small area estimation, two-fold nested error
lognormal, is developed and the restricted maximum likelihood approach is
proposed to estimate the regression parameters. We adapt the Fisher-scoring
algorithm to estimate the vector parameter of components of variance. We
apply the general theorem of prediction to obtain the optimal predictor of
the variable of interest, known as best linear unbiased predictor (BLUP) or
EBLUP when the components of variance are known or unknown respectively.
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We perform a simulation experiment that allows us to analyze the behavior of
these estimators.

In Chapter 5, we apply the corresponding theory to the estimation of mean
square error of the EBLUP. Extending this theory to the model under study, we
obtain the closed form expressions of mean squared error (MSE), and provide
its bias-corrected estimator based on a bootstrap approach and we propose its
approximated expression under a double parametric bootstrap. In simulation
studies we compare those two approaches.

The thesis concludes with a discussion regarding the methods presented and
possible future research projects inspired by Chapter 6 of this work.

The appendices detail the intermediate calculations which lead to the expres-
sions described in Chapters 4 and 5 respectively.



Chapter 2

Approaches to small area
estimation

Up to now, in the context of SAE, different methods of estimation have been de-
veloped, designed and model based (see Rao and Molina, 2015). Traditionally there
are two types of small area estimation namely direct and indirect estimation. The
direct small area estimation is based on survey design and includes the Horvitz -
Thompson (HT) estimator, generalized regression (GREG) estimator and modified
direct estimator. On the other hand, indirect approaches are mainly based on dif-
ferent statistical models and techniques. Implicit model based approaches include
synthetic and composite estimations; whereas explicit models are categorized as area
level and unit level models.

2.1 Direct estimators

Following the definition given by Rao (2003), a small area estimator is direct when
it uses the sample values of study variables from the specified area only. In general,
the direct estimators are unbiased estimators, however, due to the small sample size,
such estimators might have unacceptably large standard errors. Direct estimates are
classical design-based estimators that are obtained by applying survey weights to the
sample units in each small area, Saei and Chambers (2003). For direct estimation
all small areas must be sampled in order to produce these kinds of estimates. The
following two estimators are common in direct estimation.

7
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2.1.1 Horvitz-Thompson (HT) estimator

The Horvitz-Thompson is the simplest direct estimator. Suppose that a finite survey
population U, consists of N distinct elements identified through the labels 1, 2, . . . , N
is divided into M disjoint sub-populations (or small areas), Ui, of size Ni each, and∑M

i=1 Ni = N . Consider a sample s (s ⊆ U) drawn from U with a given probability
design p(.), and si (si ⊂ s) is the set of individuals that have been selected in the
sample from small area i. Suppose that the inclusion Probability πk = P (k ∈ si) is
strictly positive and known. For the elements k ∈ si, let (yik, xik) be a set of sample
observations, where yik is the value of the characteristic (or variable) of interest for
the kth unit in the small area i and xik is the vector of covariates associated with yik.

Now, if Yi and Xi represent the target variable and the available covariates for
small area i respectively, the Horvitz-Thompson estimator, Sarndal et al. (1992), of
the population total for ith small area can be defined as

Ŷi,HT =
∑
k∈si

wikyik,

where wik = 1
πik

, k ∈ si ⊂ s, are design weights depending on the given probability

sampling design p(.). In the context of small area estimation problems, with an
inadequate sample, HT estimator can be design-biased and more unreliable (Petrucci
and Pratesi, 2014).

2.1.2 Generalized regression (GREG) estimator

The generalized regression (GREG) estimator is obtained by combining the indi-
vidual sample information from the survey data with covariates (Xi). The GREG
estimator of population total is defined as follows

Ŷi,GREG =XT
i β̂ +

∑
k∈si

wik(yik − xTikβ̂),

with

β̂ =
(∑
k∈si

wikxikx
T
ik

)−1(∑
k∈si

wikxiky
T
ik

)
.

Where β̂ is the sample weighted least square estimates of generalized regression,
(Sarndal et al. 1992, Rao 2003). The GREG estimator is approximately design-
unbiased for small area estimation but it is not consistent because of high residuals
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(Rao, 2003, chap.2). Rao (1999), gives a detailed discussion about the GREG esti-
mator in the context of small area estimation.

2.1.3 Modified direct estimator

If the covariates Xi in the ith small area are available, the modified direct estimator,
known also as Regression estimator, can be used to improve the reliability of direct
estimators by borrowing strength for estimating the regression coefficient over small
area. The modified direct estimator of population total is given by

Ŷi,R = Ŷi + (tXi
− X̂i)

T β̂,

where Ŷi, X̂i are the HT estimators of the target variable Yi and covariates Xi

respectively, tXi
is the population total of covariates Xi for the small area i, and

β̂ =
(∑
k∈s

wkxkx
T
k

)−1(∑
k∈s

wkxky
T
k

)
,

is the overall sample weighted least square estimates of the regression coefficients.
The modified direct estimator is approximately design-unbiased as the overall sam-
ple size increases, even if the regional sample size is small. Although the modified
direct estimator borrows strength for estimating the overall regression coefficients,
it does not increase the effective sample size, unlike indirect small area estimators,
Rao,(2003, chap. 2). This estimator is also referred to in Battese et al. (1988) as
the modified GREG estimator or the ”survey regression” estimator.

2.2 Indirect estimation

Indirect, or model-based small area estimators, rely on statistical models to provide
estimates for all small areas. Once the model is chosen, its parameters are estimated
using the data obtained in the survey. An important issue in indirect small area
estimation is that covariates are needed (Rao, 2003, chap. 4).

2.2.1 Synthetic estimation

The synthetic estimator is an example of an estimator, which can be considered ei-
ther model-based or design-based model-assisted. In both cases the specified linear
relationship between y (study variable) and the covariates, described with the pa-
rameter β (vector of regression coefficients) plays an important role.
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The name synthetic estimator derives from the fact that these estimators borrow
strength by synthesising data from many different areas. Gonzalez (1973) defines
an estimator as synthetic when a reliable direct estimator for a large area is used to
derive an indirect estimator for a small area belonging to the large area under the
assumption that all small areas have the similar characteristics as the large area. In
addition, Rao (2003) provides extensive overviews on various synthetic estimation
approaches in small areas estimation.

• Under the assumption that covariates are not available, the synthetic estimator
of population total is given by

ŶiS = Ŷ ,

where Ŷ is the direct estimator of the overall population total, Ŷ =
∑

swkyk.

• If domain-specific covariates are available in the form of known totals Xi, the
regression-synthetic estimator of the population total is defined as

ŶiGRS = XT
i β̂,

where

β̂ =
(∑
k∈s

c−1
k xkx

T
k

)−1(∑
k∈s

c−1
k xky

T
k

)
,

• A special case of the regression-synthetic is the ratio-synthetic estimator in the
case of a single covariate. By letting ck = xk, the ratio-synthetic estimator of
population total is given by

ŶiRS = Xi
Ŷi

X̂i

,

where Ŷi, X̂i are the HT estimators of the target variable Yi and covariates Xi

respectively and tXi
is the population total of covariates Xi for the small area

i.

2.2.2 Composite estimation

As we mentioned, as the sample size in a small area increases, a direct estimator
becomes more desirable than a synthetic estimator. This means, when area level
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sample sizes are relatively small the synthetic estimator outperforms the traditional
direct estimator. Synthetic estimators have a big influence of information from the
other areas, thus they may have small variance but a large bias in the case where
the hypothesis of homogeneity is not satisfied.

According to Rao (2003), to avoid the potential bias of a synthetic estimator, say ŶiS
and the instability of the direct estimator, say ŶiD, we consider a convex combination
of both, known as the composite estimator.

ŶiC = ωiŶiS + (1− ωi)ŶiD,

for a suitable chosen weight ωi (0 ≤ ωi ≤ 1), where c, s, and d stand for composite,
synthetic and direct, respectively. The choice of optimal weight ωopti can be obtained
by minimizing the mean square error (MSE) of the composite estimator,Ŷic, with
respect to ωi,( Ghosh and Rao, 1994; Rao, 2003). This yields

ωopti =
MSE(ŶiS)

MSE(ŶiD) +MSE(ŶiS)
.

A number of estimators proposed in literature have the form of composite estimators,
for instance the James-Stein estimator proposed by James and Stein (1961) which
considers common weight ω. Efron and Morris (1975) have generalized the James-
Stein estimator. Composite estimators are biased and they may have improved
precision depending on the selection of the weight.

2.3 Small area models

2.3.1 Introduction

Traditional methods of indirect estimators, mentioned above, are based on implicit
models (synthetic and composite). We now turn to explicit linking models which pro-
vide significant improvements in techniques for indirect estimation. Based on mixed
model methodology, these techniques incorporate random effects into the model. The
random effects account for the between-area variation that cannot be explained by
including covariates. Most small area models can be defined as an area-level model
or a unit-level model (Rao, 2003, Chap. 5).
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2.3.2 Basic area level model

The area level model relates the small area information on the response variable to
area-specific covariates. One of the most widely used area level models for small area
estimation was proposed by Fay and Herriot (1979). According to the Fay-Herriot
model, a basic area level model assumes that the small area parameter of interest ηi
is related to area-specific covariates xi through a linear model

ηi = xtiβ + υi, i = 1, 2, . . . ,m, (2.1)

where m is the number of small areas, β = (β1, β2, . . . , βp)
t is p×1 vector of regression

coefficients, and the υi’s are area-specific random effects assumed to be independent
and identically distributed (iid) with E(υi) = 0 and Var(υi) = σ2

υ, model expec-
tation and model variance respectively. Normality of the random effects υi is also
often used, but it is possible to make robust inferences by relaxing the normality
assumption (Rao, 2003).

The area level model assumes that there exists a direct survey estimator η̂i for the
small area parameter ηi such that

η̂i = ηi + εi, i = 1, 2, . . . ,m, (2.2)

where the εi is the sample error associated with the direct estimator η̂i, with the as-
sumptions that the εi’s are independent normal random variables with mean E(εi) =
0 and Var(εi) = τi. Combining these two equations, yields the area level linear mixed
model

η̂i = xtiβ + υi + εi. (2.3)

2.3.3 Basic unit level model

Unit level models relate the unit values of the study variable to unit-specific covari-
ates. These variables are related to the unit level values of response through a linear
mixed model known as nested error linear regression model. This type of model can
be represented by the following equation

yij = xtijβ + νi + εij, (2.4)

where yij is the response of unit j, j = 1, 2, . . . , ni, in area i, i = 1, 2, . . . ,m, xij is the
vector of covariates, β is the vector of regression parameters, νi is the random effect
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of area i and εij is the individual unit error term. The area effects νi are assumed
independent with mean zero and variance σ2

ν . The errors εij are independent with
mean zero and variance σ2

ε . In addition, the νi and εij’s are assumed to be indepen-
dent.

The nested error unit level regression model (2.4) was first used to model county
crop areas in North-Central Iowa, USA (Battese et al., 1988).

2.4 Theory of prediction under the general linear

model

The model-based approach to finite population theory treats the population vector
y = (y1, y2, . . . , yN)T as a realization of a random variable Y . Let a model ξ char-
acterizes the probability distribution of Y . The focus is to estimate the value of a
population quantity of interest, which can be seen as function h(y) of y, typically
a linear combination cTy. If c = 1, where 1 is an unit vector, then h(y) is the
population total, and if c = 1/N , then h(y) is the population mean.

Now suppose that the interest is to estimate the total population of the variable of
interest for area i

Yi =
∑
j∈Ui

yij.

Following Valliant et al. (2000) and Royall (1976), let s denote a sample of size n
from a finite population U and let r denote the nonsampled remainder of U so that
U = s ∪ r. Correspondingly, let ys be the vector of observations in the sample and
yr the rest of y. We have the following decomposition:

y =

(
ys
yr

)
, c =

(
cs
cr

)
.

The population quantity to be estimated is now

h(y) = cTs ys + cTr yr

a realization of the random variable

h(Y ) = cTs Ys + cTr Yr.
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Note that the first term cTs ys is observed from the sample, whereas the second term
must be estimated (or predicted, since it is a function of random variables, not a
fixed parameter). Thus, estimating h(y), or predicting h(Y ), is essentially predicting
the value cTr yr of the unobserved random variable cTr Yr. The information needed in
the prediction will come from the sample vector Ys, and the predictor (or estimator)
of h(Y ) can be written

ĥ(Y ) = cTs Ys + aTYs,

where a is some n× 1 vector defining the predictor aTYs of cTr Yr.
The estimator ĥ(y)is model unbiased, if

Eξ[ĥ(y)− h(y)] = 0,

and the model-based error variance is

varξ[ĥ(y)− h(y)] = Eξ[ĥ(y)− h(y)]2.

The general prediction theorem gives the best linear unbiased predictor (BLUP) of
cTY as well as its error variance under the general linear model, in the case of finite
population. The best linear unbiased predictor means here a model-unbiased predic-
tor, which is linear in Ys and has the minimum model-based error variance among
all linear unbiased predictors. The theorem serves as a general basis of the BLUP
approach to small area estimation with unit level models.
Either we may consider only the population Ui of an area i, which leads to the direct
estimation, or we may consider the overall population U (and a sample from it), but
define the coefficient vector c so that it picks only those elements of y, which come
from the area i. This leads to the indirect estimation with ability to borrow strength.
At area level it is more straightforward to develop the BLUP approach within the
standard theory of linear mixed models (Henderson, 1975).

Lets consider ξ to be a general linear model in a such way that

Eξ(Y ) = Xβ

and
Varξ(Y ) = V.
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In accordance with the partition U = s ∪ r we can arrange X and V so that

X =

(
Xs

Xr

)
and

V =

(
Vs Vsr
Vrs Vr

)
,

where X contains covariates, β is a vector of unknown parameters and V is an
arbitrary positive definite covariance matrix. The model ξ covers a variety of special
cases, including the linear mixed models. The theorem does not require normality.

The general prediction theorem.

Under the model ξ for a finite population U the best linear model-unbiased predictor
of h(Y ) = cTY is

BLUP(cTY ) = cTs ys + cTr [Xrβ̂ + VrsV
−1
s (ys −Xsβ̂)], (2.5)

and the error variance is

Varξ[BLUP(cTY )− cTY ] =cTr (Vr − VrsV −1
s Vsr)cr+

cTr (Xr − VrsV −1
s Xs)(X

T
s V

−1
s Xs)

−1(Xr − VrsV −1
s Xs)

T cr,

where
β̂ = (XT

s V
−1
s Xs)

−1XT
s V

−1
s ys

is the general least squares (GLS) estimator of β.

Note that the GLS estimator is also the best linear unbiased estimator (BLUE) of
β, i.e., it has the minimum variance among linear unbiased estimators (McCulloch
and Searle, 2001).

Proof:
As we are interested in predicting the part which is not observed, the information
needed will come from observed variables (sample vector ys). Considering the de-
composition of the population quantity of interest

h(Y ) = cTs Ys + cTr Yr,
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the random term is cTr Yr. Now suppose the predictor of this term is a linear function
of the data, i.e. the predictor cTr Yr is of the form aTYs where a is a vector to be
specified. In addition the estimator ĥ(Y ) is assumed to be unbiased. Now, define

Eξ(a
TYs − cTr Yr)2 = Var(aTYs − cTr Yr) + (Eξ(a

TYs − cTr Yr))2

= aTVsa+ cTr Vrcr − 2aTVsrcr + [(aTXs − cTrXr)β]2, (2.6)

the last expression is obtained from the expression of V and the fact that E(Y ) = Xβ.

Now the BLUP(cTY ) will be found by minimizing the Eξ(a
TYs− cTr Yr)2 with respect

to a under the constraint of model unbiasedness,

Eξ(a
TYs − cTr Yr) = (aTXs − cTrXr)β = 0,

for all β, which is equivalent to

aTXs − cTrXr = 0.

Lets consider the following Lagrangian function

L(a, λ) = aTVsa− 2aTVsrcr + 2(aTXs − cTrXr)λ,

where λ is the vector of Lagrange multipliers.

The first partial derivative respect a a is

∂L(a, λ)

∂a
= 2Vsa− 2Vsr + 2Xsλ,

equating to zero, yields

Xsλ = Vsa− Vsr, (2.7)

and then

a = V −1
s (Vsrcr −Xsλ). (2.8)

Now multiply (2.7) by XT
s V

−1
s yields XT

s V
−1
s Xsλ = XT

s V
−1
s Vsa − Vsr, using the

unbiasedness constraint aTXs = cTrXr and then solving for λ, we get

λ = (XT
s V

−1
s Xs)

−1(XT
s V

−1
s Vsr −XT

r )cr,
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then after substituting this expression in (2.8) and making some simplifications, we
get

a = V −1
s [Vsr −Xs(X

T
s V

−1
s Xs)

−1(XT
s V

−1
s Vsr −XT

r )]cr. (2.9)

Recall that ĥ(Y ) = cTs Ys + aTYs. Then substituting a with (2.9), yields

BLUP(cTY ) = cTs Ys + (V −1
s [Vsr −Xs(X

T
s V

−1
s Xs)

−1(XT
s V

−1
s Vsr −XT

r )]cr)
TYs

= cTs Ys + cTr [Vsr −Xs(X
T
s V

−1
s Xs)−1(XT

s V
−1
s Vsr −XT

r )]TV −1
s Ys

= cTs Ys + cTr [V T
srV

−1
s Ys − (XT

s V
−1
s Vsr −XT

r )T (XT
s V

−1
s Xs)

−1XT
s V

−1
s Ys]

= cTs Ys + cTr [V T
srV

−1
s Ys − (XT

s V
−1
s Vsr −XT

r )T β̂]

= cTs Ys + cTr [Xrβ̂ + V T
srV

−1
s (Ys −Xsβ̂)],

where β̂ = (XT
s V

−1
s Xs)

−1XT
s V

−1
s Ys.

The expression of error variance is found in the same way by inserting (2.9) into
(2.6) •
The inference concerning the BLUP of cTy usually appeals to the normal distribution.
Valliant et al., (2000) give fairly reasonable conditions, under which the BLUP is
asymptotically normal.



Chapter 3

Review of mixed model theory

3.1 Introduction

It is not intended to be an all-encompassing exposition on the subject, the rationale is
to briefly explore the methods used for parameter estimation throughout the thesis.
The model-based small area estimation largely employs linear mixed models involving
random area effects. The covariates are introduced in the fixed part of the model as
covariates.
Linear mixed models have a wide range of applications. In particular, the ability
to predict linear combination of fixed and random effects is one the more attractive
properties of such models. In a series of papers, Henderson (1975) developed the best
linear unbiased prediction (BLUP) method for mixed models. However, the BLUP
methods described in Henderson (1975) assumed that the variances associated with
random effects in the mixed model (the variance components) are known. In practice
such variance components are unknown and have to be estimated from the data.
There are several methods for estimating variance components reviewed in Harville
(1977). The predictor obtained from the BLUP when unknown variance components
are replaced by associated estimators is called the empirical best linear unbiased
predictor (EBLUP) and is described in Robinson (1991).

3.2 Linear mixed model

The ordinary fixed effects linear model is usually written as

y = Xβ + e, (3.1)

18
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where y is an n × 1 random vector of response variable, β is a p × 1 vector of
regression coefficients, X is a known n × p model matrix containing the values of
the explanatory (or predictors) variables and e is the vector of random errors. The
normal distribution is assumed to e, with E(e) = 0 and cov(e) = σ2

eIn, where In is
the n× n identity matrix, to make

y ∼ Nn(Xβ, σ2
eIn).

Hence the vector y contains random variables that are independent with equal vari-
ability.
The linear mixed model is obtained by incorporating a q × 1 vector v of random
effects, i.e. effects that are considered random variables instead of fixed constants,
with an appropriate model matrix Z into the fixed effects model 3.1

y = Xβ + Zv + e. (3.2)

The model matrix Z is often an incidence matrix (design matrix) of zeros and ones
only, but it may also contain explanatory variables (that usually are present also in
X). In the latter case the model (3.2) is often called random coefficient regression
model. If Z is an incidence matrix and the random effects in v are uncorrelated, we
have a special case called variance component model.
For the random vectors v and e we make the following assumptions:

E(v) = 0, cov(v) = G

E(e) = 0, cov(e) = R

cov(v, e) = 0,

where, in principle, G and R can be arbitrary positive definite covariance matrices.
In variance component models the matrices G and R are diagonal.
Under these assumptions the expected value of y is

E(y) = Xβ,

and if v is given

E(y|v) = Xβ + Zv.

The covariance matrix of y is

cov(y) = V = ZGZT +R,
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and if v is given,

cov(y|v) = R.

Note that the fixed part Xβ of model (3.2) defines the mean structure of y, whereas
the random part Zv + e defines the covariance structure. The covariance matrices
G and R are functions of a set of variance parameters (σ). Therefore we can write
G = G(σ), R = R(σ) and V = V (σ).
The normal distribution is usually assigned to both random terms v and e so that(

v
e

)
∼ N

((
0
0

)
,

(
G 0
0 R

))
.

The model with the above assumptions on v and e implies that y are multivariate
normal random vectors of dimension n with a particular form of covariance matrix.
That is

y ∼ N(Xβ, V ). (3.3)

This is called the marginal formulation of linear mixed model (Verbeke and Molen-
berghs, 2000). Note that although the marginal model (3.3) follows from the linear
mixed model (3.2), the models are not equivalent, because the marginal model does
not explicitly define the random effect structure in (3.2). The marginal model, how-
ever, gives the basis of the maximum likelihood estimation of the model parameters.

3.3 Estimation of model parameters

3.3.1 ANOVA method

For variance component models, where all the parameters in σ are variances, the
classical method for estimating σ is so-called ANOVA estimation, based on equating
the mean squares of the analysis of variance to their expected values and solving the
estimates from the resulting equations. The ANOVA estimation, originally meant
for balanced data, was adapted to unbalanced data by Henderson in 1950s. The
Henderson 3 method, also known as method of fitting constants, has still fairly
recently been suggested to be used with small area models (Prasad and Rao, 1990).
ANOVA methods are non-iterative and therefore easy to implement, give unbiased
variances estimates (which sometimes appear negative, though) and they require no
normality of random effects in the model. Their major drawback is that they only
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apply to a limited choice of models.
The regression coefficients β can be estimated by generalized least square

β̂GLS = (XTV −1X)−1XTV −1y. (3.4)

The estimator β̂GLS is generally the best linear unbiased estimator (BLUE) of β.
If the covariance matrix V (σ) = ZG(σ)ZT + R(σ) is unknown, it will be replaced
with its estimate V̂ = V (σ̂), where σ̂ is obtained by the ANOVA method, for ex-
ample. Anova methods are only applicable to limited choice of models (Searle et
al. 1992). In order to overcome this, we need to use maximum likelihood (ML) or
restricted maximum likelihood (REML) estimation methods, which are applicable
to more general models and boast of attractive properties like consistency, efficiency
and asymptotic normality of the estimators. These solutions have two troublesome
properties. First, unlike simple cases of models, the ML vector of fixed effects β̂ is a
function of the variance matrix V̂ , which in turn contains the variance components
that we wish to estimate. Second, because these solutions involve the inverse of V̂ ,
they are nonlinear functions of the variance components. As a consequence, there is
no simple one-step solution. Detailed discussion of it can be found e.g. in McCulloch
and Searle (2001) and Searle, Casella and McCulloch (1992).

