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Abstract We consider matching markets at a senior level, where workers are assi-
gned to firms at an unstable matching—the status-quo—which might not be Pareto
efficient. It might also be that none of the matchings Pareto superior to the status-quo
are Core stable. We propose two weakenings of Core stability: status-quo stability and
weakened stability, and the respective mechanisms which lead any status-quo to mat-
chings meeting the stability requirements above mentioned. The first one is inspired
by the Top trading cycle and Deferred Acceptance procedures, the other one belongs
to the family of Branch and Bound algorithms. The last procedure finds a core stable
matching in many-to-one markets whenever it exists, dispensing with the assumption
of substitutability.
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370 D. Cantala, F. Sánchez Sánchez

1 Introduction

1.1 Motivation

The report by Roth (2002) leads to a non-ambiguous conclusion: matching institutions
should provide core stable outcomes.1 While in theoretical settings the normative
appeal of the core yields from its characterization, the argument, here, is factual.
Specifically, clearinghouses that produce core stable outcomes survive, others do not.
In our view, the relevance of core stability for clearinghouses is partly tautological: a
core stable outcome is robust to attempts of self-reassignment by coalitions of agents.
Otherwise, groups of agents would have good reasons to oppose the outcome proposed
by the central institution for their freedom to engage in economic activities. Thus,
clearinghouses which design core stable outcomes make them easier to enforce.

Nevertheless, inefficiencies might prevent decentralized labor markets from rea-
ching core stability. Among others, the agenda of offers and acceptances may bias the
assignment of agents; a worker might accept an offer by a firm and, once committed,
receive the offer of a preferred firm she cannot accept anymore. One might also think
about changes in the preferences of agents. The adoption of centralized mechanisms
in matching markets at a junior level allows to tackle these inefficiencies.

These are not the only difficulties experienced by decentralized markets at a senior
level. Namely, markets where agents are matched to one another, and these matchings
are disrupted by changes in the population of agents. The analysis is pioneered by Blum
et al. (1997). Cantala (2004) observes two features that explain why instability might
be persistent in those markets, as well as Pareto inefficiency: (1) in the case where
workers do not have tenure, the market reaches stability again only if the disruption is
the opening of positions and retirement of workers and firms make offers; (2) dynamics
of offers might not find existing stable matchings.

We consider matching markets at a senior level, where workers and firms are mat-
ched to one another at a status-quo matching. The status-quo might be neither stable
nor efficient. We elaborate two approaches—solution concepts and the respective
mechanisms—that lead the market to a Pareto improvement.

1.2 Features of the problem

Our analysis is restricted in the sense that we guarantee to all agents in the market
a match at least as preferred as the status-quo. The requirement is natural for senior
workers who might have a protective status. We think of senior professors holding a
tenure. This right to stay permanently in a job also ensures that any job switch will be
for a preferred position. Assuming, however, that both sides of the market can enforce
the status-quo unilaterally would be too strong an assumption. Our approach, instead,
is motivated by the centralized nature of the problem: guaranteeing the status-quo
is an incentive device for agents to take part in the mechanisms, comparable to the
participation constraint in the contract theory literature.

1 See Roth and Sotomayor (1990) for a complete introduction to matching markets.
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Welfare and stability in senior matching markets 371

Suppose that the set of matchings Pareto superior to the status-quo is non empty, is
one of those matchings core stable? The answer is negative, as shown in Example 1.

Example 1 Consider the following market with three firms, f1, f2, and f3, and three
workers, w1, w2, and w3, where preferences are given by the following profile

� f1 � f2 � f3 �w1 �w2 �w3

w3 w1 w1 and f3 f3 f1
w1 w2 w2 f2 f2 f3

w3 f1

.

Suppose that the status-quo is

µ0 =
(

f1 f2 f3
w1 w2 w3

)
.

The only matching Pareto superior to µ0 is

µ =
(

f1 f2 f3
w3 w1 w2

)
,

which is blocked by ( f3, w1).

Hence, we are restricted to looking for core consistent procedures, namely those
which select a core stable matching whenever it exists.