3.3.2 Maximum likelihood (ML) estimatiom

The likelihood function to be maximized for the estimates of β and σ comes from
the marginal model (3.3), where the covariance matrix V is a function of variance
parameters σ, V (σ). Its density function is given by

f(y; β, V ) = (2π)−
n
2 |V |−

1
2 exp

{
−1

2
(y −Xβ)TV −1(y −Xβ)

}
, (3.5)

and leads to the log likelihood function

logL(β, σ) = −1

2
(Y −Xβ)tV −1(Y −Xβ)− 1

2
log(|V |)− n

2
log(2π). (3.6)

The partial derivative of (3.6) with respect to β is

∂logL(β, σ)

∂β
= XTV (σ)−1(y −Xβ),

and setting this to zero leads to the maximum likelihood estimator β̂ML for a given
V , which also is equivalent to the GLS estimator (3.4). For unknown V the ML
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estimator of β is

β̂ML = (XT V̂ −1
MLX)−1XT V̂ −1

ML,

where V̂ML = V (σ̂ML) is the ML estimator of V . The ML estimator of β is un-
biased under the normality of y (Kackar and Harville 1981, 1984). The maximum
likelihood estimates of the variance parameters are biased downwards (Verbeke and
Molenberghs, 1997, 2000). The bias arises because estimation of the fixed effects is
not taken into consideration when estimating the variance parameters. An unbiased
method for estimating the variance parameters is obtained if the observed data are
partitioned by a linear transformation. This idea was introduced by Patterson and
Thompson (1971)and further developed by Harville (1977) and is called restricted
maximum likelihood (REML).

3.3.3 Restricted maximum likelihood (REML) estimation

The REML method is based on such linear transformation of the data y that the
resulting distribution does not depend on the fixed effects parameter vector β. Hence
β is eliminated from the log likelihood, but at the same time the loss of degrees of
freedom involved in estimating β is taken into account in the estimation of V (σ).
The REML method follows the likelihood principle and has the same merits, like
consistency, efficiency and asymptotic normality, as ML. Since the REML estimators
produce unbiased or nearly unbiased variance estimates, have the same desirable
properties as the ML estimators and do not require computations that are essentially
more complex than those needed in ML estimation, the REML method is now a
widely preferred approach to estimate variance parameters in mixed models (Searle
et al. 1992, Pinheiro and Bates 2000, Verbeke and Molenberghs 2000, McCulloch,
C.E. and Searle, S.R. 2001, Diggle et al. 2002).
Introduce a linear transformation z = KTy of the normal response vector y, where
K is a n× (n− p) matrix of full rank, for which KTX = 0. The distribution of z is
then Nn−p(0, K

TV K), which does not depend on β. The elements of z are sometimes
referred as error contrasts (e.g. Harville 1977, Verbeke and Molenberghs 2000). The
REML estimators of the variance parameters σ are obtained by maximizing the
likelihood function associated with the error contrasts z instead of the original data
y. The fixed parameter vector β is then estimated by applying the GLS formula
(3.4), the covariance matrix V being replaced with its estimate V̂REML = V (σ̂REML).
An appropiate K is found by selecting n− p columns from the projection matrix

Q = I −X(XTX)−1XT ,
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which transforms y to the usual OLS residuals. However, the resulting likelihood
function and inference do not depend on which columns are used, and nor even the
choice of K, as Harville (1977) has shown (see also Diggle et al. 2002). Instead, any
full-rank n× (n− p) matrix K giving the property E(z) = 0 for all β will do.
A convenient expression for REML likelihood function is found defining a non-zero
n × (n − p) matrix A such that AAT = Q and ATA = I. The matrix A is also an
appropriate choice for K and we define z = ATy, with E(z) = 0 and var(z) = ATV A.
As ATX = 0, we can also write z = ATy = AT (y −Xβ̂GLS), where β̂GLS is defined
in (3.4). The density function of z is

f(z;σ) =(2π)−
(n−p)

2 |ATV A|−
1
2 exp

{
−1

2
zT (ATV A)−1z

}
=(2π)−

(n−p)
2 |ATV A|−

1
2 exp

{
−1

2
(y −Xβ̂GLS)TA(ATV A)−1AT (y −Xβ̂GLS)

}
.

Applying the Result 33 in Rao (1973, p.77), yields

AT (ATV A)−1A = V −1 − V −1X(XTV −1X)−1XTV −1,

which leads straightforwardly to

(y −Xβ̂GLS)TAT (ATV A)−1A(y −Xβ̂GLS) = (y −Xβ̂GLS)TV −1(y −Xβ̂GLS).
(3.7)

To find an expression for the determinant |ATV A| we define H = [A D], where
D = V −1X(XTV −1X)−1 (note that β̂GLS = DTy). Then

|HTV H| =
∣∣∣∣ATV A ATV D
DTV A DTV D

∣∣∣∣ =

∣∣∣∣ATV A 0
0 DTV D

∣∣∣∣ = |ATV A||DTV D|,

so that

|ATV A| = |HTV D|−1. (3.8)

By a straightforward calculation

|DTV D| = |XTV −1X|−1. (3.9)

For |HTV H| we note that

|HTV H| = |HT ||V ||H| = |V ||HTH|, (3.10)
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because H is a square matrix. By using AAT = Q and ATA = I and the standard
result for block determinants we get

|HTH| =
∣∣∣∣ATA ATD
DTA DTD

∣∣∣∣ = |I||DTD −DTAATD| = |DTD −DTQD| = |XTX|−1.

(3.11)

Collecting (3.7)-(3.11) together leads to the following expression of the density of the
error contrasts z = ATy,

f(z) = (2π)−
(n−p)

2 |XTX|
1
2 |XTV −1X|−

1
2 |V |−

1
2 exp

{
−1

2
(y −Xβ̂GLS)TV −1(y −Xβ̂GLS)

}
.

Now it is seen that the matrix A defining the error contrasts z does not explicitly
appear in the density. It is implicitly related to the matrix XTX, but this does not
depend on V and therefore does not affect the maximization of the likelihood. The
consequence is that the REML estimation does not depend on the choice of n − p
error contrasts.
The density of z leads to the restricted or residual log likelihood, which is written
here using the notation of (3.6)

logLRELM(σ) = −1

2
(y −Xβ̂GLS)TV −1(y −Xβ̂GLS)− 1

2
log |V | − 1

2
log |XTV −1X|+ const.

(3.12)

Maximizing (3.12) produces the REML estimate σ̂REML. Searle et al. (1992, Ch. 6.6)
provide the REML estimation equations for variance component models. Because
these equations for the REML solutions are highly nonlinear in the case of models
with complex structure, closed analytical solutions are not available. In general the
maximization requires numerical optimization methods like Newton-Raphson, Fisher
scoring or EM algorithms. These algorithms are discussed e.g. by Lindstrom and
Bates (1988) and Longford (1993, 2005). If we compare the ML log likelihood (3.6)
and the REML log likelihood (3.12), we note that their only difference is the penalty
term 1

2
log |XTV (σ)−1X|.

Substituting the estimator V̂REML = V (σ̂REML) into the GLS formula (3.4) gives the
REML estimator of β.
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3.4 Prection of random effects

3.4.1 Best linear unbiased predictor (BLUP)

Technically speaking, the random effects v in model (4.16) are not model parameters
like β and σ. However, as Pinheiro and Bates (2000) point out, in a way they behave
like parameters and since they are unobservable, there often is interest in obtaining
estimates of their values. For example, estimates of random area effects are needed
in the estimation of small area means. In the frequentist theory the concept of
estimation is usually reserved only for the fixed parameters, and since the vector v
contains random variables, not unknown constants, we say that we do not estimate
but predict their values (for opposite points of view, see Robinson 1991).
It can be shown that the best predictor BP of v, in the sense that it minimizes the
mean squared prediction error, is the conditional mean

ṽ = BP (v) = E(v|y).

The normality assumptions for model (4.16) imply that v and y have a joint multi-
variate normal distribution[

v
y

]
∼ Nq+n

([
0
Xβ

]
,

[
G GZT

ZG V

])
,

and under the normal theory, the mean of v given y is

E(v|y) =E(v) + cov(v, y)[var(y)]−1(y − E(y))

=GZTV −1(y −Xβ). (3.13)

This is the best predictor of v, and being a linear function of y it also is the best
linear predictor (BLP) of v.
In practice the unknown β in (3.13) is replaced with its estimator β̂, which is the
BLUE of β, yielding the Best Linear Unbiased Predictor (BLUP) of v

ṽ = GZTV −1(y −Xβ̂). (3.14)

3.4.2 Empirical best linear unbiased predictor (EBLUP)

Usually the covariance matrices V , G and R are unknown. Then, in predicting v bu
the BLUP formula (3.15) they will be replaced with their RELM or ML estimators
to yield

v̂ = ĜZT V̂ −1(y −X ˆ̂
β). (3.15)
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The predictor v̂ is called Empirical Best Linear Unbiased Predictor (EBLUP) of v,
the term ”empirical” referring to the fact that the values of G and V have been
obtained from the observed data (cf. Empirical Bayes). The estimator β̂ is now the
GLS estimator, where V is replaced with its estimate, and it is sometimes called
empirical BLUE of β.
In small area estimation the approach, where e.g. small area totals are estimated
by utilizing the empirical BLU predictors of random area effects, is often referred as
EBLUP method or approach (Ghosh and Rao 1994, Pfeffermann 2002, Rao 2003).



Chapter 4

Two-fold nested error lognormal
model

4.1 Introduction

Multistage sampling designs are used in many practical cases, when a design involves
two different aggregation levels, domain (small area) and sub-domains (sub-small ar-
eas or clusters), it is reasonable to assume a twofold nested error model including
random effects explaining the heterogeneity at the two levels of aggregation. In
this chapter, we consider the two-fold nested error lognormal regression model for
estimating small area means. This model includes small area and sub-small area
(cluster) effects to account for the unexplained between-area and between-cluster
heterogeneity, respectively.

Some variables of interest are skewed distributed and there is a need to provide
small area estimates for these variables. The problem of highly skewed data is, ac-
cording to Barnett and Lewis (1994), particularly common in business and social
surveys. Usual standard estimation methods, under a linear model, for the charac-
teristic of interest (mean in this case) of a skewed variable can be inappropriate.

The model considered by Berg and Chandra (2014) is referred to the one-fold
nested error model since only one aggregated level, the small area, is modeled. In
this study, we propose a two-fold lognormal model which is different from the Berg
and Chandra (2014) because we work with a two-fold unit-level data instead of one-
fold unit-level data. Furthermore, we consider the case of cluster-specific covariates
as in Datta and Ghosh (1991) and Pfeffermann and Barnard (1991).

27
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The description of a two-fold model is provided in Section 4.2 and the prediction
of small area means based on the proposed two-fold lognormal model are shown in
Section 4.3.

4.2 Two-fold nested error linear model

Different authors have worked on the one-fold nested error model where only one
aggregated level, the small area, is modeled. However, in many real applications,
it may be of interest to incorporate additional aggregated levels in the model to
account for extra variability or to reflect the sampling design. In our model, we
are interested in modeling data where the sample was selected under a two-stage
sampling design. At the first stage, primary sampling units (PSU) or clusters are
selected. Within each PSU, secondary sampling units (SSU) are selected where in
some situations are considered as observational sampling units or individuals units.
Fuller and Battese (1973) proposed a two-fold model, that can be used to model
data from such complex design in order to capture variability from both the PSU
and SSU levels, and its transformation where the transformed quantities are the
differences between the original observations and multiples of averages of subsets
of obsevations. Later, Datta and Ghosh (1991, under a Bayesian framework, and
Pfeffermann and Barnard (1991) used the two-fold model for the special case of
cluster-specific covariates. Stukel and Rao (1999) extended the results of Datta and
Ghosh (1991) and Pfeffermann and Barnard (1991) to general two-fold nested error
regression models, considering the unit-level covariates to be available.
For the classical model-based approach, the characteristics of interest, y, and the
covariates, X, are available at the unit level and the linear mixed models (LMM) are
used to represent the assumed stochastic relationship between the quantities. The
two-fold nested error linear model is formally defined as

Yijk = xTijkβ + vi + uij + eijk; i = 1, . . . ,M ; j = 1, . . . ,Mi; k = 1, . . . , Nij, (4.1)

where the value yijk is the observed characteristic of interest associated to unit k
from cluster j within small area i, the covariates xTijk = (xijk1, . . . , xijkp) are a 1× p
vector of known variables, β is a p× 1 vector of unknown regression parameters, and
the area effects vi, the cluster effects uij and the residual errors eijk are assumed to
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be mutually independent. Furthermore,

vi ∼ N(0, σ2
v),

uij ∼ N(0, σ2
u),

eijk ∼ N(0, σ2
e).

The quantity of interest is the small-area population mean

Ȳi =
1

Ni

Mi∑
j=1

Nij∑
k=1

yijk.

In the settings of the theory of prediction presented in section 2.4 and the reviewed
theory on linear mixed models in Chapter 3, the following theorem gives the form of
the best predictor (BP) and shows why it has a minimum mean squared error.

Theorem 1. Under the two-fold nested error linear model (4.1), the best pre-
dictor of the small area mean Ȳi, i = 1, . . . ,M is given by Ȳ BP

i = E(Ȳi|ys) where ys
is the observed characteristic of interest, with

ˆ̄Y BP
i (θ) =

1

Ni

[ ∑
j,k∈si

yijk +
∑
j∈si

∑
k∈s̄ij

ỹ∗BPijk +
∑
j∈s̄i

Nij∑
k=1

ỹ∗∗BPijk

]
, (4.2)

where s̄ij is the set of nonsampled units in the jth sampled cluster and s̄i is the set
of nonsampled sampled clusters in small area i. Also, the predictors ỹ∗BPijk and ỹ∗∗BPijk ,
from (4.2), are defined as follows

ỹ∗BPijk = xTijkβ + ṽBPi + ũBPij

ỹ∗∗BPijk = xTijkβ + ṽBPi , (4.3)

where ṽBPi = E(vi|ys) and ũBPij = E(uij|ys).

Proof. Let’s consider another estimator ˆ̄Yi of Ȳi function of ys then

MSE( ˆ̄Yi) =E( ˆ̄Yi − Ȳi)2

=E( ˆ̄Yi − Ȳ BP
i + Ȳ BP

i − Ȳi)2

=E( ˆ̄Yi − Ȳ BP
i )2 + E(Ȳ BP

i − Ȳi)2 + 2E( ˆ̄Yi − Ȳ BP
i )(Ȳ BP

i − Ȳi)

=MSE(Ȳ BP
i ) + E(Ȳ BP

i − Ȳi)2 + 2E( ˆ̄Yi − Ȳ BP
i )(Ȳ BP

i − Ȳi).
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Since E(Ȳ BP
i − Ȳi)2 is positive, it suffices to show that E( ˆ̄Yi− Ȳ BP

i )(Ȳ BP
i − Ȳi) = 0.

Note that ˆ̄Yi − Ȳ BP
i is a function of ys say f(ys), it follows that

E( ˆ̄Yi − Ȳ BP
i )(Ȳ BP

i − Ȳi) =E(f(ys)(Ȳ
BP
i − Ȳi))

=E(f(ys)Ȳ
BP
i )− E(f(ys)Ȳi)

=E(f(ys)Ȳi)− E(f(ys)Ȳi)

=0.

Which means that MSE( ˆ̄Yi) ≥MSE(Ȳ BP
i ).

The above equality is the direct application of the following conditional expectation
property

E(f(X)E(Y |X)) = E(f(X)Y ).

The best predictor Ȳ BP
i can be written as:

Ȳ BP
i =E(Ȳi|ys)

=
1

Ni

[ ∑
j,k∈si

yijk +
∑
j∈si

∑
k∈s̄ij

E[yijk|ys] +
∑
j∈s̄i

Nij∑
k=1

E[yijk|ys]

]
. (4.4)

4.3 Empirical Bayes predictors for a two-fold nested

error lognormal model

4.3.1 Two-fold nested error lognormal model

Suppose that the ith small area contains Mi first-stage units or primary sampling
units (or clusters) and that the jth cluster in the ith area contains Nij second-stage
units or observational (or simple) sampling units (elements). Let (Yijk, Xij) be the
y-value and x-value for the the kth element in the jth cluster from the ith area
(k = 1, 2, . . . , Nij; j = 1, 2, . . . ,Mi; i = 1, 2, . . . ,M). Under this population struc-
ture, we consider a two-stage sampling in each small area, where a sample si, of mi

clusters is selected from the ith sampled small area and, if the jth cluster is sampled,
then a subsample, sij, of nij elements is selected from it. Without loss of generality,
the sample values are denoted by (yijk, xij), (k = 1, 2, . . . , nij; j = 1, 2, . . . ,mi; i =
1, 2, . . . ,m).
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Under the aforementioned population structure, we obtain ˆ̄Y MMSE
i using the follow-

ing nested error two-fold regression model on the logarithm of the variable of interest.
The proposed model in its general form for all population units, is given by

k = 1, 2, . . . , Nij

log(yijk) ≡ lijk = xTijβ + vi + uij + eijk, j = 1, 2, . . . ,Mi

i = 1, 2, . . . ,M,

(4.5)

where vi is the effect of the area i , uij is effect for cluster j within the domain i and
eijk is the individual model error. Domain and cluster effects, and individual model
errors are all assumed to be mutually independent. Furthermore,

vi ∼ N(0, σ2
v),

uij ∼ N(0, σ2
u),

eijk ∼ N(0, σ2
e).

The objective is to predict the value of small area population mean:

Ȳi =
1

Ni

Mi∑
j=1

Nij∑
k=1

yijk. (4.6)

4.3.2 Minimun model MSE predictor

Since the variance of a small area estimator based on the direct small area sample
is excessively large, there is a need for constructing model based estimators with
low mean squared prediction error (MSPE). This section introduces the minimum
mean squared predicted error (MMSE), known also as Best/Bayes predictor (BP) of
a function of a random vector in a finite population.
We assume that the sample values have the mentioned structure and follow the
assumed model (4.5). Thus the sample model may be written as

k = 1, 2, . . . , nij

log(yijk) ≡ lijk = xTijβ + vi + uij + eijk, j = 1, 2, . . . ,mi

i = 1, 2, . . . ,m,

(4.7)

where, for notational simplicity, the sample clusters, si, are denoted as j = 1, 2, . . . ,mi

and sample elements sij as k = 1, 2, . . . , nij.
Following Theorem 1, the minimum MSE predictor of the Ȳi is E[Ȳi|(y, x)], where
(y, x) = {yijk, i ∈ s, j ∈ si, k ∈ sij} ∪ {xij, i = 1, . . . ,m; j = 1, . . . ,Mi}. Where s is
the set of indices of those small areas that are in the sample.



CHAPTER 4. TWO-FOLD NESTED ERROR LOGNORMAL MODEL 32

Theorem 2. Under the assumed model, (4.5), the expression for the minimum
MSE predictor is

ˆ̄Y MMSE
i =E[Ȳi|(y, x)]

=
1

Ni

[ ∑
j,k∈si

yijk +
∑
j∈si

∑
k∈s̄ij

E[yijk|(y, x)] +
∑
j∈s̄i

Nij∑
k=1

E[yijk|(y, x)]

]

=
1

Ni

[ ∑
j,k∈si

yijk +
∑
j∈si

∑
k∈s̄ij

E[exp{lijk}|(y, x)] +
∑
j∈s̄i

Nij∑
k=1

E[exp{lijk}|(y, x)]

]
.

(4.8)

This expression reflects two cases to be discussed, first: The sub-small area within
the small area sampled and contains some observations from the sample, which cor-
responds to the second term to the right (4.8); second: The sub-small area within the
small area sampled, and does not contain any observations from the sample. This
corresponds to the third term to the right of (4.8) .

The model (4.7) in matrix form for each j ∈ si is as follows:

lij = Xijβ + vi1nij
+ uij1nij

+ eij, (4.9)

where

lij =


lij1
lij2
...

lijnij


nij×1

; Xij =


xTij
xTij
...
xTij


nij×p

= 1nij
⊗ xTij ; eij =


eij1
eij2

...
eijnij


nij×1

.

From (4.9), the variance of the vector of transformed variable, lij, is given by

var(lij) =σ2
v1nij

1Tnij
+ σ2

u1nij
1Tnij

+ σ2
eInij

=σ2
vJnij

+ σ2
uJnij

+ σeInij
.

Then by a given i we have the vector, li, that combines the expressions represented
in (4.9)

li =


lTi1
lTi2
...
lTimi

 =


Xi1

Xi2
...

Ximi

 β +


1ni1

1ni2

...
1nimi

 vi +


1ni1

1ni2

. . .

1nimi



ui1
ui2
...

uTimi

+


ei1
ei2
...

eimi

 ,
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and its variance is given by

var(li) =

Vi =


(σ2

v + σ2
u)Jni1

+ σ2
eIni1

σ2
vJni1ni2

. . . σ2
vJni1nimi

σ2
vJni2ni1

(σ2
v + σ2

u)Jni2
+ σ2

eIni2
. . . σ2

vJni2nimi
...

...
. . .

...
σ2
vJnimi

ni1
σ2
vJnimi

ni2
. . . (σ2

v + σ2
v)Jnimi

+ σ2
eInimi

 .
So, from the previous, we have a joint distribution of the expressions represented by
(4.7) for a given small area i.

li =


li1
li2
...
limi

 ∼ N
(

Xi1

Xi2
...

Ximi

 β, Vi) ≡ N(Xiβ, Vi).

Taking the mean of each cluster, it follows that (see appendix A)

l̄i ∼ N(xiβ, V̄i),

where

V̄i =WiViW
T
i =


(σ2

v + σ2
u) + 1

ni1
σ2
e σ2

v . . . σ2
v

σ2
v (σ2

v + σ2
u) + 1

ni2
σ2
e . . . σ2

v
...

...
. . .

...
σ2
v σ2

v . . . (σ2
v + σ2

u) + 1
nimi

σ2
e

 .
• Let’s consider the first case where the sub-small area, j, i.e, for j ∈ si and
k ∈ s̄ij. Under the assumed log-transformed model, the joint distribution is l̄iuij

vi

 ∼ N
(xiβ0

0

 ,
 V̄i α(j) γ
α(j)T σ2

u 0
γT 0 σ2

v

), (4.10)
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where

cov(uij, l̄i) = cov(uij,Wili)

= C
(j)T
1 W T

i = WiC
(j)
1 = σ2

u



0
...
0
1
0
...
0


(mi×1)

= α(j),

cov(vi, l̄i) = cov(vi,Wili) = Wicov(li, vi)

=σ2
vWi



1ni1

1ni2

...
1nij

...
1nimi


(ni×1)

= σ2
v

1
...
1


(mi×1)

= γ.

After showing that (see appendix A)

E(uij|li) = E(uij|l̄i)

and

var(uij|li) = var(uij|l̄i),

letting (y, x) ≡ l̄i and calculating the conditional distribution from a multivari-
ate normal distribution, it follows that

E(

[
uij
vi

]
| l̄i) =

[
α(j)T

γT

]
V̄ −1
i (l̄i − xiβ) ≡ µ1j,

and

var(

[
uij
vi

]
| l̄i) =

[
σ2
u 0

0 σ2
v

]
−
[
α(j)T

γT

]
V̄ −1
i

[
α(j) γ

]
≡ Σ1j.

Under the model (4.5),

yijk = exp{xTijβ + vi + uij + eijk},
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by (4.10) and the moment generating function of the lognormal distribution
we have

E(exp{vi + uij} | l̄i) = exp{1Tµ1j +
1

2
1TΣ1j1}.

Now the expression of the second term in (4.8) is given by

ỹ∗ijk ≡ E(yijk | l̄i) = exp{xTijβ + 1Tµ1j +
1

2
1TΣ1j1 +

1

2
σ2
e}. (4.11)

• Next we consider the second case with a sub-small area, r, in the sampled small
area, but does not have any observation in the sample, i.e, for r ∈ s̄i. Under
the assumed log-transformed model, the joint distribution is l̄iuir

vi

 ∼ N
(xiβ0

0

 ,
 V̄i 0 γ

0T σ2
u 0

γT 0 σ2
v

).
Proceeding the same way as in the previous case, we have

E(

[
uir
vi

]
| l̄i) =

[
0T

γT

]
V̄ −1
i (l̄i − xiβ) ≡ µ2,

and

var(

[
uir
vi

]
| l̄i) =

[
σ2
u 0

0 σ2
v

]
−
[

0T

γT

]
V̄ −1
i

[
0 γ

]
≡ Σ2.

Using the above results, we have

E(exp{vi + uir} | l̄i) = exp{1Tµ2 +
1

2
1TΣ21}.

Now the expression of the third term in (4.8) is given by

ỹ∗∗ijk ≡ E(yijk | l̄i) = exp{xTijβ + 1Tµ2 +
1

2
1TΣ21 +

1

2
σ2
e}. (4.12)

Substituting the expressions (4.11) and (4.12) in (4.8), the minimum MSE predictor,
under the assumption that θ = (β, σ2

v , σ
2
u, σ

2
e)
T is known, is given by

ˆ̄Y MMSE
i (θ) =E[Ȳi|(y, x)]

=
1

Ni

[ ∑
j,k∈si

yijk +
∑
j∈si

∑
k∈s̄ij

ỹ∗ijk(θ) +
∑
j∈s̄i

Nij∑
k=1

ỹ∗∗ijk(θ)

]
. (4.13)
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4.3.3 Empirical Bayes predictor

In practice, θ is not unknown, so it is not possible to calculate (4.13). We replace
the true value of θ with its consistent estimator to obtain the Emprical Bayes (EB)
predictor. Let θ̂T = (β̂, σ̂) be a restricted maximum likelihood (REML) estimator.
By substituting the true θ in (A.11) with an estimator, we obtain

ˆ̄Y EB
i =

1

Ni

∑
j,k∈si

yijk +
∑
j∈si

∑
k∈s̄ij

ỹ∗ijk(θ̂) +
∑
j∈s̄i

Nij∑
k=1

ỹ∗∗ijk(θ̂)

 , (4.14)

where
ˆ̄Y EB
i = ˆ̄Y MMSE

i (θ̂), ŷ∗EBijk = ỹ∗ijk(θ̂), and ŷ∗∗EBijk = ỹ∗∗ijk(θ̂) .

4.4 Restricted maximum likelihood

The sample model (4.7) may be seen as a special case of a general linear mixed model
with block diagonal covariance structure, involving fixed and random effects, and a
small-area mean can be expressed as a linear combination of fixed effects and realized
values of random effects i.e., a model composed by m independent submodels:

lij = col1≤k≤nij
(lijk), li = col1≤j≤mi

(lij), l = col1≤j≤m(li),

where
lij = 1nij

(xTijβ) + 1nij
vi + 1nij

uij + eij,

and
li = diag1≤j≤mi

(1nij
⊗ xTijβ) + 1ni

vi + diag1≤j≤mi
(1nij

)ui + ei,

with 1ni
= col1≤j≤mi

(1nij
).

Then, the matrix form of the model is

l = Xβ + Z1v + Z2u+ e, (4.15)

where
X = Xn×p, Z1 = diag1≤i≤m(1ni

), Z2 = diag1≤i≤m(diag1≤j≤mi
(1nij

))n×d,
n =

∑m
i=1 ni, ni =

∑mi

j=1 nij, d =
∑m

i=1 mi.
The model (4.15) can be rewritten in the following form

l = Xβ + Zw + e, (4.16)
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where, Z = (Z1, Z2) and w = (vT , uT )T .
The variance, V , of l is given by V (σ) = diag1≤i≤m(Vi(σ)),
where Vi is defined in the previous section and σ = (σ2

v , σ
2
u, σ

2
e)
T is the vector of

unkown parameters involved in the covariance structure of the model.
Following Henderson (1975), the best linear unbiased estimator (BLUE) of β in (4.16)
is given by

β̃(σ) = (XTV −1(σ)X)−1XTV −1(σ)l.

Replacing an estimator σ̂ for σ in previous equation we obtain the so called empirical
BLUE (EBLUE) β̂ = β̃(σ̂).

4.4.1 Fisher-scoring algorithm under restricted maximum
likelihood

The restricted maximum likelihood (REML) method maximizes the joint probability
density of n − p linear independent contrasts ω = Al, where AT is an n × (n − p)
full column rank matrix satisfying AAT = In−p and BX = 0. Thus, the probability
density function of ω does not depend on β and is given by

L(ω|σ) = (2π)
−(n−p)

2 |XTX|1/2|V (σ)|−1/2|XTV −1(σ)X|−1/2 exp

[
−1

2
lTP (σ)l

]
,

where

P (σ) = V −1(σ)− V −1(σ)X(XTV −1(σ)X)−1XTV −1(σ).

Note that P (σ) satisfies P (σ)V (σ)P (σ) = P (σ) and P (σ)X = 0n.

The REML estimator of σ is the maximizer of lREML(σ) = logL(ω|σ). As men-
tioned in the reviewing chapter, the fact that the REML equations are nonlinear,
they do not have closed analytical solutions. We adapt the iterative technique for
solving the REML equations. A common variant of Newton-Raphson (NR) algo-
rithm is Fisher-scoring method, which is appears to be slightly more robust to initial
values than strict NR (Jennrich and Sampson, 1976), which replaces the inverse of
the Hessian matrix by its expected value, which after allowing for a change in sign,
turns out to be defined by the inverse of Fisher’s information matrix.

Let S(σ) = ∂lREML(σ)/∂σ = (S1(σ), . . . , S3(σ)) and F (σ) = −E[∂lREML(σ)/∂σ∂σT ] =
(Fqr(σ)) be the scores vector and the Fisher information matrix respectively. Using
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the fact that

∂P (σ)

∂σs
= −P (σ)

∂V (σ)

∂σs
P (σ), q = 1, 2, 3,

the first order partial derivative of lREML(σ) with respect to σs is given by

Sq(σ) = −1

2
trace

[
P (σ)

∂V (σ)

∂σq

]
+

1

2
lTP (σ)

∂V (σ)

σq
P (σ)l, q = 1, 2, 3.

Then, taking the negative expectation of second order partial derivative of lREML(θ)
with respect to σq and σr, the element (q, r) of the Fisher information matrix is
obtained by

Fqr(σ) =
1

2
trace

[
P (σ)

∂V (σ)

∂σq
P (σ)

∂V (σ)

∂σr

]
, q, r = 1, . . . , 4.

Then, assuming σs to be the value of the estimator at iteration s, the updating
expression of the Fisher-scoring algorithm is

σs+1 = σs + [F (σs)]−1S(σs).



Chapter 5

Model MSE estimation for the EB
predictor

Since our goal is to use the predictor of the small-area population mean in practice, we
need to compute the mean square error of MMSE predictor, as well as its estimator.
The MSE of an EB predictor, or EBLUP under normal assumption, can be written
as a sum of two terms (Kackar and Harville, 1984; Prasad and Rao, 1990):

MSE( ˆ̄Y EB
i ) = Mi1(θ) +Mi2(θ),

where
M1i = E[(Ȳi − ˆ̄Y MMSE

i )2] and M2i = E[( ˆ̄Y MMSE
i − ˆ̄Y EB

i )2].
The first term, Mi1(θ), is the variance of the error in the minimum MSE predictor
(4.13), the predictor obtained under the true (unknown) θ. The second term accounts
for variability of the predictor due to estimation of the parameters in θ = (βT , σT )T .
In the next two sections, we give a closed form expression for Mi1(θ) and a linear
approximation for Mi2(θ) respectively.
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5.1 MSE of the MMSE predictor and the EB pre-

dictor correction

In this section we derive the expression of the MSE of the minimum MSE predictor
(A.11)(see appendix B for more details).

M1i = E[(Ȳi − ˆ̄Y MMSE
i )2]

=E[(Ȳi − E[Ȳi|(y, x)])2]

=E{E[(Ȳi − E[Ȳi|(y, x)])2|(y, x)]}
=E[var(Ȳi|(y, x))]

=E

 1

N2
i

var
∑
j∈si

∑
k∈sij

yijk +
∑
j∈si

∑
k∈s̄ij

yijk +
∑
j∈s̄i

Nij∑
k=1

yijk|(y, x)


=E

[
1

N2
i

(
var

∑
j∈si

∑
k∈s̄ij

yijk|(y, x)

+ var

∑
j∈s̄i

Nij∑
k=1

yijk|(y, x)

+

2cov

∑
j∈si

∑
k∈s̄ij

yijk,
∑
r∈s̄i

Nir∑
p=1

yirp|(y, x)

)]

=
1

N2
i

[
E(V1) + E(V2) + 2E(C1)

]
. (5.1)
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Now computing those three terms in the right-hand side of (5.1) separately, the
expression that corresponds to the first term is given by

E(V1) =
∑
j∈si

∑
k∈s̄ij

∑
r∈si

∑
p∈s̄ir

v11jI(p = k)I(r = j) +
∑
j∈si

∑
k∈s̄ij

∑
r∈si

∑
p∈s̄ir

v12jI(r = j)+

∑
j∈si

∑
k∈s̄ij

∑
r∈si

∑
p∈s̄ir

v13jrI(r 6= j)

=
∑
j∈si

∑
k∈s̄ij

v11j

[∑
r∈si

∑
p∈s̄ir

I(p = k)I(r = j)

]
+
∑
j∈si

∑
k∈s̄ij

v12j

[∑
r∈si

∑
p∈s̄ir

I(r = j)

]
+

∑
j∈si

∑
r∈si

v13jrI(r 6= j)

∑
k∈s̄ij

∑
p∈s̄ir

1


=
∑
j∈si

(Nij − nij)v11j +
∑
j∈si

(Nij − nij)(Nir − nir)v12j +
∑
j∈si

∑
r∈si

(Nij − nij)(Nir − nir)v13jrI(r 6= j),

(5.2)

where,

v11j = exp{2(xTijβ + 1TVµ1j1) + 1TΣ1j1 + σ2
e}(exp{1TΣ1j1 + σ2

e} − exp{1TΣ1j1})
v12j = exp{2(xTijβ + 1TVµ1j1) + 1TΣ1j1 + σ2

e}(exp{1TΣ1j1} − 1).

v13jr = exp{xTijβ + xTirβ +
1

2
1TVµ1jr1 +

1

2
1TΣ1jr1 + σ2

e} − exp{xTijβ + xTirβ +
1

2
1T (Vµ1j + Vµ1r)1+

1

2
1T (Σ1j + Σ1r)1 + σ2

e}.

Then the expression that corresponds to the second term in (B.1) is given by

E(V2) =
∑
j∈s̄i

Nij∑
k=1

∑
r∈s̄i

Nir∑
p=1

v21jI(p = k)I(r = j) +
∑
j∈s̄i

Nij∑
k=1

∑
r∈s̄i

Nir∑
p=1

v22jI(r = j)+

∑
j∈s̄i

Nij∑
k=1

∑
r∈s̄i

Nir∑
p=1

v23jrI(r 6= j)

=
∑
j∈s̄i

Nijv21j +
∑
j∈s̄i

NijNirv22j +
∑
j∈s̄i

∑
r∈s̄i

NijNirv23jrI(r 6= j), (5.3)
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where

v21j = exp{2(xTijβ + 1TVµ21) + 1TΣ21 + σ2
e}(exp{1TΣ21 + σ2

e} − exp{1TΣ21})
v22j = exp{2(xTijβ + 1TVµ21) + 1TΣ21 + σ2

e}(exp{1TΣ21} − 1)

v23jr = exp{xTijβ + xTirβ + 1TVµ31 +
1

2
1TΣ31 + σ2

e} − exp{xTijβ + xTirβ + 21TVµ21 + 1TΣ21 + σ2
e}.

And finally the third term in (5.1) is equal to

E(C1) =
∑
j∈si

∑
k∈s̄ij

∑
r∈s̄i

Nir∑
p=1

(c1ijr − c2ijr)

=
∑
j∈si

∑
r∈s̄i

(Nij − nij)Nir(c1ijr − c2ijr), (5.4)

where

c1jr = exp{xTijβ + xTirβ + 1TVµ4j1 +
1

2
1TΣ4j1 + σ2

e}

c2jr = exp{xTijβ + xTirβ + 1T (Vµ1j + V µ2) +
1

2
1T (Σ1j + Σ2)1 + σ2

e}.

Therefore, from (5.1), (5.2), (5.3) and (5.4) we have

M1i =
1

N2
i

[∑
j∈si

(Nij − nij)v11j +
∑
j∈si

(Nij − nij)(Nir − nir)v12j+∑
j∈si

∑
r∈si

(Nij − nij)(Nir − nir)v13jrI(r 6= j)+

∑
j∈s̄i

Nijv21j +
∑
j∈s̄i

NijNirv22j +
∑
j∈s̄i

∑
r∈s̄i

NijNirv23jrI(r 6= j) + 2
∑
j∈si

∑
r∈s̄i

(Nij − nij)Nir(c1jr − c2jr)

]
.

(5.5)

.
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5.2 MSE of the empirical Bayes predictor

In this section we derive the expression of the MSE of the empirical Bayes predictor
(A.11)(see appendix C for more details).

M2i(θ) = E[(Ȳ MMSE
i (θ)− Ȳ MMSE

i (θ̂))]

=
1

N2
i

E

∑
j∈si

∑
k∈s̄ij

yMMSE
ijk (θ) +

∑
r∈s̄i

Nir∑
k=1

yMMSE
irk (θ)

−
∑
j∈si

∑
k∈s̄ij

yMMSE
ijk (θ̂) +

∑
r∈s̄i

Nir∑
k=1

yMMSE
irk (θ̂)

2

=
1

N2
i

E

∑
j∈si

∑
k∈s̄ij

(yMMSE
ijk (θ)− yMMSE

ijk (θ̂)) +
∑
r∈s̄i

Nir∑
k=1

(yMMSE
irk (θ)− yMMSE

irk (θ̂))

2

=
1

N2
i

E

[∑
j∈si

∑
k∈s̄ij

∑
q∈si

∑
p∈s̄iq

(yMMSE
ijk (θ)− yMMSE

ijk (θ̂))(yMMSE
iqp (θ)− yMMSE

iqp (θ̂))+

2
∑
j∈si

∑
k∈s̄ij

∑
r∈s̄i

Nir∑
p=1

(yMMSE
ijk (θ)− yMMSE

ijk (θ̂))(yMMSE
irp (θ)− yMMSE

irp (θ̂))+

∑
g∈s̄i

Nig∑
k=1

∑
r∈s̄i

Nir∑
p=1

(yMMSE
igk (θ)− yMMSE

igk (θ̂))(yMMSE
irp (θ)− yMMSE

irp (θ̂))

]
.

=
1

N2
i

∑
j∈si

∑
k∈s̄ij

∑
q∈si

∑
p∈s̄iq

E
[
(yMMSE
ijk (θ)− yMMSE

ijk (θ̂))(yMMSE
iqp (θ)− yMMSE

iqp (θ̂))
]

+

2
1

N2
i

∑
j∈si

∑
k∈s̄ij

∑
r∈s̄i

Nir∑
p=1

E
[
(yMMSE
ijk (θ)− yMMSE

ijk (θ̂))(yMMSE
irp (θ)− yMMSE

irp (θ̂))
]

+

1

N2
i

∑
g∈s̄i

Nig∑
k=1

∑
r∈s̄i

Nir∑
p=1

E
[
(yMMSE
igk (θ)− yMMSE

igk (θ̂))(yMMSE
irp (θ)− yMMSE

irp (θ̂))
]

=
1

N2
i

[
H1 + 2H2 +H3

]
. (5.6)

After applying the Taylor series approximation of the second order of the expressions
that involve θ̂, we have

H1 '
∑
j∈si

(Nij − nij)2h1ij +
∑
j∈si

∑
q∈si

(Niq − nij)(Niq − niq)h1ijqI(q 6= j), (5.7)
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where

h1ij = exp{2(Ω1(θ) + 1TVµ1j1)} − 2 exp{2Ω1(θ) +
1

2
ϕ1(θ)}+ exp{2(Ω1(θ) + Φ1(θ))}

h1ijq = exp{Ω(j)
1 (θ) + Ω

(q)
1 (θ)}[exp{1

2
1T (Vµ1j + Vµ1q)1} − exp{1

2
(1TVµ1j1 + Φ

(q)
1 (θ))}−

exp{1

2
(1TVµ1q1 + Φ

(j)
1 (θ))}+ exp{1

2
(Φ

(j)
1 (θ) + Φ

(q)
1 (θ))}],

H2 '
∑
j∈si

∑
r∈s̄i

(Nij−nij
)Nirh2ijr, (5.8)

where

h2ijr = exp{Ω1(θ) + Ω2(θ)}[exp{1

2
1T (Vµ1j + Vµ2)1} − exp{1

2
(1TVµ1j1 + Φ2(θ))}−

exp{1

2
(1TVµ21 + Φ1(θ))}+ exp{1

2
(Φ1(θ) + Φ2(θ))}],

and

H3 '
∑
g∈s̄i

N2
igh3ig +

∑
g∈s̄i

∑
r∈s̄i

NigNirh3igrI(r 6= g), (5.9)

where

h3ig = exp{2(Ω2(θ) + 1TVµ21)} − 2 exp{2Ω2(θ) +
1

2
ϕ2(θ)}+ exp{2(Ω2(θ) + Φ2(θ))}

h3igr = exp{Ω(g)
2 (θ) + Ω

(r)
2 (θ)}[exp{1

2
1T (Vµ2g + Vµ2r)1} − exp{1

2
(1TVµ2g1 + Φ

(r)
2 (θ))}−

exp{1

2
(1TVµ2r1 + Φ

(g)
2 (θ))}+ exp{1

2
(Φ

(g)
2 (θ) + Φ

(r)
2 (θ))}].

Then substituting the expressions (5.7), (5.8) and (5.9) into (5.6) we get

M2i ≈
1

N2
i

[∑
j∈si

(Nij − nij)2h1ij +
∑
j∈si

∑
q∈si

(Nij − nij)(Niq − niq)h1ijqI(q 6= j)+

2
∑
j∈si

∑
r∈s̄i

(Nij−nij
)Nirh2ijr +

∑
g∈s̄i

N2
igh3ig +

∑
g∈s̄i

∑
r∈s̄i

NigNirh3igrI(r 6= g)

]
.

(5.10)
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5.3 Derivation of the EB predictor correction

By the fact that the predictor (4.14) is a nonlinear transformation of estimators of
parameters,

E[ŷEBijk ] 6= E[yMMSE
ijk (θ)]. (5.11)

The aim of this section is to find approximately unbiased predictor of the non-sampled
value of yijk.
Now considering the two cases separately and using the expressions calculated in the
section 5.2 it follows that (see appendix C for more details):

case 1 : j ∈ si

E[ỹ∗ijk(θ)] = exp{Ω1(θ) +
1

2
1TVµ1j1} (5.12)

and

E[ỹ∗ijk(θ̂)] = exp{Ω1(θ) +
1

2
(1TVµ1j1 + λ1j)} (5.13)

Therefore,

E[ỹ∗ijk(θ̂)]

E[ỹ∗ijk(θ)]
≈ exp{1

2
λ1j}. (5.14)

Now from (5.14), we define the multiplicative approximately bias-corrected
predictor (BCP)

ŷ∗EB.BCPijk = ŷ∗EBijk exp{−1

2
λ̂1j}, (5.15)

where λ̂1j = λ1j(θ̂), with λ1j(θ) = δT1jvar(β̂)δ1j + trace[E(ρ1jρ
T
1j)var(σ̂)].

case 2 : Case j ∈ s̄i

E[ỹ∗∗ijk(θ)] = exp{Ω2(θ) +
1

2
1TVµ21} (5.16)

and

E[ỹ∗∗ijk(θ̂)] = exp{Ω2(θ) +
1

2
(1TVµ21 + λ2)} (5.17)
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Therefore,

E[ỹ∗∗ijk(θ̂)]

E[ỹ∗∗ijk(θ)]
≈ exp{1

2
λ2}. (5.18)

From (5.18), we define the multiplicative approximately bias-corrected predic-
tor (BCP)

ŷ∗∗EB.BCPijk = ŷ∗∗EBijk exp{−1

2
λ̂2}, (5.19)

where λ̂2 = λ2(θ̂), with λ2(θ) = δT2 var(β̂)δ2 + trace[E(ρ2ρ
T
2 )var(σ̂)].

Now from(5.15) and (5.19) the approximately corrected-bias predictor for Ȳ MMSE
i is

given by:

Ȳ EB.BCP
i =

1

Ni

∑
j,k∈si

yijk +
∑
j∈si

∑
k∈s̄ij

ŷ∗EB.BCPijk +
∑
j∈s̄i

Nij∑
k=1

ŷ∗∗EB.BCPijk

 . (5.20)

.

5.4 Parametric bootstrap for MSE estimation

The parametric bootstrap that we propose here to estimate the MSE of EB bias-
corrected predictors Ȳ EB.BCP

i , is an extension of the parametric bootstrap method
for finite population proposed by González-Manteiga et al., 2008, Molina and Rao,
2010. This parametric procedure is described as below:

1. Fit model (4.5) to sample data and obtain model parameters estimates β̂, σ̂2
v ,

σ̂2
u, and σ̂2

e .

2. Generate bootstrap random area effects as v∗i ∼ N(0, σ̂2
v), i = 1, . . . ,M .

3. Generate, independently of random area effects v∗i , bootstrap random cluster
effects
u∗ij ∼ N(0, σ̂2

u), i = 1, . . . ,M , j = 1, . . . ,Mi.

4. Generate, independently of random area effects v∗i and random cluster effects
u∗ij, bootstrap random errors e∗ijk ∼ N(0, σ̂2

e), i = 1, . . . ,M , j = 1, . . . ,Mi,j =
1, . . . , Nij.
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5. Construct a bootstrap population using the estimated model

log(y∗ijk) = l∗ijk = xTijβ̂ + v∗i + u∗ij + e∗ijk, (5.21)

and calculate the small area population mean

Ȳ ∗i =
1

Ni

Mi∑
j=1

Nij∑
k=1

y∗ijk. (5.22)

6. select the elements l∗ijk that correspond to the indices contianed in the sample

s, denote l∗s . Fit the model to l∗s obtining new model parameters estimates β̂∗,
σ̂2∗
v , σ̂2∗

u , and σ̂2∗
e .