1.3 On manipulability

Alcalde and Barberà (1994) extend a result by Roth (1982) and show that there is
no matching rule that is strategy-proof, efficient and individually rational. The nega-
tive result applies to our approach since they deal with the particular case where the
status-quo is the empty matching, namely it is such that all agents are unmatched. We
believe, however, that clearinghouses should not worry so much about the negative
result. Dubins and Freedman (1981) and Roth (1982, 1984) consider markets where
preferences are strict and show that mechanisms which select the optimal stable mat-
ching for one side of the market is strategy-proof for this side of the market. Demange
et al. (1986) establish a general result, when preferences might be not-strict and, thus,
the optimal stable matching defined above may not exist. Strategic questions for the
other side of the market are analyzed in Roth (1982, 1984) and Gale and Sotomayor
(1985). More recently and specifically about the DA algorithm, Ehlers (2004) consi-
ders that workers assign a probability to be matched to desirable firms. In this setting,
manipulating seems to be a very sophisticated behavior.

Our issue is also related to the literature on a one-sided assignment when agents
own property rights, which is comparable to holding a tenure. While in these markets
there is conflict between equal treatment of equals, Pareto optimality and strategy-
proofness (Zhou 1990), there is literature, following Shapley and Scarf (1974) and
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their Top trading cycle procedure, where the authors show that it is possible to combine
core stability and group-strategy proofness (Roth 1982; Ma 1994; Svenson 1999; Bird
1984; Moulin 1995; Abdulkadiroğly and Sönmez 1998; Abdulkadiroğly and Sönmez
1999; Papaï 20002 and others). From Alcalde and Barberà (1994), in contrast, we
know that there is no core consistent procedure that is strategy-proof. Furthermore,
we exhibit in Example 2 that new ways to manipulate a mechanism arise from core
consistency.

1.4 Two core consistent solutions

We propose two weakenings of the core. Both intend to capture the idea developed
earlier: the “less” agents oppose a matching, as formalized by blocking coalitions, the
easier it is to enforce. First, status-quo stability. We guarantee to all agents an outcome
at least as preferred as the status-quo. Thus, a blocking coalition that is not compatible
with a re-assignment of all agents to matches at least as preferred as their status-quo
is not a valid objection. Hence, a matching where all blocking coalitions are not valid,
faces no legitimate opposition. In this sense it is stable as a status-quo, or status-quo
stable.

Notice that there is no conflict between status-quo stability and Pareto efficiency,
moreover the solution concept itself is not core consistent. We define a two-step pro-
cedure, the Status-Quo Stable (SQS) procedure: first Pareto efficiency is reached by
a graph representation of the problem inspired by the Top trading cycle; second, we
adapt the Deferred Acceptance (DA) algorithm, from Gale and Shapley (1962), to our
setting to reach core consistency. We show that our status-quo stable procedure finds a
status-quo stable matching. In particular, whenever a core stable matching exists, the
procedure picks the core stable matching unanimously preferred by workers among all
status-quo matchings Pareto superior to the status-quo and status-quo stable. However,
it does not single out an outcome. Moreover, the procedure only applies to one-to-one
markets.

Second, weakened stability. Consider again academic markets. Suppose that a cen-
tralizer has to choose between two matchings, both Pareto superior to the status-quo
and neither Pareto dominates the other. The first matching is such that a university
with a micro position hires a micro specialist and blocks the matching with a micro
professor. The second matching is such that a university with a macro position hires
a micro specialist and blocks the matching with a macro professor. We argue that the
first blocking coalition is a weaker opposition than the second one. It is so because it
is desirable, from an educational point of view, that a position be held by the adequate
specialist. Formally it means that blocking coalitions are comparable and that this
comparison follows from a social objective: the more a blocking pair impacts the so-
cial objective, the stronger objection it is. Matching models do not capture this feature
of the market. To do so, we endow the economy with a societal welfare function.3

Among all matchings Pareto superior to the status-quo, we choose the one with the

2 Papaï (2000) does not assume property rights.
3 In our leading example, the function only takes into account the utility of universities.
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weakest opposition. Specifically, for all such matchings, we sum all utility improve-
ments for firms from all blocking coalitions, and pick the matching which entails the
smallest such summation [See (1)].