7. Using the bootstrap sample data l∗s and the known matrix X, apply the EB
method with its correction as it was described in subsections 4.3 and 5.3 and
calculate bootstrap EB prodictors, Ȳ EB∗

i , i = 1, . . . ,M .

Note that the bootstrap population model, given the original sample data, preserve
properties of the original population model. This can be observed as follows

E∗(v
∗
i |l) = E∗(u

∗
ij|l) = E∗(e

∗
ijk|l) = 0, var∗(v

∗
i |l) = σ̂2

v , var∗(u
∗
ij|l) = σ̂2

u , var∗(e
∗
ijk|l) = σ̂2

e ,

(5.23)

where E∗ and var∗ represent conditional expectation and variance with respect to
the distribution defined by the bootstrap model (5.35) given the sample data ls.
Thereby, the distribution of the bootstrap population l∗ (given sample data ls) mim-
ics that of the original population l. Then an estimator of MSE(Ȳ EB.BCP

i ) is the
bootstrap MSE of the bootstrap EB.BCP, defined as

MSE∗(Ȳ
EB.BCP∗
i ) = E∗[(Ȳ

EB.BCP∗
i − Ȳ ∗i )2]. (5.24)

In practice, this expression can be approximated through a Monte Carlo simulation,
by repeating steps 2− 7 a large number of times, B, and then taking the mean over
the the B replicates as follows:
Let Ȳ

∗(b)
i and Ȳ

EB.BCP∗(b)
i be the area population mean and its corresponding EB

bias-corrected predictor for the bootstrap replicate b, for b = 1, . . . , B. Then, the
estimator of the MSE is calculated as

MSE(Ȳ EB.BCP
i ) =

1

B

B∑
b=1

(Ȳ EB.BCP ∗(b)

i − Ȳ ∗(b)i )2. (5.25)
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5.5 Bias-corrected MSE estimator based on single

bootstrap

A naive estimator of MSE is

M̂SEi = M1i(θ̂) +M2i(θ̂), (5.26)

where M1i(θ̂) and M2i(θ̂) are the expressions (5.5) and (5.10), respectively, evaluated
at the estimator of θ. In general, it is known that M1i(θ̂) is an asymptotically unbi-
ased estimator (Prasad and Rao, 1990). Furthermore, M1i(θ) is a nonlinear function
of θ, the naive estimator M1i(θ̂) in (5.26) is biased, so that we need to correct the
bias. Given the complexity of the expression of M1i(θ), in subsection 5.1, it is not
possible to correct the bias using analytical approach. The alternative solution is the
bootstrap method. We derive the single bootstrap bias-corrected estimator of M1i(θ)
in two steps (Butar and Lahir, 2003; Rachida, O., 2011; Kubokawa and Nagashima,
2012). At the first step, under the assumption of known parameters the derivation
of MSE is presented. At the second step, a parametric bootstrap approach, that
described in subsection 5.4, is proposed for bias correction and approximation of the
uncertainty due to the estimation of θ.

Definition: The single bootstrap bias corrected estimator is defined as

MBC
1i (θ̂) = M1i(θ̂) + b1i(θ̂), (5.27)

where b1i(θ̂) = M1i(θ̂)− Eθ̂(M1i(θ̂
∗)).

Below, we present a second stage parametric bootstrap algorithm for bias-correction
of the MSE estimator:

1. Fit model (4.5) to sample data and obtain model parameters estimates θ̂ =
(β̂, σ̂2

v , σ̂
2
u, σ̂

2
e)
T .

2. Generate bootstrap random area effects as v∗i ∼ N(0, σ̂2
v), i = 1, . . . ,m.

3. Generate, independently of random area effects v∗i , bootstrap random cluster
effects
u∗ij ∼ N(0, σ̂2

u), i = 1, . . . ,m, j = 1, . . . ,mi.

4. Generate, independently of random area effects v∗i and random cluster effects
u∗ij, bootstrap random errors e∗ijk ∼ N(0, σ̂2

e), i = 1, . . . ,m, j = 1, . . . ,mi,j =
1, . . . , nij .
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5. Construct a bootstrap samples using the estimated model

log(y∗ijk) = l∗ijk = xTijβ̂ + v∗i + u∗ij + e∗ijk, (5.28)

and for each bootstrap replicate b, for b = 1, . . . , B we calculate the bootstrap
version M1i(θ̂)

(b). Then a Monte Carlo estimate of M1i is given by

MBC
1i (θ̂) = 2M1i(θ̂)−

1

B

B∑
1=b

M1i(θ̂)
(b). (5.29)

Furthermore, the unbiased estimator of the MSE based on the parametric bootstrap
is given by

m̂sei = MBC
1i (θ̂) +M2i(θ̂). (5.30)

From the described algorithm, we set out the justification behind this approach
as it was introduced by Butar and Lahiri (2003) and presented in Kubokawa and
Nagashima (2012):
Let f(θ) be a smooth function. In the spite of the fact that f(θ̂) is an asymptotically
unbiased estimator of f(θ), in general, there exists a second-order bias. Then, we
need to approximate the expectation E[f(θ̂)]. It is supposed that the approximation
is given by

E[f(θ̂)] = f(θ) + b(θ), (5.31)

where b(θ) is a smooth function. Then,

E[f(θ̂)− b(θ̂)] =E[f(θ̂)]− E[b(θ̂)]

={f(θ) + b(θ)} − b(θ)
=f(θ). (5.32)

Using model (5.35), it follows that

Eθ̂[f(θ̂∗)|l] = f(θ̂) + b(θ̂), (5.33)

where Eθ̂[.|l] is the conditional expectation with respect to the model (5.35) given l,

and the calculation of θ̂∗ is the same as that of θ̂ except that θ̂∗ is calculated based
on l∗ instead of l. Hence from (5.32), we have

E[2f(θ̂)− Eθ̂[f(θ̂∗)|l]] =E[f(θ̂)− Eθ̂[f(θ̂∗)− f(θ̂)|l]]
=E[f(θ̂)− b(θ̂)]
=f(θ). (5.34)

Therefore, 2f(θ̂)− Eθ̂[f(θ̂∗)|l] is the second-order unbiased estimator of f(θ).
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5.6 Double parametric bootstrap for bias-correction

Following Hall and Maiti (2006) and adopting a double parametric bootstrap to
bias-correction, we provide a population double bootstrap bias adjustment to the
MSE estimator of EB bias-corrected predictors Ȳ EB.BCP

i , but in the setting of the
parametric bootstrap method for finite population proposed by González-Manteiga
et al., 2008, Molina and Rao, 2009. The double parametric procedure is described
as below:

1. Fit model (4.5) to sample data and obtain model parameters estimates β̂, σ̂2
v ,

σ̂2
u, and σ̂2

e .

2. Generate bootstrap random area effects as v∗i ∼ N(0, σ̂2
v), i = 1, . . . ,M .

3. Generate, independently of random area effects v∗i , bootstrap random cluster
effects
u∗ij ∼ N(0, σ̂2

u), i = 1, . . . ,M , j = 1, . . . ,Mi.

4. Generate, independently of random area effects v∗i and random cluster effects
u∗ij, bootstrap random errors e∗ijk ∼ N(0, σ̂2

e), i = 1, . . . ,M , j = 1, . . . ,Mi,j =
1, . . . , Nij.

5. Construct a bootstrap population using the estimated model

log(y∗ijk) = l∗ijk = xTijβ̂ + v∗i + u∗ij + e∗ijk, (5.35)

and calculate the small area population mean

Ȳ ∗i =
1

Ni

Mi∑
j=1

Nij∑
k=1

y∗ijk. (5.36)

6. Select the elements l∗ijk that correspond to the indices contianed in the sample

s, denote l∗s . Fit the model to l∗s obtining new model parameters estimates β̂∗,
σ̂2∗
v , σ̂2∗

u , and σ̂2∗
e .

7. Using the bootstrap sample data l∗s and the known matrix X, apply the EB
method as described in Section 2 and calculate bootstrap EB prodictors, Ȳ EB∗

i ,
i = 1, . . . ,M . Then an estimator of MSE(Ȳ EB.BCP

i ) is the bootstrap MSE of
the bootstrap EB.BCP, defined as

MSE∗(Ȳ
EB.BCP∗
i ) = Eθ̂[(Ȳ

EB.BCP∗
i − Ȳ ∗i )2]. (5.37)
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Let’s note Ȳ
∗(b1)
i and Ȳ

EB.BCP∗(b1)
i as the area population mean and its corre-

sponding EB bias-corrected predictor for the bootstrap replicate b1, for b1 =
1, . . . , B1. Then, the estimator of the MSE is calculated as

MSE∗(Ȳ
EB.BCP∗
i ) = Bi1 =

1

B1

B1∑
b1=1

(Ȳ EB.BCP ∗(b1)

i − Ȳ ∗(b1)
i )2. (5.38)

8. For each bootstrap replicate b1 = 1, . . . , B1, obtain parameters estimates β̂∗(b1),
σ̂

2∗(b1)
v , σ̂

2∗(b1)
u , and σ̂

2∗(b1)
e , and generate for b2 = 1, . . . , B2:

v∗∗i ∼ N(0, σ̂2∗(b1)
v ), i = 1, . . . ,M

u∗∗ij ∼ N(0, σ̂2∗(b1)
u ), i = 1, . . . ,M, j = 1, . . . ,Mi

e∗∗ijk ∼ N(0, σ̂2∗(b1)
e ), i = 1, . . . ,M, j = 1, . . . ,Mi, j = 1, . . . , Nij

9. Constructing a new bootstrap populations using

log(y∗∗ijk) = l∗∗ijk = xTijβ̂
∗(b1) + v∗∗i + u∗∗ij + e∗∗ijk, (5.39)

and calculate the small area population mean

Ȳ ∗∗i =
1

Ni

Mi∑
j=1

Nij∑
k=1

y∗∗ijk. (5.40)

10. Select the elements l∗∗ijk that correspond to the indices contianed in the sample
s, denote l∗∗s . Fit the model to l∗∗s obtining new model parameters estimates

β̂(b2), σ̂
2(b2)
v , σ̂

2(b2)
u , and σ̂

2(b2)
e .

11. Using the bootstrap sample data l∗∗s and the known matrix X, apply the EB
method as described in chapter 4 and calculate bootstrap EB prodictors, Ȳ EB∗∗

i ,
i = 1, . . . ,M . Then an estimator of MSE(Ȳ EB.BCP

i ) is the bootstrap MSE of
the bootstrap EB.BCP, defined as

MSE∗∗(Ȳ
EB.BCP∗∗
i ) = Eθ̂∗ [(Ȳ EB.BCP∗∗

i − Ȳ ∗∗i )2] (5.41)

Noting Ȳ
∗∗(b2(b1))
i and Ȳ

EB.BCP∗∗(b2(b1))
i as the area population mean and its

corresponding EB bias-corrected predictor for the bootstrap replicate b2, for
b2 = 1, . . . , B2. Then, the estimator of the MSE is calculated as

MSE∗∗(Ȳ
EB.BCP∗∗
i ) = Bi2 =

1

B1

B1∑
b1=1

1

B2

B2∑
b2=1

(Ȳ EB.BCP ∗∗(b2(b1))

i − Ȳ ∗∗(b2(b1))
i )2.

(5.42)
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From (5.38) and (5.42) we get the population bias-corrected MSE estimator

ˆMSE(Ȳ EB.BCP
i ) = 2MSE∗(Ȳ

EB.BCP∗
i )−MSE∗∗(Ȳ

EB.BCP∗∗
i ). (5.43)

Note that this expression was obtained under the guidelines presented in subsection
5.5, and is detailed in appendix D.

5.7 Bias-corrected MSE estimator based on dou-

ble bootstrap

The population bias-corrected MSE estimator, (5.43), presented in subsection 5.6
can not be calculated in practical settings since it depends on population quantities,
in this subsection we derive a bias-corrected MSE estimator of (5.26) based on a
double bootstrap. As Davison and Hinkley (1997) pointed out, the bootstrap does
not provide exact solution, the same as in most statistical methods, regarding the
bias correction. However, it is helpful to have available a general technique for
making a bias correction to a bootstrap calculation. That technique is the bootstrap
itself. The bias-corrected estimator of M1i(θ) based on double bootstrap is given by
(Rachida O., 2011; Chang and Hall, 2015)

m̂bcc
1i = 3M1i(θ̂)− 3Eθ̂(M1i(θ̂

∗)|l) + Eθ̂∗(M1i(θ̂
∗∗)|l∗), (5.44)

where Eθ̂[.|l] is the conditional expectation with respect to the model (5.35) given l,

and the calculation of θ̂∗ is the same as that of θ̂ except that θ̂∗ is calculated based on
l∗ instead of l, and Eθ̂∗ [.|l∗] is the conditional expectation with respect to the model

(5.39) given l∗, and the calculation of θ̂∗∗ is the same as that of θ̂∗ except that θ̂∗∗ is
calculated based on l∗∗ instead of l∗.
Applying the bootstrap algorithm of the subsection 5.6, the Monte Carlo approxi-
mation to the quantity m̂bcc

1i is given by

m̃bcc
1i = 3M1i(θ̂)−

3

B1

B1∑
b1=1

M1i(θ̂
∗(b1)) +

1

B1B2

B1∑
b1

B2∑
b2

M1i(θ̂
∗∗(b2(b1))), (5.45)

where M1i(θ̂)
∗(b1) is the version of M1i(θ̂) calculated from (5.35) for each bootstrap

replicate b1, for b1 = 1, . . . , B1, and M1i(θ̂)
∗∗(b2(b1)) is the version of M1i(θ̂) obtained

from (5.39) for each b2, for b2 = 1, . . . , B2 for each b1.
Therefore, from (5.26) and (5.45) the bias-corrected MSE estimator based on double
bootstrap is given by

m̂sebcci = m̃bcc
1i +M2i(θ̂). (5.46)
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5.8 Simulation study

As Molina and Rao (2010), we use a model-based superpopulation approach. A cen-
tral assumption is that the sampling is ignorable. A consequence of this is that the
sampled values of the survey variable follow the superpopulation model. Generally,
the preferred sampling design would depend on the known auxiliary information.
Here, however, we only focus on the model and not on the sample inclusion prob-
abilities; as a consequence, the complexities in the calculation process stem from
the assumed superpopulation model and not from the sampling design. In our sim-
ulation studies, we have used simple random sampling in both two steps (without
replacement).
For the purpose of evaluating the performance of the proposed EB predictors, a
simulation experiment is conducted in order to investigate the bias of MSE(Ȳ EB

i ),
obtained under a studied model, comparing the derived naive estimator, its proposed
bootstrap estimator, and the double bootstrap estimator of the MSE of EB estima-
tors. Note that this experiment will be repited K = 100 times.
Under the model (4.5), we generate the response variable for the population units
log(Yijk), similarly to Molina and Rao (2010) but including an indicator of clusters
within small area. The transformed variable of the original variable of interest for the
population units Yijk were generated from proposed model considering as auxiliary
variables two dummies X1 ∈ {0, 1} and X2 ∈ {0, 1}, where the indicator variables
mimic the real case where only categorical variables are available, plus an intercept.
Regarding this settings, we assume that the mean value of the characteristic of inter-
est increases when moving from the case (X1 = 0, X2 = 0) to (X1 = 1, X2 = 0), but
decreases when moving from (X1 = 0, X2 = 0) to (X1 = 0, X2 = 1). We consider a
clustered finite population from which samples are drawn in two stages using simple
random sampling at each stage.
In summary, the specifications of the model for the kth simulation, for k = 1, . . . , K,
is:

1. We consider a balanced two-fold model, with a population size N = 120000
partitioned into M = 30 small areas, with small area population size of Ni =
4000, i = 1, . . . ,M , and each small area is composed of Mi = 40 clusters, i =
1, . . . ,M . Cluster population sizes are Nij = 100, j = 1, . . . ,Mi, i = 1, . . . ,M .

2. Two dummy variables are used as covariates plus intercept. The population val-
ues of these indicators for the units are generated from Bernoulli distributions
Ber(phij),h = 1, 2, with probabilities of success p1ij = 0.3 + 0.5i/M + 0.1j/Mi

and p2ij = 0.2. The covariates are held fixed across the simulated populations.



CHAPTER 5. MODEL MSE ESTIMATION FOR THE EB PREDICTOR 54

3. The fixed effects are β = (6, 0.03,−4)T .

4. The small area effects, cluster effects and individual errors are independent;
with vi ∼ N(0, σ2

v), uij ∼ N(0, σ2
u) and eijk ∼ N(0, σ2

e). To imitate different
situations that can be existe in real cases, simulation experiments are repeated
for various combinations of variance components: small area (Domain) variabil-
ity, σ2

v , and cluster (subdomain) variability, σ2
u. Sixteen tests of the experiment

are carried out, for the sixteen possible combinations of the values σ2
e = 0.025,

σ2
u = {0.05, 0.1, 0.15, 0.2}, and σ2

v = {0.05, 0.1, 0.15, 0.2}, according to the fol-
lowing table

r 1 2 3 4 5 6 7 8

σ
2,(r)
u 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1

σ
2,(r)
v 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

r 9 10 11 12 13 14 15 16

σ
2,(r)
u 0.15 0.15 0.15 0.15 0.2 0.2 0.2 0.2

σ
2,(r)
v 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

Table 5.1: Combinations of σ2
u and σ2

v for a simulation experiment

5. Within each small area i, a sample of mi = 5 clusters is selected using simple
random sampling (SRS), and a simple random sample of size nij = 10 is drawn
from each sampled cluster. The small area sample sizes are equal ni = 50.

We generate a bootstrap population as it is described in subsection 5.4. We draw a
sample from each Bootstrap population and we fit the model and we compute the
MSE estimator (5.46) and double parametric bootstrap MSE (5.43).

5.8.1 Simulation experiments

This experiment of simulation is motivated by the fact that practical usage of EB
predictors requires, of course, estimates of variance components. It consists of cur-
rying out several runs of the simulation study, described in Subsection 5.7, keeping
constant the sample sizes, the population sizes and the number of levels and sublevels
of the random factors, and varying the values of σ2

v and σ2
u.

Below are presented the graphical results in which square root of the versions of the
mean squared error are represented. In these figures, each contains four graphics
where we fix the value of σ2

v and we vary the values of σ2
u, boxplot of each of the
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efficiency measures are given. For each of the diagrams, three boxes are presented
where each box represents the variability for the 30 different values of the domain or
small area.Furthermore, we compare three versions of MSE estimator: naive estima-
tor (mse.naive), bias-corrected estimators (based on simple (mse.1bbc)) and simple
bootstrap (mse.1bc). The appendix E presents the tables with the numerical values
corresponding to the realization of the simulation experiment in the case σ2

v = 0.05.
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Figure 5.1: Sqrt MSE for all 30 domains, obtained by keeping σ2
v = 0.05 fixed and

changing σ2
u = {0.05, 0.1, 0.15, 0.2}
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Figure 5.2: Sqrt MSE for all 30 domains, obtained by keeping constant σ2
v = 0.1 and

changing σ2
u = {0.05, 0.1, 0.15, 0.2}
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Figure 5.3: Sqrt MSE for all 30 domains, obtained by keeping σ2
v = 0.15 fixed and

changing σ2
u = {0.05, 0.1, 0.15, 0.2}
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Figure 5.4: Sqrt MSE for all 30 domains, obtained by keeping σ2
v = 0.2 fixed and

changing σ2
u = {0.05, 0.1, 0.15, 0.2}

In Figure 5.1(a), we show the behavior of those MSEs when the domain and
cluster variances increase simultaneously, while the three remaining plots show the
behavior of MSEs when we fix the cluster variance, σ2

u, and varying the domain
variability, σ2

v .
The following plots represent the average of the square roots of the four versions of
MSE across the domains with respect to the variance components. In Figure 5.1(a),
we show the behavior of those MSEs when the domain and cluster variances increase
simultaneously, while the three remaining plots show the behavior of MSEs when we
fix the cluster variance, σ2

u, and varying the domain variability, σ2
v .
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4

6

8

10

12

0.05 0.10 0.15 0.20

σv
2

S
qr

t o
f M

S
E

mse.naive

mse.1bbc

mse.2bbc

mse.dbc

(d) Simulations with σu
2 = 0.2

Figure 5.5: Average sqrt MSE across the domains with respect to the change in
variance components.

5.8.2 Simulation results

The assessment of the estimated mean squared error was based on variance compo-
nents analysis and was centered on three versions of MSE: naive estimator (mse.naive),
bias-corrected estimators (based on simple (mse.1bbc) and double bootstrap (mse.2bbc))
and double bootstrap (mse.dbc) expressions. Examining the results obtained during
the simulation experiments and presented by means of plots (Figure 5.5), it shows
that the MSE along the domains increases in magnitude when the values of σ2

u and
σ2
v increase or decrease simultaneously (Figure 5.5(a)). In addition, the bias is mod-

erately reduced in magnitude as the values of σ2
u and σ2

v increased and decreased
respectively (Figure 5.5(b), (c), (d)); that is, the larger the variance between clusters
(sub-domains) and the smaller the variance between domains are, the corrected MSE
of the EB predictor becomes closer to the one obtained under the ideal double boot-
strap MSE. In summary, as the cluster variability σ2

u increases compared with the
domain variability, σ2

v , the corrected MSE estimators and bootstrap MSE versions
are getting closer.
After those simulation experiments we considered the case σ2

v = 0.05, σ2
u = 0.2,

σ2
e = 0.025, where the MSE estimates are close to those calculated under boot-
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strap setting. Under this consideration, we compare the predictors obtained under
our proposed model with the synthetic estimator. The simulation experiments were
repeated 100 times and the following average estimates were obtained:

β̂ =(5.99, 0.04,−3.99), σ̂ = (0.0499, 0.199, 0.025).

In terms of prediction, the plot below, (Figure: 5.6), compares the average by
domain of population values to their predicted values under the proposed model and
the synthetic estimators. We consider the case that the population elements log(Yijk)
following a linear model without domain and cluster effects.

log(Yijk) = lijk = xTijβ + eijk, k = 1, . . . , Nij, j = 1, . . . , Ni, i = 1, . . . ,M

eijk ∼ N(0, σ2). (5.47)

Taking the average of (5.47) over the elements in the domain i,

l̄i = X̄T
i β + ēi,

where

X̄i =
1

Ni

Ni∑
j=1

xTij, ēi =
1

Ni

Ni∑
j=1

Nij∑
k=1

eijk.

Following Molina and Rao (2010), and assuming that all model parameters are
known. The synthetic estimator, obtained by predicting all the Yijk and then taking
the domain mean, is given by

ˆ̄Y syn
i = exp(X̄T

i β). (5.48)

As Molina and Rao (2010) pointed out, the synthetic estimator is a good estima-
tor when the true is model (5.47). When the true model is a two-fold nested error
lognormal model, the synthetic estimation does not take into account the domain
and cluster effects. Thus, the synthetic estimator of MSE can lead to serious un-
derestimation of MSE. The MSE of the synthetic estimator was calculated using a
bootstrap method.
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Figure 5.7: Square roots of MSE estimators values obtained after 100 simulations,
with σ2

v = 0.05 and σ2
u = 0.2.

The above plots represent the EB predictors obtained under the proposed model
and the Synthetic predictors (Figure 5.6) and the MSE estimator of the synthetic
estimator with the others presented in the thesis (Figure 5.7) respectively. From
the above simulations, we see that the estimates, as well as predictors are close to
the true values and thus, the proposed estimators support the theoretical results.
The appendix F presents the tables with the numerical values corresponding to the
realization of the simulation results.
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Concluding remarks and future
research

This concluding chapter resumes the work presented in this thesis and suggests some
future directions.
The minimum mean squared error predictor under the proposed model for small area
estimation was developed. To obtain the empirical Bayes predictors of pupulation
means for small areas, the Scoring-Fisher algorithm based on restricted maximum
likelihood to estimate the variance components was used. Following Prasad and Rao
(1990), the estimation theory of MSE for the EB predictor, was adapted to the model
under study and the closed form expressions of MSE were obtained. Furthermore,
we proposed the bias-corrected estimator of MSE under a parametric bootstrap, as
well as a double bootstrap method. We studied the prediction capacity of our model
under simulation experiments. The simulation studies established clearly the posi-
tive performance of using the proposed model in terms of prediction.
In this study, the assessment of the estimated mean squared error was based on
variance components analysis and was centered on three versions of MSE: naive esti-
mator, bias-corrected estimators (based on simple and double bootstrap) and double
bootstrap expressions. Examining the results obtained during the simulation exper-
iments and presented by means of plots (Figure 5.5), it shows that the MSE along
the domains increases in magnitude when the values of σ2

u and σ2
v increase or de-

crease simultaneously (Figure 5.5(a)). In addition, the bias is moderately reduced in
magnitude as the values of σ2

u and σ2
v increased and decreased respectively (Figure

5.5(b),(c),(d)); that is, the larger the variance between clusters (sub-domains) and
the smaller the variance between domains are, the corrected MSE of the EB predictor
becomes closer to the one obtained under the ideal double bootstrap MSE. In sum-
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mary, as the cluster variability σ2
u increases compared with the domain variability,

σ2
v , the corrected MSE estimators and bootstrap MSE versions are getting closer.

For the sake of illustration of our methodology, the simulation experiments were
performed only for the balanced case, that is, when the number of samples was the
same for each cluster. For further analysis, the experiment can be extended to the
unbalanced case. This work confined the attention to the framework of mixed models
with homogeneous random area-specific effects. However, in real life, this assump-
tion may not always be justified. The assessment of the performance of the proposed
models including spatial dependent random area effects, as well as a development of
prediction intervals theoretically appropriate for lognormal data would be interest-
ing avenues for future research. Furthermore, in terms of model misspecification, it
should be interesting to study some other skewed distributions following the devel-
oped methodolog.



Appendices

65



Appendix A

Derivation of MMSE Predictor

The model (4.7) in matrix form for each j ∈ si is as follows:

lij = Xijβ + vi1nij
+ uij1nij

+ eij, (A.1)

where

lij =


lij1
lij2
...

lijnij


nij×1

; Xij =


xTij
xTij
...
xTij


nij×p

; eij =


eij1
eij2

...
eijnij


nij×1

; 1nij
=


1
1
...
1


nij×1

.

From (A.1), the variance of the vector of transformed variable, lij, is given by

var(lij) =σ2
v1nij

1Tnij
+ σ2

u1nij
1Tnij

+ σ2
eInij

=σ2
vJnij

+ σ2
uJnij

+ σeInij

Considering all clusters in the sample for each i, it follows that

li1 =Xi1β + vi1ni1
+ ui11ni1

+ 0ui2 + . . .+ 0uimi
+ ei1

li2 =Xi2β + vi1ni2
+ 0ui1 + ui21ni2

+ 0ui3 + . . .+ 0uimi
+ ei2

...

limi
=Ximi

β + vi1nimi
+ 0ui1 + 0ui2 + . . .+ uimi

1nimi
+ eimi

.
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Then by a given i we have the vector, li, that combines the expressions represented
in (A.1)

li =


lTi1
lTi2
...
lTimi

 =


Xi1

Xi2
...

Ximi

 β +


1ni1

1ni2

...
1nimi

 vi +


1ni1

1ni2

. . .

1nimi



ui1
ui2
...

uTimi

+


ei1
ei2
...

eimi

 ,
and its variance is given by

var(li) = Vi = σ2
v


1ni1

1ni2

...
1nimi




1ni1

1ni2

...
1nimi


T

+ σ2
u


1ni1

1ni2

. . .

1nimi




1ni1

1ni2

. . .

1nimi


T

+ σ2
eIi.

By the fact that, [
A
B

]T
=
[
AT BT

]
,

it follows 
1ni1

1ni2

...
1nimi

[1Tni1
1Tni2

. . . 1Tnimi

]
=


Jni1

Jni1ni2
. . . Jni1nimi

Jni2ni1
Jni2

. . . Jnimi
ni1

...
Jnimi

ni1
Jnimi

ni2
. . . Jnimi




1ni1

1ni2

. . .

1nimi




1ni1

1ni2

. . .

1nimi


T

=


Jni1

Jni2

. . .

Jnimi



Ii =


Ini1

Ini2

. . .

Inimi

 .
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Then

Vi =σ2
v


Jni1

Jni1ni2
. . . Jni1nimi

Jni2ni1
Jni2

. . . Jnimi
ni1

...
Jnimi

ni1
Jnimi

ni2
. . . Jnimi

+ σ2
u


Jni1

Jni2

. . .

Jnimi

+ σ2
e


Ini1

Ini2

. . .

Inimi



=


(σ2

v + σ2
u)Jni1

+ σ2
eIni1

σ2
vJni1ni2

. . . σ2
vJni1nimi

σ2
vJni2ni1

(σ2
v + σ2

u)Jni2
+ σ2

eIni2
. . . σ2

vJni2nimi
...

σ2
vJnimi

ni1
σ2
vJnimi

ni2
. . . (σ2

v + σ2
v)Jnimi

+ σ2
eInimi

 .
So from the previous, we have a joint distribution of the expressions represented by
(4.7) for a given small area i.

li =


li1
li2
...
limi

 ∼ N
(

Xi1

Xi2
...

Ximi

 β, Vi) ≡ N(Xiβ, Vi).

Now considering the mean at cluster level

l̄ij =
1

nij

nij∑
k=1

lijk =
1

nij

[
1 1 . . . 1

]

lij1
lij2
...

lijnij

 =
1

nij
1Tnij

lij. (A.2)

It follows that

l̄i =


l̄i1
l̄i2
...
l̄imi

 =


1
ni1

1Tni1
li1

1
ni2

1Tni2
li2

...
1

nimi
1Tnimi

limi

 =


1
ni1

1Tni1
1
ni2

1Tni2

. . .
1

nimi
1Tnimi



li1
li2
...
limi


=Wili.

Then

l̄i = Wili ∼ N(WiXiβ,WiViW
T
i ).
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Recall that

Xij =


xTij
xTij
...
xTij


which implies that

1

nij
1Tnij

Xij =
1

nij

[
1 1 . . . 1

]

xTij
xTij
...
xTij

 = xTij.

Note that

WiXiβ =


xTi1
xTi2
...
xTin

 β = xiβ,

1

nij
1Tnij

Jnij
=

1

nij
1Tnij

1nij
1Tnij

= 1Tnij
.
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Then

V̄i =WiViW
T
i =


1
ni1

1Tni1
1
ni2

1Tni2

. . .
1

nimi
1Tnimi

Vi


1
ni1

1ni1

1
ni2

1ni2

. . .
1

nimi
1nimi



=


(σ2

v + σ2
u)1

T
ni1

+ σ2
e1
T
ni1

σ2
v1
T
ni2

. . . σ2
v1
T
nimi

σ2
v1
T
ni1

(σ2
v + σ2

u)1
T
ni2

+ σ2
e1
T
ni2

. . . σ2
v1
T
nimi

...
σ2
v1
T
ni1

σ2
v1
T
ni2

. . . (σ2
v + σ2

v)1
T
nimi

+ σ2
e1
T
nimi

×


1
ni1

1ni1

1
ni2

1ni2

. . .
1

nimi
1nimi



=


(σ2

v + σ2
u) + 1

ni1
σ2
e σ2

v . . . σ2
v

σ2
v (σ2

v + σ2
u) + 1

ni2
σ2
e . . . σ2

v
...
σ2
v σ2

v . . . (σ2
v + σ2

u) + 1
nimi

σ2
e

 .
Then

l̄i ∼ N(xiβ, V̄i),

which is the joint distribution of the elements represented by (A.2).
Now let figure out the joint distribution between li and the random effects. At the
first step we consider the cluster random effects

[
li
uij

]
=



li1
li2
...
lij
...
limi

uij


.
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Considering the case where the sub-small area, j, has some observations within the
sample,

cov(li1, uij) =cov(


li11

li12
...

li1n1

 , uij) =


0
0
...
0


(nij×1)

,

cov(lij, uij) =cov(


lij1
lij2
...

lijnj

 , uij) = σ2
u1nij

.

It follows that

C
(j)
1 = cov(li, uij) =



cov(li1, uij)
cov(li2, uij)

...
cov(lij, uij)

...
cov(lin, uij)


=



0ni1

0ni2

...
σ2
u1nij

...
0nimi


(ni×1)

,

now we have

var(

[
li
uij

]
) =

[
Vi C

(j)
1

C
(j)T
1 σ2

u

]
.

Then [
li
uij

]
∼ N

([Xiβ
0

][
Vi C

(j)
1

C
(j)T
1 σ2

u

])
.

The next step is to calculate the conditional expectations

E(uij|li) =cov(uij, li)V
−1
i (li −Xiβ)

=C
(j)T
1 V −1

i (li −Xiβ) (A.3)
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and

E(uij | l̄i) =cov(uij, l̄i)(var(l̄i))
−1(l̄i − xiβ)

=cov(uij,Wili)(WiViW
T
i )−1(Wili −WiXiβ)

=cov(uij, li)W
T
i (WiViW

T
i )−1(Wili −WiXiβ)

=C
(j)T
1 W T

i W
−T
i V −1

i W−1
i Wi(li −Xiβ)

=C
(j)T
1 V −1

i (li −Xiβ). (A.4)

Therefore, from (A.3) and (A.4) we have

E(uij|li) = E(uij|l̄i).

Now we prove the same results but in case of conditional variance.

var(uij|li) =var(uij)− cov(uij, li)V
−1
i cov(li, uij)

=σ2
u − C

(j)T
1 V −1

i C
(j)
1 (A.5)

and

var(uij|l̄i) =var(uij)− cov(uij, l̄i)V̄
−1cov(l̄i, uij)

=σ2
u − cov(uij, li)W

T
i (WiViW

T
i )−1Wicov(li, uij)

=σ2
u − C

(j)T
1 W T

i W
−T
i V −1

i W−1
i WiC

(j)
1

=σ2
u − C

(j)T
1 V −1

i C
(j)
1 . (A.6)

Therefore, from (A.5) and (A.6) we have

var(uij|li) = var(uij|l̄i).
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From the above expressions we have

l̄i ∼ N(xiβ, V̄i)

cov(uij, l̄i) = cov(uij,Wili)

= C
(j)T
1 W T

i = WiC
(j)
1 = σ2

u



0
0
...
1
0
...
0


(mi×1)

= α(j),

cov(vi, l̄i) = cov(vi,Wili) = σ2
vWicov(li, vi)

=σ2
vWi



1ni1

1ni2

...
1nij

...
1nimi


(ni×1)

= σ2
v

1
...
1


(mi×1)

= γ.

Now the joint distribution is l̄iuij
vi

 ∼ N
(xiβ0

0

 ,
 V̄i α(j) γ
α(j)T σ2

u 0
γT 0 σ2

v

). (A.7)

Recall that, given a multivariate normal distribution : X ∼ N(µ,Σ), where

X =

[
X1

X2

]
∼ N

([µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
we have

E(X1|X2 = x2) = µ1 + Σ12Σ−1
22 (x2 − µ2)

var(X1|X2 = x2) = Σ11 − Σ12Σ−1
22 Σ21.

The moment generating function of X is

MX(t) = E[et
TX ] = et

Tµ+ 1
2
tT Σt.
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From (A.7), we have

E(

[
uij
vi

]
| l̄i) =

[
α(j)T

γT

]
V̄ −1
i (l̄i − xiβ) ≡ µ1j

and

var(

[
uij
vi

]
| l̄i) =

[
σ2
u 0

0 σ2
v

]
−
[
α(j)T

γT

]
V̄ −1
i

[
α(j) γ

]
≡ Σ1j.

Using the above results, we have

E(exp{vi + uij} | l̄i) = exp{1Tµ1j +
1

2
1TΣ1j1}.

Now the expression of the second term in (4.8) is given by

ỹ∗ijk ≡ E(yijk | l̄i) = exp{xTijβ + 1Tµ1j +
1

2
1TΣ1j1 +

1

2
σ2
e}. (A.8)

Next we consider the second case with a sub-small area, r, in the sampled small area,
but does not have any observation in the sample

cov(li1, uir) =cov(


li11

li12
...

li1n1

 , uir) =


0
0
...
0


(nij×1)

cov(lij, uir) =cov(


lij1
lij2
...

lijnj

 , uir) = 0nij
.

It follows that

C2 = cov(li, uir) =



cov(li1, uir)
cov(li2, uir)

...
cov(lij, uir)

...
cov(lin, uir)


=



0ni1

0ni2

...
0nij

...
0nimi


(ni×1)

≡ 0.
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Now we have

var(

[
li
uir

]
) =

[
Vi 0
0T σ2

u

]
.

Then [
li
uir

]
∼ N

([Xiβ
0

] [
Vi 0
0T σ2

u

])
.

So it follows that

E(uir | li) = E(uir | l̄i) = 0.

Now the joint distribution is l̄iuir
vi

 ∼ N
(xiβ0

0

 ,
 V̄i 0 γ

0T σ2
u 0

γT 0 σ2
v

). (A.9)

Proceeding the same way as in the first case and using (A.9) we have

E(

[
uir
vi

]
| l̄i) =

[
0T

γT

]
V̄ −1
i (l̄i − xiβ) ≡ µ2

and

var(

[
uir
vi

]
| l̄i) =

[
σ2
u 0

0 σ2
v

]
−
[

0T

γT

]
V̄ −1

[
0 γ

]
≡ Σ2.

Using the above results, we have

E(exp{vi + uir} | l̄i) = exp{1Tµ2 +
1

2
1TΣ21}.

Now the expression of the third term in (4.8) is given by

ỹ∗∗ijk ≡ E(yijk | l̄i) = exp{xTijβ + 1Tµ2 +
1

2
1TΣ21 +

1

2
σ2
e}. (A.10)

Substituting the expressions (A.8) and (A.10) in (4.8), the minimum MSE predictor,
under the assumption that θ = (β, σ2

v , σ
2
u, σ

2
e)
T is known, is given by

ˆ̄Y MMSE
i (θ) =E[Ȳi|(y, x)]

=
1

Ni

[ ∑
j,k∈si

yijk +
∑
j∈si

∑
k∈s̄ij

ỹ∗ijk(θ) +
∑
j∈s̄i

Nij∑
k=1

ỹ∗∗ijk(θ)

]
. (A.11)
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MSE of the MMSE predictor

By definition,

M1i = E[(Ȳi − ˆ̄Y MMSE
i )2]

=E[(Ȳi − E[Ȳi|(y, x)])2]

=E{E[(Ȳi − E[Ȳi|(y, x)])2|(y, x)]}
=E[var(Ȳi|(y, x))]

=E

 1

N2
i

var
∑
j∈si

∑
k∈sij

yijk +
∑
j∈si

∑
k∈s̄ij

yijk +
∑
j∈s̄i

Nij∑
k=1

yijk|(y, x)


=E

[
1

N2
i

(
var

∑
j∈si

∑
k∈s̄ij

yijk|(y, x)

+ var

∑
j∈s̄i

Nij∑
k=1

yijk|(y, x)

+

2cov

(∑
j∈si

∑
k∈s̄ij

yijk,
∑
j∈s̄i

Nij∑
k=1

yijk|(y, x)

))]

=
1

N2
i

[
E(V1) + E(V2) + 2E(C1)

]
. (B.1)

In below we show in detail the corresponding expressions of those terms of the right-
hand side of (B.1).
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Starting by the first term, it follows that

V1 =var

∑
j∈si

∑
k∈s̄ij

yijk|(y, x)


=cov

∑
j∈si

∑
k∈s̄ij

yijk,
∑
q∈si

∑
p∈s̄iq

yiqp|(y, x)


=
∑
j∈si

∑
k∈s̄ij

∑
q∈si

∑
p∈s̄ir

cov(yijk, yirp|(y, x)). (B.2)

The conditional covariance is defined by

cov(yijk, yirp|(y, x)) = E[yijkyiqp|(y, x)]− E[yijk|(y, x)]E[yiqp|(y, x)].

We start by E[yijkyiqp|(y, x)]:

• For j = q and k = p:

E[yijkyiqp|(y, x)] =E[exp{2(xTijβ + vi + uij + eijk)}|(y, x)],

= exp{2(xTijβ + 1Tµ1j + 1TΣ1j1 + σ2
e)}.

• For j = q and k 6= p:

E[yijkyirp|(y, x)] =E[exp{2xTijβ + 2vi + 2uij + eijk + eijp}],
= exp{2(xTijβ + 1Tµ1j + 1TΣ1j1) + σ2

e}.

• For j 6= q:

E[yijkyiqp|(y, x)] =E[exp{xTijβ + xTiqβ + 2vi + uij + uiq + eijk + eiqp}]. (B.3)

Note that 
l̄i

2vi
uij
uiq

 ∼ N
(

xiβ
0
0
0

 ,


V̄i 2γ α(j) α(q)

2γT 4σ2
v 0 0

α(j)T 0 σ2
u 0

α(q)T 0 0 σ2
u

). (B.4)

From (B.4), it follows that

E
(2vi

uij
uir

 | l̄i) =

 2γT

α(j)T

α(r)T

 V̄ −1(l̄i − xiβ) ≡ µ1jq (B.5)
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and

var
(2vi

uij
uiq

 | l̄i) =

4σ2
v 0 0

0 σ2
u 0

0 0 σ2
u

−
 2γT

α(j)T

α(q)T

 V̄ −1
i

[
2γ α(j) α(q)

]
≡ Σ1jq.

(B.6)

Using (B.5) and (B.6), the expression (B.3) becomes

E[yijkyiqp|(y, x)] = exp{xTijβ + xTiqβ + 1Tµ1jq +
1

2
1TΣ1jq1 + σ2

e}.

From those three cases,

E[yijkyiqp|(y, x)] =

[exp{2(xTijβ + 1Tµ1j + 1TΣ1j1 + σ2
e)}I(k = p)+

exp{2(xTijβ + 1Tµ1j + 1TΣ1j1) + σ2
e}I(k 6= p)]I(j = q)+

[exp{xTijβ + xTiqβ + 1Tµ1jq +
1

2
1TΣ1jq1 + σ2

e}]I(j 6= q). (B.7)

Now the next expression is E[yijk|(y, x)]E[yiqp|(y, x)]:

• For j = q:

E[yijk|(y, x)]E[yirp|(x, y)] =(E[yijk|(y, x)])2

= exp{2(xTijβ + 1Tµ1j) + 1TΣ1j1 + σ2
e}.

• For j 6= q:

E[yijk|(y, x)]E[yiqp|(x, y)] =

= E[exp{xTijβ + vi + uij + eijk}|(y, x)]E[exp{xTiqβ + vi + uiq + eiqp}|(y, x)]

= exp{xTijβ + 1Tµ1j + 1TΣ1j1 + σ2
e} exp{(xTirβ + 1Tµ1q + 1TΣ1q1 + σ2

e}

= exp{xTijβ + xTiqβ + 1T (µ1j + µ1q) +
1

2
1T (Σ1j + Σ1q)1 + σ2

e}.

It follows that

E[yijk|(y, x)]E[yiqp|(x, y)] =

= [exp{2(xTijβ + 1Tµ1j) + 1TΣ1j1 + σ2
e}]I(j = q)+

[exp{xTijβ + xTiqβ + 1T (µ1j + µ1q) +
1

2
1T (Σ1j + Σ1q)1 + σ2

e}]I(j 6= q). (B.8)
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We have from (B.7) and (B.8) that

cov(yijk, yiqp | l̄i) =

[exp{2(xTijβ + 1Tµ1j + 1TΣ1j1 + σ2
e)}I(k = p)+

exp{2(xTijβ + 1Tµ1j + 1TΣ1j1) + σ2
e}I(k 6= p)]I(j = q)+

[exp{xTijβ + xTiqβ + 1Tµ1jq +
1

2
1TΣ1jq1 + σ2

e}]I(j 6= q)−

[exp{2(xTijβ + 1Tµ1j) + 1TΣ1j1 + σ2
e}]I(j = q)+

[exp{xTijβ + xTiqβ + 1T (µ1j + µ1q) +
1

2
1T (Σ1j + Σ1q)1 + σ2

e}]I(j 6= q)

=[(exp{2(xTijβ + 1Tµ1j + 1TΣ1j1 + σ2
e)} − exp{2(xTijβ + 1Tµ1j) + 1TΣ1j1 + σ2

e})I(k = p)+

(exp{2(xTijβ + 1Tµ1j + 1TΣ1j1) + σ2
e} − exp{2(xTijβ + 1Tµ1j) + 1TΣ1j1 + σ2

e})I(k 6= p)]I(j = q)+

[exp{xTijβ + xTiqβ + 1Tµ1jq +
1

2
1TΣ1jq1 + σ2

e} − exp{xTijβ + xTiqβ + 1T (µ1j + µ1q)+

1

2
1T (Σ1j + Σ1q)1 + σ2

e}]I(j 6= q).

From the previous section,

E(1Tµ1j) =0

var(1Tµ1j) =1TVµ1j1,

where

Vµ1j = var(µ1j) =

[
α(j)T

γT

]
V̄ −1
i

[
α(j) γ

]
.
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Then we have

E[cov(yijk, yiqp | l̄i)] =

[(exp{2(xTijβ + 1TVµ1j1 + 1TΣ1j1 + σ2
e)} − exp{2(xTijβ + 1TVµ1j1) + 1TΣ1j1 + σ2

e})I(k = p)+

(exp{2(xTijβ + 1TVµ1j1 + 1TΣ1j1) + σ2
e} − exp{2(xTijβ + 1TVµ1j1) + 1TΣ1j1 + σ2

e})I(k 6= p)]I(j = q)

+ [exp{xTijβ + xTiqβ +
1

2
1TVµ1jq1 +

1

2
1TΣ1jq1 + σ2

e} − exp{xTijβ + xTiqβ +
1

2
1T (Vµ1j + Vµ1q)1+

1

2
1T (Σ1j + Σ1q)1 + σ2

e}]I(j 6= q)

=[v11jI(k = p) + v12jI(k 6= p)]I(j = q) + v13jqI(j 6= q)

= exp{2(xTijβ + 1TVµ1j1) + 1TΣ1j1 + σ2
e}(exp{1TΣ1j1 + σ2

e} − 1)I(k = p)+

(exp{1TΣ1j1} − 1)I(k 6= p)]I(j = q)

+ [exp{xTijβ + xTiqβ +
1

2
1TVµ1jq1 +

1

2
1TΣ1jq1 + σ2

e} − exp{xTijβ + xTiqβ +
1

2
1T (Vµ1j + Vµ1q)1+

1

2
1T (Σ1j + Σ1q)1 + σ2

e}]I(j 6= q).

Within the expression above we add and subtract exp{1TΣ1j1}I(k = p)

E[cov(yijk, yiqp | l̄i)] =

exp{2(xTijβ + 1TVµ1j1) + 1TΣ1j1 + σ2
e}[(exp{1TΣ1j1 + σ2

e}I(k = p) + exp{1TΣ1j1}I(k = p)−
exp{1TΣ1j1}I(k = p) + exp{1TΣ1j1}I(k 6= p)− 1)]I(j = q)

+ [exp{xTijβ + xTiqβ +
1

2
1TVµ1jq1 +

1

2
1TΣ1jq1 + σ2

e} − exp{xTijβ + xTiqβ +
1

2
1T (Vµ1j + Vµ1q)1+

1

2
1T (Σ1j + Σ1q)1 + σ2

e}]I(j 6= q)

= exp{2(xTijβ + 1TVµ1j1) + 1TΣ1j1 + σ2
e}[(exp{1TΣ1j1 + σ2

e} − exp{1TΣ1j1})I(k = p)+

(exp{1TΣ1j1} − 1)]I(j = q)

+ [exp{xTijβ + xTiqβ + 1TVµ1jq1 +
1

2
1TΣ1jq1 + σ2

e} − exp{xTijβ + xTiqβ + 1T (Vµ1j + Vµ1q)1+

1

2
1T (Σ1j + Σ1q)1 + σ2

e}]I(j 6= q)
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=[exp{2(xTijβ + 1TVµ1j1) + 1TΣ1j1 + σ2
e}(exp{1TΣ1j1 + σ2

e} − exp{1TΣ1j1})I(k = p)+

exp{2(xTijβ + 1TVµ1j1) + 1TΣ1j1 + σ2
e}(exp{1TΣ1j1} − 1)]I(j = q)

+ [exp{xTijβ + xTiqβ +
1

2
1TVµ1jq1 +

1

2
1TΣ1jq1 + σ2

e} − exp{xTijβ + xTiqβ +
1

2
1T (Vµ1j + Vµ1q)1+

1

2
1T (Σ1j + Σ1q)1 + σ2

e}]I(j 6= q)

=v11jI(k = p)I(j = q) + v12jI(j = q) + v13jqI(j 6= q),

where

v11j = exp{2(xTijβ + 1TVµ1j1) + 1TΣ1j1 + σ2
e}(exp{1TΣ1j1 + σ2

e} − exp{1TΣ1j1})
v12j = exp{2(xTijβ + 1TVµ1j1) + 1TΣ1j1 + σ2

e}(exp{1TΣ1j1} − 1).

v13jr = exp{xTijβ + xTiqβ +
1

2
1TVµ1jq1 +

1

2
1TΣ1jq1 + σ2

e} − exp{xTijβ + xTiqβ +
1

2
1T (Vµ1j + Vµ1q)1+

1

2
1T (Σ1j + Σ1q)1 + σ2

e}.

It follows that

E(V1) =
∑
j∈si

∑
k∈s̄ij

∑
q∈si

∑
p∈s̄iq

v11jI(p = k)I(q = j) +
∑
j∈si

∑
k∈s̄ij

∑
q∈si

∑
p∈s̄iq

v12jI(q = j)+

∑
j∈si

∑
k∈s̄ij

∑
q∈si

∑
p∈s̄iq

v13jqI(q 6= j)

=
∑
j∈si

∑
k∈s̄ij

v11j

∑
q∈si

∑
p∈s̄iq

I(p = k)I(q = j)

+
∑
j∈si

∑
k∈s̄ij

v12j

[∑
q∈si

∑
p∈s̄ir

I(q = j)

]
+

∑
j∈si

∑
q∈si

v13jqI(q 6= j)

∑
k∈s̄ij

∑
p∈s̄ir

1


=
∑
j∈si

(Nij − nij)v11j +
∑
j∈si

(Nij − nij)2v12j +
∑
j∈si

∑
q∈si

(Nij − nij)(Niq − niq)v13jqI(q 6= j).

(B.9)
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Here we calculate the expression of the second term of (B.1)

V2 =var

∑
g∈s̄i

Nig∑
k=1

yigk|(y, x)


=cov

∑
g∈s̄i

Nig∑
k=1

yigk,
∑
r∈s̄i

Nir∑
k=1

yirk|(y, x)


=
∑
g∈s̄i

Nig∑
k=1

∑
r∈s̄i

Nir∑
p=1

cov(yijk, yirp|(y, x)). (B.10)

The covarinace in (B.10) is given by

cov(yigk, yirp|(y, x)) = E[yigkyirp|(y, x)]− E[yigk|(y, x)]E[yirp|(y, x)].

We start by E[yigkyirp|(y, x)]:

• For g = r and k = p:

E[yigkyirp|(y, x)] =E[exp{2(xTigβ + vi + uig + eigk)}|(y, x)]

= exp{2(xTigβ + 1Tµ2 + 1TΣ21 + σ2
e)}.

• For g = r and k 6= p:

E[yigkyirp|(y, x)] =E[exp{2xTigβ + 2vi + 2uig + eigk + eigp}|(y, x)]

= exp{2(xTigβ + 1Tµ2 + 1TΣ21) + σ2
e)}.

• For g 6= r:

E[yigkyirp|(y, x)] =E[exp{xTigβ + xTirβ + 2vi + uig + uir + eigk + eirp}|(y, x)].

(B.11)

Note that 
l̄i

2vi
uig
uir

 ∼ N
(

xiβ
0
0
0

 ,

V̄i 2γ 0 0

2γT 4σ2
v 0 0

0T 0 σ2
u 0

0T 0 0 σ2
u

). (B.12)
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From (B.12), it follows that

E
(2vi

uig
uir

 | l̄i) =

2γT

0T

0T

 V̄ −1
i (l̄i − xiβ) ≡ µ3, (B.13)

and

var
(2vi

uig
uir

 | l̄i) =

4σ2
v 0 0

0 σ2
u 0

0 0 σ2
u

−
2γT

0T

0T

 V̄ −1
i

[
2γ 0 0

]
≡ Σ3. (B.14)

Using (B.13) and (B.14), the expression (B.11) becomes

E[yigkyirp|(y, x)] = exp{xTigβ + xTirβ + 1Tµ3 +
1

2
1TΣ31 + σ2

e}. (B.15)

From those three cases,

E[yigkyirp|(y, x)] =

[exp{2(xTigβ + 1Tµ2 + 1TΣ21 + σ2
e)}I(k = p)+

exp{2(xTigβ + 1Tµ2 + 1TΣ21) + σ2
e}I(k 6= p)]I(g = r)+

[exp{xTigβ + xTirβ + 1Tµ3 +
1

2
1TΣ31 + σ2

e}]I(j 6= r). (B.16)

Now the next expression is E[yigk|(y, x)]E[yirp|(y, x)]

• For g = r:

E[yigk|(y, x)]E[yirp|(x, y)] =(E[yigk|(y, x)])2

= exp{2(xTigβ + 1Tµ2) + 1TΣ21 + σ2
e}.

• For g 6= r:

E[yigk|(y, x)]E[yirp|(x, y)] =

= E[exp{xTigβ + vi + uig + eigk}|(y, x)]E[exp{xTirβ + vi + uir + eirp}|(y, x)]

= exp{xTigβ + 1Tµ2 + 1TΣ21 + σ2
e} exp{(xTirβ + 1Tµ2 + 1TΣ21 + σ2

e}
= exp{xTigβ + xTirβ + 21Tµ2 + 1TΣ21 + σ2

e}.
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It follows that

E[yigk|(y, x)]E[yirp|(x, y)] =

[exp{2(xTigβ + 1Tµ2) + 1TΣ21 + σ2
e}]I(g = r)+

exp{xTigβ + xTirβ + 21Tµ2 + 1TΣ21 + σ2
e}]I(g 6= r). (B.17)

we have from (B.16) and (B.17) that

cov(yigk, yirp | l̄i) =

[exp{2(xTigβ + 1Tµ2 + 1TΣ21 + σ2
e)}I(k = p)+

exp{2(xTigβ + 1Tµ2 + 1TΣ21) + σ2
e}I(k 6= p)]I(g = r)+

[exp{xTigβ + xTirβ + 1Tµ3 +
1

2
1TΣ31 + σ2

e}]I(g 6= r)−

[exp{2(xTigβ + 1Tµ2) + 1TΣ21 + σ2
e}]I(g = r)+

exp{xTigβ + xTirβ + 21Tµ2 + 1TΣ21 + σ2
e}]I(g 6= r)

=[(exp{2(xTigβ + 1Tµ2 + 1TΣ21 + σ2
e)} − exp{2(xTigβ + 1Tµ2) + 1TΣ21 + σ2

e})I(k = p)

+(exp{2(xTigβ + 1Tµ2 + 1TΣ21) + σ2
e} − exp{2(xTijβ + 1Tµ2) + 1TΣ21 + σ2

e})I(k 6= p)]I(g = r)

+[exp{xTigβ + xTirβ + 1Tµ3 +
1

2
1TΣ31 + σ2

e} − exp{xTigβ + xTirβ + 21Tµ2 + 1TΣ21 + σ2
e}]I(g 6= r).

(B.18)

Factorizing and adding and subtracting exp{1TΣ21} the expression under the I(g =
r) we have

cov(yigk, yirp | l̄i) =

exp{2(xTigβ + 1Tµ2) + 1TΣ21 + σ2
e}[(exp{1TΣ21 + σ2

e} − exp{1TΣ21})I(k = p)+

(exp{1TΣ21} − 1)]I(g = r)

+[exp{xTigβ + xTirβ + 1Tµ3 +
1

2
1TΣ31 + σ2

e} − exp{xTigβ + xTirβ + 21Tµ2 + 1TΣ21 + σ2
e}]I(j 6= r).

From the previous section note that

E(1Tµ2) =0

var(1Tµ2) =1TVµ21,

where

Vµ2 = var(µ2) =

[
0T

γT

]
V̄ −1
i

[
0 γ

]
.
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Then we have

E[cov(yigk, yirp | l̄i)] =

exp{2(xTigβ + 1TVµ21) + 1TΣ21 + σ2
e}[(exp{1TΣ21 + σ2

e}−
exp{1TΣ21})I(k = p) + (exp{1TΣ21} − 1)]I(g = r)

+[exp{xTigβ + xTirβ + 1TVµ31 +
1

2
1TΣ31 + σ2

e} − exp{xTigβ + xTirβ + 21TVµ21 + 1TΣ21 + σ2
e}]I(g 6= r)

=v21gI(k = p)I(g = r) + v22gI(g = r) + v23grI(g 6= r),

where

v21g = exp{2(xTigβ + 1TVµ21) + 1TΣ21 + σ2
e}(exp{1TΣ21 + σ2

e} − exp{1TΣ21}),
v22g = exp{2(xTigβ + 1TVµ21) + 1TΣ21 + σ2

e}(exp{1TΣ21} − 1),

v23gr = exp{xTigβ + xTirβ + 1TVµ31 +
1

2
1TΣ31 + σ2

e} − exp{xTigβ + xTirβ + 21TVµ21 + 1TΣ21 + σ2
e}.

It follows that

E(V2) =
∑
g∈s̄i

Nig∑
k=1

∑
r∈s̄i

Nir∑
p=1

v21gI(p = k)I(r = g) +
∑
g∈s̄i

Nig∑
k=1

∑
r∈s̄i

Nir∑
p=1

v22gI(r = g)+

∑
g∈s̄i

Nig∑
k=1

∑
r∈s̄i

Nir∑
p=1

v23jrI(r 6= g)

=
∑
g∈s̄i

Nigv21g +
∑
g∈s̄i

N2
igv22g +

∑
g∈s̄i

∑
r∈s̄i

NigNirv23grI(r 6= g). (B.19)

The expression of the third term of (B.1) is given by

C1 =cov

∑
j∈si

∑
k∈s̄ij

yijk,
∑
r∈s̄i

Nir∑
p=1

yirp|(y, x)


=
∑
j∈si

∑
k∈s̄ij

∑
r∈s̄i

Nir∑
p=1

cov(yijk, yirp|(y, x)). (B.20)

The covariance is expressed as follows

cov(yijk, yirp|(y, x)) = E[yijkyirp|(y, x)]− E[yijk|(y, x)]E[yirp|(y, x)].
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Then, note that 
l̄i

2vi
uij
uir

 ∼ N
(

xiβ
0
0
0

 ,


V̄ 2γ α(j) 0
2γT 4σ2

v 0 0
α(j)T 0 σ2

u 0
0T 0 0 σ2

u

). (B.21)

From (B.21), it follows that

E
(2vi

uij
uir

 | l̄i) =

 2γT

α(j)T

0T

 V̄ −1(l̄i − xiβ) ≡ µ4j, (B.22)

and

var
(2vi

uij
uir

 | l̄i) =

4σ2
v 0 0

0 σ2
u 0

0 0 σ2
u

−
 2γT

α(j)T

0T

 V̄ −1
[
2γ α(j) 0

]
≡ Σ4j. (B.23)

Then by referring j ∈ si and r ∈ s̄i it follows

• E[yijkyirp|(y, x)], from (B.22) and (B.23) we have

E[yijkyirp|(y, x)] =

E[exp{xTijβ + xTirβ + 2vi + uij + uir + eijk + eirp}|(y, x)]

= exp{xTijβ + xTirβ + 1Tµ4j +
1

2
1TΣ4j1 + σ2

e}. (B.24)

• E[yijk|(y, x)]E[yirp|(y, x)], from (A.8) and (A.10)

E[yijk|(y, x)]E[yirp|(y, x)] =

exp{xTijβ + 1Tµ1j +
1

2
1TΣ1j1 +

1

2
σ2
e} exp{xTirβ + 1Tµ2 +

1

2
1TΣ21 +

1

2
σ2
e}

= exp{xTijβ + xTirβ + 1T (µ1j + µ2) +
1

2
1T (Σ1j + Σ2)1 + σ2

e}. (B.25)

Then from (B.24) and (B.25) we have

cov(yijk, yirp|l̄i) = exp{xTijβ + xTirβ + 1Tµ4j +
1

2
1TΣ4j1 + σ2

e}−

exp{xTijβ + xTirβ + 1T (µ1j + µ2)+

1

2
1T (Σ1j + Σ2)1 + σ2

e}. (B.26)
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By (B.26) it follows

E[cov(yijk, yirp|l̄i)]

= exp{xTijβ + xTirβ + 1TVµ4j1 +
1

2
1TΣ4j1 + σ2

e}−

exp{xTijβ + xTirβ + 1T (Vµ1j + V µ2)1 +
1

2
1T (Σ1j + Σ2)1 + σ2

e}

=c1jr − c2jr, (B.27)

where

Vµ4j =

 2γT

α(j)T

0T

 V̄ −1
[
2γ α(j) 0

]
,

c1jr = exp{xTijβ + xTirβ + 1TVµ4j1 +
1

2
1TΣ4j1 + σ2

e},

c2jr = exp{xTijβ + xTirβ + 1T (Vµ1j + V µ2) +
1

2
1T (Σ1j + Σ2)1 + σ2

e}.

From (B.27) it follows that

E(C1) =
∑
j∈si

∑
k∈s̄ij

∑
r∈s̄i

Nir∑
p=1

(c1ijr − c2ijr)

=
∑
j∈si

∑
r∈s̄i

(Nij − nij)Nir(c1ijr − c2ijr). (B.28)

Therefore, from (B.1), (B.9), (B.19) and (B.28) we have

M1i =
1

N2
i

[∑
j∈si

(Nij − nij)v11j +
∑
j∈si

(Nij − nij)(Nir − nir)v12j+∑
j∈si

∑
r∈si

(Nij − nij)(Nir − nir)v13jrI(r 6= j)+∑
j∈s̄i

Nijv21j +
∑
j∈s̄i

NijNirv22j +
∑
j∈s̄i

∑
r∈s̄i

NijNirv23jrI(r 6= j)+

2
∑
j∈si

∑
r∈s̄i

(Nij − nij)Nir(c1jr − c2jr)

]
. (B.29)
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Appendix C

MSE of the empirical Bayes
predictor

By definition,

M2i(θ) = E[(Ȳ MMSE
i (θ)− Ȳ MMSE

i (θ̂))2]

=
1

N2
i

E

∑
j∈si

∑
k∈s̄ij

yMMSE
ijk (θ) +

∑
r∈s̄i

Nir∑
k=1

yMMSE
irk (θ)

−
∑
j∈si

∑
k∈s̄ij

yMMSE
ijk (θ̂) +

∑
r∈s̄i

Nir∑
k=1

yMMSE
irk (θ̂)

2

=
1

N2
i

E

∑
j∈si

∑
k∈s̄ij

(yMMSE
ijk (θ)− yMMSE

ijk (θ̂)) +
∑
r∈s̄i

Nir∑
k=1

(yMMSE
irk (θ)− yMMSE

irk (θ̂))

2

=
1

N2
i

E

[∑
j∈si

∑
k∈s̄ij

∑
q∈si

∑
p∈s̄iq

(yMMSE
ijk (θ)− yMMSE

ijk (θ̂))(yMMSE
iqp (θ)− yMMSE

iqp (θ̂))+

2
∑
j∈si

∑
k∈s̄ij

∑
r∈s̄i

Nir∑
p=1

(yMMSE
ijk (θ)− yMMSE

ijk (θ̂))(yMMSE
irp (θ)− yMMSE

irp (θ̂))+

∑
g∈s̄i

Nig∑
k=1

∑
r∈s̄i

Nir∑
p=1

(yMMSE
igk (θ)− yMMSE

igk (θ̂))(yMMSE
irp (θ)− yMMSE

irp (θ̂))

]

=
1

N2
i

∑
j∈si

∑
k∈s̄ij

∑
q∈si

∑
p∈s̄iq

E
[
(yMMSE
ijk (θ)− yMMSE

ijk (θ̂))(yMMSE
iqp (θ)− yMMSE

iqp (θ̂))
]

+

2
1

N2
i

∑
j∈si

∑
k∈s̄ij

∑
r∈s̄i

Nir∑
p=1

E
[
(yMMSE
ijk (θ)− yMMSE

ijk (θ̂))(yMMSE
irp (θ)− yMMSE

irp (θ̂))
]

+

1

N2
i

∑
g∈s̄i

Nig∑
k=1

∑
r∈s̄i

Nir∑
p=1

E
[
(yMMSE
igk (θ)− yMMSE

igk (θ̂))(yMMSE
irp (θ)− yMMSE

irp (θ̂))
]

=
1

N2
i

[
H1 + 2H2 +H3

]
. (C.1)
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The corresponding approximations of those terms in right-hand side of (C.1) are
derived below.
Note that,

(yMMSE
ijk (θ)− yMMSE

ijk (θ̂))(yMMSE
irp (θ)− yMMSE

irp (θ̂)) =

yMMSE
ijk (θ)yMMSE

irp (θ)− yMMSE
ijk (θ)yMMSE

irp (θ̂)− yMMSE
ijk (θ̂)yMMSE

irp (θ) + yMMSE
ijk (θ̂)yMMSE

irp (θ̂).

(C.2)

Now we need to find the approximation of yMMSE
ijk (θ̂). By (A.8) we have

ỹ∗ijk(θ̂) = exp{xTijβ̂ + 1Tµ1j(θ̂) +
1

2
1TΣ1j(θ̂)1 +

1

2
σ̂2
e}

= exp{∆1(θ̂) + Ω1(θ̂)}, (C.3)

where

∆1(θ̂) =1Tµ1j(θ̂)

Ω1(θ̂) =xTijβ̂ +
1

2
(1TΣ1j(θ̂)1 + σ̂2

e).

As ∆1 and Ω1 are functions of θ = (β, σ2
v , σ

2
u, σ

2
e)
T . When its estimate θ̂ is used,

∆1(θ̂) and Ω1(θ̂) can be expanded respectively around ∆1(θ) and Ω1(θ) , by a Taylor
series as

∆1(θ̂) ≈∆1(θ) + (θ̂ − θ)T ∂∆1(θ̂)

∂θ̂

∣∣∣
θ̂=θ

= ∆1(θ) + (θ̂ − θ)T∆∗1(θ)

Ω1(θ̂) ≈Ω1(θ) + (θ̂ − θ)T ∂Ω1(θ̂)

∂θ̂

∣∣∣
θ̂=θ

= Ω1(θ) + (θ̂ − θ)TΩ∗1(θ), (C.4)

where the expressions in ∂∆1(θ̂)

∂θ̂

∣∣∣
θ̂=θ

are calculated as follows

∆∗1(θ) =
∂∆1(θ̂)

∂θ̂

∣∣∣
θ̂=θ

=



∂∆1(θ̂)

∂β̂
(θ)

∂∆1(θ̂)

∂σ̂2
v

(θ)

∂∆1(θ̂)

∂σ̂2
u

(θ)

∂∆1(θ̂)

∂σ̂2
e

(θ)

 = 1T



∂µ1j(θ̂)

∂β̂
(θ)

∂µ1j(θ̂)

∂σ̂2
v

(θ)

∂µ1j(θ̂)

∂σ̂2
u

(θ)

∂µ1j(θ̂)

∂σ̂2
e

(θ)
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with

∂µ1j(θ̂)

∂β̂
(θ) =−

[
α(j)T

γT

]
V̄ −1xi,

∂µ1j(θ̂)

∂σ̂2
v

(θ) =

[
0T

1T

]
V̄ −1(l̄i − xiβ)−

[
α(j)T

γT

]
V̄ −1JV̄ −1(l̄i − xiβ)

=
([0T

1T

]
−
[
α(j)T

γT

]
V̄ −1J

)
V̄ −1(l̄i − xiβ),

∂µ1j(θ̂)

∂σ̂2
u

(θ) =

1Tj

0T

 V̄ −1(l̄i − xiβ)−
[
α(j)T

γT

]
V̄ −1IV̄ −1(l̄i − xiβ)

=
(1Tj

0T

− [α(j)T

γT

]
V̄ −1

)
V̄ −1(l̄i − xiβ),

∂µ1j(θ̂)

∂σ̂2
e

(θ) =−
[
α(j)T

γT

]
V̄ −1DV̄ −1(l̄i − xiβ),

where

1j =



0
...
0
1
0
...
0


(mi×1)

; J =

1 . . . 1
...
1 . . . 1


(mi×mi)

; D =


1
ni1

1
ni2

. . .
1

nimi


(mi×mi)

,

and the expressions in ∂Ω1(θ̂)

∂θ̂

∣∣∣
θ̂=θ

are obtained as follows

Ω∗1(θ) =
∂Ω1(θ̂)

∂θ̂

∣∣∣
θ̂=θ

=



∂Ω1(θ̂)

∂β̂
(θ)

∂Ω1(θ̂)

∂σ̂2
v

(θ)

∂Ω1(θ̂)

∂σ̂2
u

(θ)

∂Ω1(θ̂)

∂σ̂2
e

(θ)

 ,
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with

∂Ω1(θ̂)

∂β̂
(θ) =xTij,

∂Ω1(θ̂)

∂σ̂2
v

(θ) =
1

2
1T
∂Σ1j(θ̂)

∂σ̂2
v

(θ)1 =
1

2
1TΣ

(v)
1j 1,

∂Ω1(θ̂)

∂σ̂2
u

(θ) =
1

2
1T
∂Σ1j(θ̂)

∂σ̂2
u

(θ)1 =
1

2
1TΣ

(u)
1j 1,

∂Ω1(θ̂)

∂σ̂2
e

(θ) =
1

2
1T
∂Σ1j(θ̂)

∂σ̂2
e

(θ)1 +
1

2
=

1

2
1TΣ

(e)
1j 1 +

1

2
,

where

Σ
(v)
1j =

[
0 0
0 1

]
−
[
0T

1T

]
V̄ −1

[
α(j) γ

]
+

[
α(j)T

γT

]
V̄ −1JV̄ −1

[
α(j) γ

]
−
[
α(j)T

γT

]
V̄ −1

[
0 1

]
,

Σ
(u)
1j =

[
1 0
0 0

]
−

1Tj

0T

 V̄ −1
[
α(j) γ

]
+

[
α(j)T

γT

]
V̄ −1IV̄ −1

[
α(j) γ

]
−
[
α(j)T

γT

]
V̄ −1

[
1j 0

]
,

Σ
(e)
1j =

[
α(j)T

γT

]
V̄ −1DV̄ −1

[
α(j) γ

]
.

From (C.3) and (C.4) we have

ỹ∗ijk(θ̂) = exp{xTijβ̂ + 1Tµ1j(θ̂) +
1

2
1TΣ1j(θ̂)1 +

1

2
σ̂2
e}

≈ exp{∆1(θ) + (θ̂ − θ)T∆∗1(θ) + Ω1(θ) + (θ̂ − θ)TΩ∗1(θ)}. (C.5)

Then by (A.10)

ỹ∗∗ijk = exp{xTijβ̂ + 1Tµ2(θ̂) +
1

2
1TΣ2(θ̂)1 +

1

2
σ̂2
e}

= exp{∆2(θ̂) + Ω2(θ̂)}, (C.6)

where

∆2(θ̂) =1Tµ2(θ̂),

Ω2(θ̂) =xTijβ̂ +
1

2
(1TΣ2(θ̂)1 + σ̂2

e).
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Taking into account that ∆2 and Ω2 are functions of θ = (β, σ2
v , σ

2
u, σ

2
e)
T . When its

estimate θ̂ is used, ∆2(θ̂) and Ω2(θ̂) can be expanded respectively around ∆2(θ) and
Ω2(θ) , by a Taylor series as

∆2(θ̂) ≈∆2(θ) + (θ̂ − θ)T ∂∆2(θ̂)

∂θ̂

∣∣∣
θ̂=θ

= ∆2(θ) + (θ̂ − θ)T∆∗2(θ),

Ω2(θ̂) ≈Ω2(θ) + (θ̂ − θ)T ∂Ω2(θ̂)

∂θ̂

∣∣∣
θ̂=θ

= Ω2(θ) + (θ̂ − θ)TΩ∗2(θ), (C.7)

where the expressions in ∂∆2(θ̂)

∂θ̂

∣∣∣
θ̂=θ

are calculated as follows

∆∗2(θ) =
∂∆2(θ̂)

∂θ̂

∣∣∣
θ̂=θ

=



∂∆2(θ̂)

∂β̂
(θ)

∂∆2(θ̂)

∂σ̂2
v

(θ)

∂∆2(θ̂)

∂σ̂2
u

(θ)

∂∆2(θ̂)

∂σ̂2
e

(θ)

 = 1T



∂µ2(θ̂)

∂β̂
(θ)

∂µ2(θ̂)

∂σ̂2
v

(θ)

∂µ2(θ̂)

∂σ̂2
u

(θ)

∂µ2(θ̂)

∂σ̂2
e

(θ)

 ,
with

∂µ2(θ̂)

∂β̂
(θ) =−

[
0T

1T

]
V̄ −1xi,

∂µ2(θ̂)

∂σ̂2
v

(θ) =

[
0T

1T

]
V̄ −1(l̄i − xiβ)−

[
0T

γT

]
V̄ −1JV̄ −1(l̄i − xiβ)

=
([0T

1T

]
−
[

0T

γT

]
V̄ −1J

)
V̄ −1(l̄i − xiβ),

∂µ2(θ̂)

∂σ̂2
u

(θ) =−
[

0T

γT

]
V̄ −1IV̄ −1(l̄i − xiβ),

∂µ2(θ̂)

∂σ̂2
e

(θ) =−
[

0T

γT

]
V̄ −1DV̄ −1(l̄i − xiβ),

and the expressions in ∂Ω2(θ̂)

∂θ̂

∣∣∣
θ̂=θ

are obtained as follows

Ω∗2(θ) =
∂Ω1(θ̂)

∂θ̂

∣∣∣
θ̂=θ

=



∂Ω2(θ̂)

∂β̂
(θ)

∂Ω2(θ̂)

∂σ̂2
v

(θ)

∂Ω2(θ̂)

∂σ̂2
u

(θ)

∂Ω2(θ̂)

∂σ̂2
e

(θ)

 ,
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with

∂Ω2(θ̂)

∂β̂
(θ) =xTij

∂Ω2(θ̂)

∂σ̂2
v

(θ) =
1

2
1T
∂Σ2(θ̂)

∂σ̂2
v

(θ)1 =
1

2
1TΣ

(v)
2 1,

∂Ω2(θ̂)

∂σ̂2
u

(θ) =
1

2
1T
∂Σ2(θ̂)

∂σ̂2
u

(θ)1 =
1

2
1TΣ

(u)
2 1,

∂Ω2(θ̂)

∂σ̂2
e

(θ) =
1

2
1T
∂Σ2(θ̂)

∂σ̂2
e

(θ)1 +
1

2
=

1

2
1TΣ

(e)
2 1 +

1

2
,

where

Σ
(v)
2 =

[
0 0
0 1

]
−
[
0T

1T

]
V̄ −1

[
0 γ

]
+

[
0T

γT

]
V̄ −1JV̄ −1

[
0 γ

]
−
[

0T

γT

]
V̄ −1

[
0 1

]
,

Σ
(u)
2 =

[
1 0
0 0

]
+

[
0T

γT

]
V̄ −1IV̄ −1

[
0 γ

]
,

Σ
(e)
2 =

[
0T

γT

]
V̄ −1DV̄ −1

[
0 γ

]
.

From (C.6) and (C.7) we have

ỹ∗∗ijk(θ̂) = exp{xTijβ̂ + 1Tµ2(θ̂) +
1

2
1TΣ2(θ̂)1 +

1

2
σ̂2
e}

≈ exp{∆2(θ) + (θ̂ − θ)T∆∗2(θ) + Ω2(θ) + (θ̂ − θ)TΩ∗2(θ)}. (C.8)

In the both above cases, the approximation can be represented as follows

∆(θ̂) + Ω(θ̂) ≈∆(θ) + Ω(θ) +
∂∆T

∂θ̂
(θ)(θ̂ − θ) +

∂ωT

∂θ̂
(θ)(θ̂ − θ)

=∆(θ) + Ω(θ) +
(∂∆T

∂β̂
(β) +

∂ΩT

∂β̂
(β)
)

(β̂ − β) +
(∂∆T

∂σ̂
(σ) +

∂ΩT

∂σ̂
(σ)
)

(σ̂ − σ),

(C.9)

where σ = (σ2
v , σ

2
u, σ

2
e)
T .

Considering the expressions from (C.2) and (C.9), we need to calculate the following
expressions that correspond to the terms defined in (C.1):
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• For H1:

ỹ∗ijk(θ)ỹ
∗
iqp(θ̂) = exp{∆(j)

1 (θ) + Ω
(j)
1 (θ) + ∆

(q)
1 (θ̂) + Ω

(q)
1 (θ̂)}

ỹ∗ijk(θ̂)ỹ
∗
iqp(θ̂) = exp{∆(j)

1 (θ̂) + Ω
(j)
1 (θ̂) + ∆

(q)
1 (θ̂) + Ω

(q)
1 (θ̂)}.

• For H2:

ỹ∗ijk(θ)ỹ
∗∗
irp(θ̂) = exp{∆1(θ) + Ω1(θ) + ∆2(θ̂) + Ω2(θ̂)}

ỹ∗ijk(θ̂)ỹ
∗∗
irp(θ̂) = exp{∆1(θ̂) + Ω1(θ̂) + ∆2(θ̂) + Ω2(θ̂)}.

• For H3:

ỹ∗∗igk(θ)ỹ
∗∗
irp(θ̂) = exp{∆(g)

2 (θ) + Ω
(g)
2 (θ) + ∆

(r)
2 (θ̂) + Ω

(r)
2 (θ̂)}

ỹ∗∗igk(θ̂)ỹ
∗∗
irp(θ̂) = exp{∆(g)

2 (θ̂) + Ω
(g)
2 (θ̂) + ∆

(r)
2 (θ̂) + Ω

(r)
2 (θ̂)}.

In continuation we discuss different scenarios for each case

• Case 1:

1 Expressions in H1, i.e j, q ∈ si and j = q

ỹ∗ijk(θ)ỹ
∗
iqp(θ) = exp{2(xTijβ + 1Tµ1j +

1

2
1TΣ1j1 +

1

2
σ2
e)}

= exp{2(∆1(θ) + Ω1(θ))},
ỹ∗ijk(θ)ỹ

∗
iqp(θ̂) = exp{∆(j)

1 (θ) + Ω
(j)
1 (θ) + ∆

(q)
1 (θ̂) + Ω

(q)
1 (θ̂)}

≈ exp{2(∆1(θ) + Ω1(θ)) + (θ̂ − θ)T∆∗1(θ) + (θ̂ − θ)TΩ∗1(θ)}
= exp{2(∆1(θ) + Ω1(θ)) + (β̂ − β)T (∆∗1(β) + Ω∗1(β))+

(σ̂ − σ)T (∆∗1(σ) + Ω∗1(σ))},
ỹ∗ijk(θ̂)ỹ

∗
iqp(θ̂) = exp{∆1(θ̂) + Ω1(θ̂) + ∆1(θ̂) + Ω1(θ̂)}

≈ exp{2(∆1(θ) + Ω1(θ) + (θ̂ − θ)T∆∗1(θ) + (θ̂ − θ)TΩ∗1(θ))}
= exp{2(∆1(θ) + Ω1(θ) + (β̂ − β)T (∆∗1(β) + Ω∗1(β))+

(σ̂ − σ)T (∆∗1(σ) + Ω∗1(σ)))}. (C.10)
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2 Expressions in H1, i.e j, q ∈ si and j 6= q

ỹ∗ijk(θ)ỹ
∗
iqp(θ) = exp{xTijβ + 1Tµ1j +

1

2
1TΣ1j1 +

1

2
σ2
e} exp{xTiqβ + 1Tµ1q +

1

2
1TΣ1q1 +

1

2
σ2
e}

= exp{∆(j)
1 (θ) + Ω

(j)
1 (θ) + ∆

(q)
1 (θ) + Ω

(q)
1 (θ)},

ỹ∗ijk(θ)ỹ
∗
iqp(θ̂) = exp{∆(j)

1 (θ) + Ω
(j)
1 (θ) + ∆

(q)
1 (θ̂) + Ω

(q)
1 (θ̂)}

≈ exp{∆(j)
1 (θ) + Ω

(j)
1 (θ) + ∆

(q)
1 (θ) + Ω

(q)
1 (θ) + (θ̂ − θ)T∆

(q)∗
1 (θ)+

(θ̂ − θ)TΩ
(q)∗
1 (θ)}

= exp{∆(j)
1 (θ) + Ω

(j)
1 (θ) + ∆

(q)
1 (θ) + Ω

(q)
1 (θ)+

(β̂ − β)T (∆
(q)∗
1 (β) + Ω

(q)∗
1 (β))+

(σ̂ − σ)T (∆
(q)∗
1 (σ) + Ω

(q)∗
1 (σ))},

ỹ∗ijk(θ̂)ỹ
∗
iqp(θ̂) = exp{∆(j)

1 (θ̂) + Ω
(j)
1 (θ̂) + ∆

(q)
1 (θ̂) + Ω

(q)
1 (θ̂)}

≈ exp{∆(j)
1 (θ) + Ω

(j)
1 (θ) + (θ̂ − θ)T∆

(j)∗
1 (θ) + (θ̂ − θ)T

Ω
(j)∗
1 (θ) + ∆

(q)
1 (θ) + Ω

(q)
1 (θ) + (θ̂ − θ)T∆

(q)∗
1 (θ) + (θ̂ − θ)TΩ

(q)∗
1 (θ)}

= exp{∆(j)
1 (θ) + Ω

(j)
1 (θ) + (β̂ − β)T (∆

(j)∗
1 (β) + Ω

(j)∗
1 (β))+

(σ̂ − σ)T (∆
(j)∗
1 (σ))+

Ω
(j)∗
1 (σ)) + ∆

(q)
1 (θ) + Ω

(q)
1 (θ) + (β̂ − β)T (∆

(r)∗
1 (β) + Ω

(r)∗
1 (β))+

(σ̂ − σ)T (∆
(q)∗
1 (σ) + Ω

(q)∗
1 (σ))}. (C.11)

• Case 2:

1 Expressions in H2, i.e j ∈ si and r ∈ s̄i

ỹ∗ijk(θ)ỹ
∗∗
irp(θ) = exp{xTijβ + 1Tµ1j

1

2
1TΣ1j1 +

1

2
σ2
e} exp{xTirβ + 1Tµ2

1

2
1TΣ21 +

1

2
σ2
e}

= exp{∆1(θ) + Ω1(θ) + ∆2(θ) + Ω2(θ)},
ỹ∗ijk(θ)ỹ

∗∗
irp(θ̂) = exp{∆1(θ) + Ω1(θ) + ∆2(θ̂) + Ω2(θ̂)}

≈ exp{∆1(θ) + Ω1(θ) + ∆2(θ) + Ω2(θ) + (θ̂ − θ)T∆∗2(θ) + (θ̂ − θ)TΩ∗2(θ)}
= exp{∆1(θ) + Ω1(θ) + ∆2(θ) + Ω2(θ) + (β̂ − β)T (∆∗2(β) + Ω∗2(β))+

(σ̂ − σ)T (∆∗2(σ) + Ω∗2(σ))},
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ỹ∗ijk(θ̂)ỹ
∗∗
irp(θ̂) = exp{∆1(θ̂) + Ω1(θ̂) + ∆2(θ̂) + Ω2(θ̂)}

≈ exp{∆1(θ) + Ω1(θ) + (θ̂ − θ)T∆∗1(θ) + (θ̂ − θ)TΩ∗1(θ) + ∆2(θ) + Ω2(θ)+

(θ̂ − θ)T∆∗2(θ) + (θ̂ − θ)TΩ∗2(θ)}
= exp{∆1(θ) + Ω1(θ) + (β̂ − β)T (∆∗1(β) + Ω∗1(β))+

(σ̂ − σ)T (∆∗1(σ) + Ω∗1(σ))+

∆2(θ) + Ω2(θ) + (β̂ − β)T (∆∗2(β) + Ω∗2(β)) + (σ̂ − σ)T (∆∗2(σ) + Ω∗2(σ))}.
(C.12)

• Case 3:

1 Expressions in H3, i.e g, r ∈ s̄i and g = r

ỹ∗∗igk(θ)ỹ
∗∗
irp(θ) = exp{2(xTigβ + 1Tµ2

1

2
1TΣ21 +

1

2
σ2
e)}

= exp{2(∆2(θ) + Ω2(θ))},
ỹ∗∗igk(θ)ỹ

∗∗
irp(θ̂) = exp{∆(g)

2 (θ) + Ω
(g)
2 (θ) + ∆

(r)
2 (θ̂) + Ω

(r)
2 (θ̂)}

≈ exp{2(∆2(θ) + Ω2(θ)) + (θ̂ − θ)T∆∗2(θ) + (θ̂ − θ)TΩ∗2(θ)}
= exp{2(∆2(θ) + Ω2(θ)) + (β̂ − β)T (∆∗2(β) + Ω∗2(β))+

(σ̂ − σ)T (∆∗2(σ) + Ω∗2(σ))},
ỹ∗∗igk(θ̂)ỹ

∗∗
irp(θ̂) = exp{∆2(θ̂) + Ω2(θ̂) + ∆2(θ̂) + Ω2(θ̂)}

≈ exp{2(∆2(θ) + Ω2(θ) + (θ̂ − θ)T∆∗2(θ) + (θ̂ − θ)TΩ∗2(θ))}
= exp{2(∆2(θ) + Ω2(θ) + (β̂ − β)T (∆∗2(β) + Ω∗2(β))+

(σ̂ − σ)T (∆∗2(σ) + Ω∗2(σ)))}. (C.13)

2 Expressions in H3, i.e g, r ∈ s̄i and g 6= r

ỹ∗∗igk(θ)ỹ
∗∗
irp(θ) = exp{xTigβ + 1Tµ2

1

2
1TΣ21 +

1

2
σ2
e} exp{xTirβ + 1Tµ2

1

2
1TΣ21 +

1

2
σ2
e}

= exp{∆(g)
2 (θ) + Ω

(g)
2 (θ) + ∆

(r)
2 (θ) + Ω

(r)
2 (θ)},
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ỹ∗∗igk(θ)ỹ
∗∗
irp(θ̂) = exp{∆(g)

2 (θ) + Ω
(g)
2 (θ) + ∆

(r)
2 (θ̂) + Ω

(r)
2 (θ̂)}

≈ exp{∆(g)
2 (θ) + Ω

(g)
2 (θ) + ∆

(r)
2 (θ) + Ω

(r)
2 (θ) + (θ̂ − θ)T∆

(r)∗
2 (θ)+

(θ̂ − θ)TΩ
(r)∗
2 (θ)}

= exp{∆(g)
2 (θ) + Ω

(g)
2 (θ) + ∆

(r)
2 (θ) + Ω

(r)
2 (θ) + (β̂ − β)T (∆

(r)∗
2 (β) + Ω

(r)∗
2 (β))

+ (σ̂ − σ)T (∆
(r)∗
2 (σ) + Ω

(r)∗
2 (σ))},

ỹ∗∗igk(θ̂)ỹ
∗∗
irp(θ̂) = exp{∆(g)

2 (θ̂) + Ω
(g)
2 (θ̂) + ∆

(r)
2 (θ̂) + Ω

(r)
2 (θ̂)}

≈ exp{∆(g)
2 (θ) + Ω

(g)
2 (θ) + (θ̂ − θ)T∆

(g)∗
2 (θ) + (θ̂ − θ)TΩ

(g)∗
2 (θ)+

∆
(r)
2 (θ) + Ω

(r)
2 (θ) + (θ̂ − θ)T∆

(r)∗
2 (θ) + (θ̂ − θ)TΩ

(r)∗
2 (θ)}

= exp{∆(g)
2 (θ) + Ω

(g)
2 (θ) + (β̂ − β)T (∆

(g)∗
2 (β) + Ω

(g)∗
2 (β))+

(σ̂ − σ)T (∆
(g)∗
2 (σ)) + Ω

(g)∗
2 (σ) + ∆

(r)
2 (θ) + Ω

(r)
2 (θ)+

(β̂ − β)T (∆
(r)∗
2 (β) + Ω

(r)∗
2 (β)) + (σ̂ − σ)T (∆

(r)∗
2 (σ) + Ω

(r)∗
2 (σ))}.

(C.14)

The following step is to calculate the expected value for the above expressions. Let

δ1j ≡∆∗1(β) + Ω∗1(β) = xTij − 1T
[
α(j)T

γT

]
V̄ −1xi,

ρ1j ≡∆∗1(σ) + Ω∗1(σ) =
[
a1j b1j c1j

]T
,

where

a1j =1T
([0T

1T

]
−
[
α(j)T

γT

]
V̄ −1J

)
V̄ −1(l̄i − xiβ) +

1

2
1TΣ

(v)
1j 1,

b1j =1T
([1Tj

0T

]
−
[
α(j)T

γT

]
V̄ −1

)
V̄ −1(l̄i − xiβ) +

1

2
1TΣ

(u)
1j 1,

c1j =− 1T
[
α(j)T

γT

]
V̄ −1DV̄ −1(l̄i − xiβ) +

1

2
1TΣ

(e)
1j 1 +

1

2
.

Assuming that β̂ and σ̂ are unbiased estimators of β and σ respectively (Rao, 2003,
chap.6), it follows that

E[δT1j(β̂ − β)] =0

E[ρT1j(σ̂ − σ)] =0,
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and

E[∆1(θ̂) + Ω1(θ̂)] =Ω1(θ)

Φ1(θ) ≡var[∆1(θ̂) + Ω1(θ̂)]

=var(∆1(θ)) + δT1jvar(β̂)δ1j + E[ρ1j(σ̂ − σ)]2

=1TVµ1j1 + λ1j

where

Vµ1j =1T
[
α(j)T

γT

]
V̄ −1

[
α(j) γ

]
1

λ1j =δT1jvar(β̂)δ1j + trace[E(ρ1jρ
T
1j)var(σ̂)].

The last term in λ1j is calculated using E(wtu)2 = trace[E(wwT )E(uTu)], where w

and u are random vectors. var(β̂) and var(σ̂) are the asymptotic covariance matrices
of the estimators, which are obtained from the inverse of the Fisher Information
matrix under the REML procedure. then we have

∆1(θ̂) + Ω1(θ̂) ∼ N(Ω1(θ),Φ1(θ)). (C.15)

Now,

• From case 1

1 Expressions in H1, i.e j, q ∈ si and j = q

E[ỹ∗ijk(θ)ỹ
∗
iqp(θ)] = exp{2Ω1(θ) +

1

2
4var(∆1(θ))}

= exp{2(Ω1(θ) + 1TVµ1j1)}

E[ỹ∗ijk(θ)ỹ
∗
iqp(θ̂)] = exp{2Ω1(θ) +

1

2
ϕ1(θ)}

E[ỹ∗ijk(θ̂)ỹ
∗
iqp(θ̂)] = exp{2(Ω1(θ) + Φ1(θ))}, (C.16)

where

ϕ1(θ) = 4var(∆1(θ)) + λ1j.

Then

E[ỹ∗ijk(θ)ỹ
∗
iqp(θ)]− 2E[ỹ∗ijk(θ)ỹ

∗
iqp(θ̂)] + E[ỹ∗ijk(θ̂)ỹ

∗
iqp(θ̂)] =

exp{2(Ω1(θ) + 1TVµ1j1)} − 2 exp{2Ω1(θ) +
1

2
ϕ1(θ)}+ exp{2(Ω1(θ) + Φ1(θ))} ≡ h1ij.

(C.17)



APPENDIX C. MSE OF THE EMPIRICAL BAYES PREDICTOR 100

2 Expressions in H1, i.e j, q ∈ si and j 6= q

E[ỹ∗ijk(θ)ỹ
∗
iqp(θ)] = exp{Ω(j)

1 (θ) + Ω
(q)
1 (θ) +

1

2
1T (Vµ1j + Vµ1q)1}

E[ỹ∗ijk(θ)ỹ
∗
iqp(θ̂)] = exp{Ω(j)

1 (θ) + Ω
(q)
1 (θ) +

1

2
(1TVµ1j1 + Φ

(q)
1 (θ))}

E[ỹ∗ijk(θ̂)ỹ
∗
iqp(θ̂)] = exp{Ω(j)

1 (θ) + Ω
(q)
1 (θ) +

1

2
(Φ

(j)
1 (θ) + Φ

(q)
1 (θ))}. (C.18)

Then

E[ỹ∗ijk(θ)ỹ
∗
iqp(θ)]− E[ỹ∗ijk(θ)ỹ

∗
iqp(θ̂)]− E[ỹ∗iqp(θ)ỹ

∗
ijk(θ̂)] + E[ỹ∗ijk(θ̂)ỹ

∗
iqp(θ̂)] =

exp{Ω(j)
1 (θ) + Ω

(q)
1 (θ) +

1

2
1T (Vµ1j + Vµ1q)1}−

exp{Ω(j)
1 (θ) + Ω

(q)
1 (θ) +

1

2
(1TVµ1j1 + Φ

(q)
1 (θ))}−

exp{Ω(j)
1 (θ) + Ω

(q)
1 (θ) +

1

2
(1TVµ1q1 + Φ

(j)
1 (θ))}+

exp{Ω(j)
1 (θ) + Ω

(q)
1 (θ) +

1

2
(Φ

(j)
1 (θ) + Φ

(q)
1 (θ))}

= exp{Ω(j)
1 (θ) + Ω

(q)
1 (θ)}[exp{1

2
1T (Vµ1j + Vµ1q)1} − exp{1

2
(1TVµ1j1 + Φ

(q)
1 (θ))}−

exp{1

2
(1TVµ1q1 + Φ

(j)
1 (θ))}+ exp{1

2
(Φ

(j)
1 (θ) + Φ

(q)
1 (θ))}] ≡ h1ijq.

(C.19)

Then from (C.17) and (C.19) it follows that

H1 =
∑
j∈si

(Nij − nij)2h1ij +
∑
j∈si

∑
q∈si

(Nij − nij)(Niq − niq)h1ijqI(q 6= j). (C.20)

• From case 2

1 Expressions in H2, i.e j ∈ si and r ∈ s̄i

E[ỹ∗ijk(θ)ỹ
∗∗
irp(θ)] = exp{Ω1(θ) + Ω2(θ) +

1

2
1T (Vµ1j + Vµ2)1}

E[ỹ∗ijk(θ)ỹ
∗∗
irp(θ̂)] = exp{Ω1(θ) + Ω2(θ) +

1

2
(1TVµ1j1 + Φ2(θ))}

E[ỹ∗ijk(θ̂)ỹ
∗∗
irp(θ̂)] = exp{Ω1(θ) + Ω2(θ) +

1

2
(Φ1(θ) + Φ2(θ))}. (C.21)
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Then

E[ỹ∗ijk(θ)ỹ
∗∗
irp(θ)]− E[ỹ∗ijk(θ)ỹ

∗∗
irp(θ̂)]− E[ỹ∗ijk(θ)ỹ

∗∗
irp(θ̂)] + E[ỹ∗ijk(θ̂)ỹ

∗∗
irp(θ̂)] =

exp{Ω1(θ) + Ω2(θ) +
1

2
1T (Vµ1j + Vµ2)1} − exp{Ω1(θ) + Ω2(θ) +

1

2
(1TVµ1j1 + Φ2(θ))}−

exp{Ω1(θ) + Ω2(θ) +
1

2
(1TVµ21 + Φ1(θ))}+ exp{Ω1(θ) + Ω2(θ) +

1

2
(Φ1(θ) + Φ2(θ))}

= exp{Ω1(θ) + Ω2(θ)}[exp{1

2
1T (Vµ1j + Vµ2)1} − exp{1

2
(1TVµ1j1 + Φ2(θ))}−

exp{1

2
(1TVµ21 + Φ1(θ))}+ exp{1

2
(Φ1(θ) + Φ2(θ))}] ≡ h2ijr. (C.22)

Then from (C.22) it follows

H2 =
∑
j∈si

∑
r∈s̄i

(Nij−nij
)Nirh2ijr. (C.23)

• From case 3

1 Expressions in H3, i.e g, r ∈ s̄i and g = r

E[ỹ∗∗igk(θ)ỹ
∗∗
irp(θ)] = exp{2(Ω2(θ) + 1TVµ21)}

E[ỹ∗∗igk(θ)ỹ
∗∗
irp(θ̂)] = exp{2Ω2(θ) +

1

2
ϕ2(θ)}

E[ỹ∗∗igk(θ̂)ỹ
∗∗
irp(θ̂)] = exp{2(Ω2(θ) + Φ2(θ))}, (C.24)

where

ϕ2(θ) =4var(∆2(θ)) + λ2

λ2 =δT2 var(β̂)δ2 + trace[E(ρ2ρ
T
2 )var(σ̂)]

δT2 =∆∗2(β) + Ω∗2(β)

ρT2 =∆∗2(σ) + Ω∗2(σ) =
[
a2 b2 c2

]T
E[∆2(θ̂) + Ω2(θ̂)] =Ω2(θ)

Φ2(θ) ≡var[∆2(θ̂) + Ω2(θ̂)]

=var(∆2(θ̂)) + δT2 var(β̂)δ2 + E[ρ2(σ̂ − σ)]2

=1TVµ21 + λ2,
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with

a2 =1T
([0T

1T

]
−
[

0T

γT

]
V̄ −1J

)
V̄ −1(l̄i − xiβ) +

1

2
1TΣ

(v)
2 1

b2 =− 1T
[

0T

γT

]
V̄ −1IV̄ −1(l̄i − xiβ) +

1

2
1TΣ

(u)
2 1

c2 =− 1T
[

0T

γT

]
V̄ −1DV̄ −1(l̄i − xiβ) +

1

2
1TΣ

(e)
2 1 +

1

2
.

Then

E[ỹ∗∗igk(θ)ỹ
∗∗
irp(θ)]− 2E[ỹ∗∗igk(θ)ỹ

∗∗
irp(θ̂)] + E[ỹ∗∗igk(θ̂)ỹ

∗∗
irp(θ̂)] =

exp{2(Ω2(θ) + 1TVµ21)} − 2 exp{2Ω2(θ) +
1

2
ϕ2(θ)}+ exp{2(Ω2(θ) + Φ2(θ))} ≡ h3ig.

(C.25)

2 Expressions in H3, i.e g, r ∈ s̄i and g 6= r

E[ỹ∗∗igk(θ)ỹ
∗∗
irp(θ)] = exp{Ω(g)

2 (θ) + Ω
(r)
2 (θ) +

1

2
1T (Vµ2g + Vµ2r)1}

E[ỹ∗∗igk(θ)ỹ
∗∗
irp(θ̂)] = exp{Ω(g)

2 (θ) + Ω
(r)
2 (θ) +

1

2
(1TVµ2g1 + Φ

(r)
2 (θ))}

E[ỹ∗∗igk(θ̂)ỹ
∗∗
irp(θ̂)] = exp{Ω(g)

2 (θ) + Ω
(r)
2 (θ) +

1

2
(Φ

(g)
2 (θ) + Φ

(r)
2 (θ))}. (C.26)

Then

E[ỹ∗∗igk(θ)ỹ
∗∗
irp(θ)]− E[ỹ∗∗igk(θ)ỹ

∗∗
irp(θ̂)]− E[ỹ∗∗irp(θ)ỹ

∗∗
igk(θ̂)] + E[ỹ∗∗igk(θ̂)ỹ

∗∗
irp(θ̂)] =

exp{Ω(g)
2 (θ) + Ω

(r)
2 (θ) +

1

2
1T (Vµ2g + Vµ2r)1}−

exp{Ω(g)
2 (θ) + Ω

(r)
2 (θ) +

1

2
(1TVµ2g1 + Φ

(r)
2 (θ))}−

exp{Ω(g)
2 (θ) + Ω

(r)
2 (θ) +

1

2
(1TVµ2r1 + Φ

(g)
2 (θ))}+

exp{Ω(g)
2 (θ) + Ω

(r)
2 (θ) +

1

2
(Φ

(g)
2 (θ) + Φ

(r)
2 (θ))}

= exp{Ω(g)
2 (θ) + Ω

(r)
2 (θ)}[exp{1

2
1T (Vµ2g + Vµ2r)1} − exp{1

2
(1TVµ2g1 + Φ

(r)
2 (θ))}−

exp{1

2
(1TVµ2r1 + Φ

(g)
2 (θ))}+ exp{1

2
(Φ

(g)
2 (θ) + Φ

(r)
2 (θ))}] ≡ h3igr.

(C.27)
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Then from (C.25) and (C.27) it follows

H3 =
∑
g∈s̄i

N2
igh3ig +

∑
g∈s̄i

∑
r∈s̄i

NigNirh3igrI(r 6= g). (C.28)

Then substituting the expressions (C.20), (C.23) and (C.28) into (C.1) we get

M2i ≈
1

N2
i

[∑
j∈si

(Nij − nij)2h1ij +
∑
j∈si

∑
q∈si

(Nij − nij)(Niq − niq)h1ijqI(q 6= j)+

2
∑
j∈si

∑
r∈s̄i

(Nij−nij
)Nirh2ijr +

∑
g∈s̄i

N2
igh3ig +

∑
g∈s̄i

∑
r∈s̄i

NigNirh3igrI(r 6= g)

]
.

(C.29)



Appendix D

Double bootstrap for bias
correction

Hall and Maiti (2006) proves that 2B1i−B2i is an unbiased estimator for MSE(θ̂i),
with θ̂i being a EBLUP under the traditional small area models. In this settings, we
show that this estimator is a second-order unbiased for the estimator Ȳ EB.BCP

i under
the proposed model. Given the data Y = (Y1, . . . , Ym) and the vector parameter θ,
the MSE of the predictor is given by

Mi(θ) = MSE(Ȳ EB.BCP
i ) = Mi1(θ) +Mi2(θ), (D.1)

where
M1i(θ) = Eθ[(Ȳi− ˆ̄Y MMSE

i )2] is the leading term and M2i(θ) = Eθ[(
ˆ̄Y MMSE
i − ˆ̄Y EB

i )2].

Stage 1 : After estimating θ by θ̂ from the data, we use θ̂ and the model to generate
Y (b1), b1 = 1, . . . , B1. Then, we fit the model with data {(X, Y b1)} and we

compute Ȳ
∗(b1)
i , θ̂∗(b1) and Ȳ

EB.BCP∗(b1)
i .

Now following (D.1), we have

Mi(θ̂) = Eθ̂[(Ȳ
(b1)
i − Ȳ EB.BCP (b1)

i )2] = Mi1(θ̂) +Mi2(θ̂).

As Hall and Maiti (2006) has pointed out,

Eθ(Mi1(θ̂)) = Mi1(θ) + bi(θ, (D.2)

and the bias, bi, to estimate is expected to be of the same order as Mi2.
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Defining

Bi1 =
1

B1

B1∑
b1=1

[(Ȳ
∗(b1)
i − Ȳ EB.BCP∗(b1)

i )2],

it gives us

Eθ̂(Bi1) =Eθ̂[(Ȳ
(b1)
i − Ȳ EB.BCP (b1)

i )2] = Mi(θ̂)

=Mi1(θ̂) +Mi2(θ̂). (D.3)

Stage 2 : Now, from the model and θ̂(b1) we generate Y b2(b1), b2 = 1, . . . , B2. We
fit the model with data {(X, Y b2(b1))} and we compute Ȳ

∗∗b2(b1)
i , θ̂b2(b1) and

Ȳ
EB.BCP∗∗(b2(b1))
i .

Then, we define

Bi2 =
1

B1

B1∑
b1=1

1

B2

B2∑
b2=1

[(Ȳ
∗∗b2(b1)
i − Ȳ EB.BCP∗∗(b2(b1))

i )2].

It follows that

Eθ̂(Bi2) =Eθ̂

[
1

B1

B1∑
b1=1

1

B2

B2∑
b2=1

[(Ȳ
b2(b1)
i − Ȳ EB.BCP (b2(b1))

i )2]

]

=Eθ̂

[
1

B1

B1∑
b1=1

Eθ̂(b1) [(Ȳ
b2(b1)
i − Ȳ EB.BCP (b2(b1))

i )2]

]
, (by D.3)

=Eθ̂

[
1

B1

B1∑
b1=1

Mi(θ̂
(b1))

]
=Eθ̂[Mi(θ̂

(b1))], (by taking the expected value on the mean)

=Eθ̂[Mi1(θ̂(b1)) +Mi2(θ̂(b1))]

=Mi1(θ̂) + bi(θ̂) +Mi2(θ̂), (by D.2).

Therefore,

Eθ(2Bi1) =2(Mi1(θ) + bi(θ) +Mi2(θ))

Eθ(Bi2) =(Mi1(θ) + bi(θ)) + bi(θ) +Mi2(θ),

and it follows that

Eθ(2Bi1 −Bi2) = Mi1(θ) +Mi2(θ) = Mi(θ).

Which proves that 2Bi1−Bi2 is a second-order unbiased estimator ofMSE(Ȳ EB.BCP
i ).



Appendix E

Numerical tables corresponding to
the case σ2v = 0.05

This section presents the tables with the numerical values corresponding to the re-
alization of the simulation experiments in the case σ2

v = 0.05 and varying the values
of σ2

u. The emphasize was put on the behavior of EB predictors with respect to the
population quantities.
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V = 0.05107

y.pop y.pred mse.naive mse.1bbc mse.1bc
1 199.48 187.58 41.79 30.84 12.42
2 186.47 206.96 41.97 30.97 13.67
3 215.49 223.70 42.34 31.24 12.24
4 167.17 174.73 41.87 30.90 12.66
5 257.33 256.27 40.54 29.95 12.40
6 136.41 132.40 40.86 30.18 12.29
7 222.78 219.66 41.97 30.97 13.12
8 293.21 278.07 41.32 30.51 13.09
9 189.09 172.09 43.07 31.76 13.70

10 220.77 213.70 40.94 30.23 13.03
11 275.77 256.81 43.86 32.33 12.81
12 209.07 207.44 41.27 30.47 12.86
13 228.27 229.47 41.74 30.81 14.24
14 233.48 228.61 41.92 30.93 12.63
15 162.07 177.93 42.16 31.10 12.60
16 185.38 168.60 42.58 31.39 12.57
17 201.60 173.37 41.71 30.77 12.37
18 188.80 201.02 41.02 30.27 11.94
19 213.57 224.88 42.70 31.47 13.06
20 153.97 149.04 41.94 30.92 12.74
21 277.73 255.78 42.22 31.12 12.39
22 164.10 172.40 41.64 30.69 13.51
23 156.03 159.32 40.31 29.74 12.35
24 223.94 196.03 42.02 30.97 12.75
25 281.37 238.18 39.91 29.45 12.02
26 220.43 224.46 40.60 29.93 13.23
27 134.45 149.25 43.35 31.89 13.60
28 184.22 179.44 41.92 30.85 12.50
29 254.94 233.55 41.42 30.50 12.72
30 203.11 207.39 42.01 30.90 12.72

Table E.1: Population, predictor, and MSE quantities for σ2
v = 0.05 and σ2

u = 0.05
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y.pop y.pred mse.naive mse.1bbc mse.1bc
1 200.96 185.37 42.00 28.48 17.40
2 189.57 218.03 42.14 28.59 19.00
3 222.82 231.58 42.47 28.79 16.92
4 167.59 180.67 42.02 28.52 17.68
5 267.34 261.09 40.74 27.73 17.40
6 138.59 136.50 41.03 27.87 17.34
7 234.99 229.24 42.08 28.56 18.55
8 302.19 278.23 41.44 28.17 18.52
9 195.81 175.66 43.08 29.21 18.90

10 223.26 212.37 41.06 27.93 18.08
11 281.51 254.09 43.81 29.68 17.83
12 211.47 209.05 41.34 28.09 18.04
13 237.09 237.33 41.78 28.38 19.86
14 240.73 234.41 41.94 28.47 17.78
15 164.55 187.15 42.15 28.61 17.43
16 190.62 171.06 42.53 28.84 17.66
17 206.13 169.47 41.69 28.31 17.16
18 191.55 210.45 41.02 27.88 16.62
19 222.95 236.12 42.58 28.86 18.07
20 159.71 155.26 41.85 28.39 17.71
21 285.63 251.80 42.13 28.57 17.31
22 166.52 179.75 41.54 28.17 18.75
23 161.60 166.84 40.28 27.35 17.21
24 225.89 189.46 41.90 28.41 17.52
25 290.13 227.86 39.90 27.13 16.65
26 225.92 231.23 40.52 27.50 18.46
27 137.82 161.40 43.09 29.13 19.01
28 191.40 185.03 41.71 28.20 17.60
29 263.37 232.14 41.25 27.92 17.67
30 208.95 217.58 41.78 28.23 17.59

Table E.2: Population, predictor, and MSE quantities for σ2
v = 0.05 and σ2

u = 0.1
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y.pop y.pred mse.naive mse.1bbc mse.1bc
1 203.99 185.93 42.77 27.23 21.37
2 193.30 227.35 42.90 27.36 23.14
3 230.14 238.16 43.18 27.49 20.63
4 168.96 186.77 42.76 27.30 21.62
5 276.43 265.29 41.50 26.61 21.37
6 141.02 141.43 41.75 26.65 21.39
7 246.09 237.41 42.78 27.30 22.87
8 311.04 279.46 42.14 26.98 22.86
9 202.38 180.16 43.71 27.87 22.95

10 226.39 213.06 41.77 26.76 21.97
11 287.91 253.94 44.41 28.28 21.80
12 214.15 211.55 41.99 26.86 22.10
13 244.95 243.68 42.41 27.14 24.23
14 247.37 239.58 42.56 27.20 21.88
15 167.89 195.29 42.75 27.30 21.22
16 195.72 174.76 43.10 27.49 21.69
17 211.29 168.99 42.29 27.04 20.89
18 194.85 218.73 41.63 26.66 20.28
19 232.04 245.19 43.12 27.50 21.96
20 165.33 161.70 42.40 27.06 21.58
21 293.75 250.82 42.67 27.25 21.18
22 169.29 186.47 42.07 26.83 22.81
23 166.85 173.81 40.84 26.10 21.06
24 228.81 187.12 42.42 27.06 21.21
25 298.91 222.62 40.48 25.95 20.28
26 231.48 236.89 41.06 26.24 22.54
27 141.46 172.23 43.53 27.68 23.20
28 198.47 190.52 42.16 26.78 21.65
29 272.43 232.74 41.72 26.54 21.54
30 214.70 226.26 42.21 26.79 21.41

Table E.3: Population, predictor, and MSE quantities for σ2
v = 0.05 and σ2

u = 0.15
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y.pop y.pred mse.naive mse.1bbc mse.1bc
1 207.88 187.82 43.89 26.71 24.87
2 197.42 235.84 44.02 26.87 26.72
3 237.57 244.21 44.26 26.92 23.91
4 170.87 192.92 43.86 26.81 25.07
5 285.12 269.54 42.61 26.20 24.89
6 143.58 146.63 42.82 26.14 24.96
7 256.74 245.01 43.85 26.77 26.65
8 319.93 281.72 43.20 26.52 26.66
9 208.96 185.02 44.73 27.31 26.46

10 229.86 214.86 42.83 26.34 25.31
11 294.74 255.29 45.41 27.68 25.26
12 216.98 214.56 43.01 26.37 25.64
13 252.34 249.42 43.43 26.65 28.02
14 253.71 244.61 43.56 26.67 25.49
15 171.74 202.80 43.74 26.75 24.52
16 200.80 178.97 44.07 26.92 25.23
17 216.90 170.12 43.27 26.51 24.12
18 198.50 226.50 42.61 26.19 23.46
19 241.10 253.27 44.05 26.92 25.32
20 170.99 168.11 43.33 26.49 24.93
21 302.10 251.67 43.62 26.71 24.54
22 172.27 192.79 42.98 26.25 26.29
23 171.99 180.39 41.77 25.58 24.44
24 232.24 186.83 43.34 26.50 24.38
25 307.82 220.08 41.44 25.51 23.45
26 237.11 242.17 41.98 25.71 26.07
27 145.33 182.22 44.40 27.06 26.80
28 205.62 195.92 43.02 26.12 25.20
29 282.04 234.54 42.58 25.94 24.89
30 220.46 234.25 43.05 26.13 24.72

Table E.4: Population, predictor, and MSE quantities for σ2
v = 0.05 and σ2

u = 0.2



Appendix F

Simulation results

In this appendix we present table with the numerical values corresponding to the
realization of the simulation results described in section 5.8.2
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pop.c pred.c syth.c msq.naive msq.1bc msq.dbc msq.syth msq.2bt
1 209.19 208.08 185.97 7.94 7.76 7.45 8.55 5.83
2 233.18 259.96 189.13 7.97 7.79 7.48 8.58 5.59
3 168.18 180.38 184.88 7.92 7.73 7.41 8.82 6.40
4 239.08 219.52 190.00 8.00 7.80 7.47 9.10 6.67
5 201.82 222.64 182.65 7.88 7.68 7.36 8.39 6.06
6 211.86 214.57 184.77 7.94 7.75 7.41 8.71 5.98
7 235.04 240.75 186.56 7.97 7.76 7.38 9.39 6.40
8 222.30 198.27 183.77 7.94 7.74 7.37 8.63 6.07
9 179.93 172.02 181.45 7.84 7.64 7.31 7.63 5.42

10 253.82 258.58 182.80 7.88 7.68 7.32 8.07 4.98
11 220.81 201.85 182.34 7.86 7.64 7.25 8.45 5.61
12 230.68 227.46 184.97 7.92 7.71 7.33 8.70 6.79
13 198.44 195.93 181.67 7.87 7.65 7.27 7.89 5.45
14 202.41 205.43 185.18 7.95 7.73 7.31 8.74 6.22
15 191.09 200.50 182.51 7.84 7.62 7.22 8.17 5.08
16 210.28 214.94 179.19 7.79 7.56 7.14 7.77 6.12
17 225.22 215.58 180.14 7.81 7.59 7.19 8.20 6.04
18 253.73 241.24 177.56 7.76 7.52 7.09 7.80 5.12
19 193.95 214.86 182.76 7.84 7.60 7.15 9.00 6.30
20 177.18 173.70 181.78 7.82 7.59 7.15 8.24 5.90
21 230.82 240.50 179.12 7.77 7.52 7.07 7.29 5.83
22 211.06 219.68 178.79 7.80 7.55 7.07 7.89 5.21
23 214.24 189.86 183.18 7.85 7.60 7.14 8.34 5.54
24 224.22 227.68 180.36 7.81 7.56 7.08 9.15 6.59
25 224.13 226.66 179.04 7.76 7.51 7.04 8.15 5.74
26 200.58 200.90 182.43 7.84 7.57 7.07 7.94 5.37
27 180.10 177.61 179.98 7.80 7.54 7.04 8.08 5.58
28 238.29 257.83 182.32 7.85 7.58 7.06 9.52 7.35
29 189.68 190.83 177.66 7.76 7.49 6.99 8.12 5.29
30 196.11 189.99 178.39 7.78 7.50 6.99 8.29 6.15

Table F.1: Population, EB predictor, Synthetic estimator and MSE quantities for
σ2
v = 0.05 and σ2

u = 0.2
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