How would DA algorithms perform in our setting? First, the procedures, adapted in
Blum et al. (1997) and Cantala (2004) to senior markets, do not take into account the
welfare restrictions above mentioned, except individual rationality. Second, it might
cycle. One type of cycling is harmless: even if we consider a case where a status-
quo matching exists, one can easily design an example where a DA algorithm would
cycle. To solve the difficulty one might adopt the solution proposed by Roth and
Vande Vate John (1990), namely introduce loop detectors in the algorithm that detect
them and launch a new sequence of offers until finding the one that leads to a stable
matching. The solution provides no clue if such a matching does not exist. Finally,
these procedures require firms to have substitutable preferences.

We make use of a much more versatile family of procedures: Branch and Bound
Algorithms. Four of their properties motivate the choice: (a) they do not require any
restriction on the preferences of firms, (b) by construction they do not cycle, (c) they
can compute all the possible solutions of the problem—which means, in the case of
junior markets, that they might compute all the stable matchings, (d) whenever the
problem to solve has no solution, they specify it.

We establish that the outcome matching of our Weakened Stability (WS) Algorithm
is the solution to our problem and it is status-quo stable. Moreover, when the input
matching is the empty one, it is core stable whenever a core stable matching exists,
even if the preferences of firms are not substitutable.4

Section 2 introduces notations, Sect. 3 deals with manipulability, status-quo stability
is presented in Sect. 4 and Weakened Stability in Sect. 5. The Appendix contains the
proof of theorems, the details of the WS Algorithm and conditions that guarantee the
existence of a core stable matching Pareto superior to any status-quo.

2 Preliminaries

2.1 The market

A many-to-one matching market is a quadruple (F ,W, q,�) where F and W are
two disjoint finite sets of agents. F = { f1, . . . , fm} is the set of firms and W =
{w1, . . . , wn} is the set of workers; generic firms and workers will be denoted by f
and w, respectively. Subsets of F and W are denoted by F and W . The vector of
quotas associated with each firm is q = (

q f
)

f ∈F , where q f is the maximum number
of workers that can be assigned to firm f . Preference relations are not symmetrically
defined between firms and workers since a firm can be assigned to many workers
whereas a worker can be assigned to at most one firm. Each firm f has a strict,
transitive and complete preference relation � f over the family of subsets of workers
2W . We interpret the empty set as firm f not being assigned to any worker. When a firm

4 Echenique and Oviedo (2004), among others, also dispense on the substitutability assumption using fixed
point techniques.
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ranks the empty set better than a subset, it means that it prefers remaining unmatched
to being assigned to this subset. Each worker w has a strict, transitive and complete
preference relation �w over the set F ∪ {∅}. We interpret the empty set in �w as w

being unemployed. Preference profiles are (m + n)-tuples of preference relations and
they are represented by �= (� f1, . . . ,� fm ,�w1 , . . . ,�wn

)
.

For any firm f we define the acceptable set of f under q and � to be the subsets
of workers with cardinality smaller or equal to q f , strictly preferred to the empty
set; namely A f (q,�) ≡ {

S ⊆ W | S � f ∅ and |S| ≤ q f
}
. Subsets in A f (q,�)

are called acceptable. Since only acceptable subsets will matter, we represent the
preferences of the firm as a list of acceptable subsets. Likewise, for any worker w we
define the acceptable set of w under � to be the set of firms strictly preferred to ∅.
We denote it by Aw (�). Firms in Aw (�) are called acceptable. We will represent
the preferences of firms and workers by ordered lists of acceptable partners. A pair
(w, f ) is acceptable under q and � if both agents are mutually acceptable.

Definition 1 A matching µ is a mapping from the set F ∪W into the set of all subsets
of F ∪ W such that for all f ∈ F and w ∈ W :
(1) µ ( f ) ∈ 2W and |µ ( f )| ≤ q f ,

(2) either |µ (w)| = 1 and µ (w) ∈ F , or µ (w) = ∅,

(3) µ (w) = f if and only if w ∈ µ ( f ) .

Let M denote the space of all possible matchings.

2.2 Stability concepts

Let � be a preference profile. Given a set W ⊆ W , let the Choice of firm f , denoted
as Ch

(
W, q f ,� f

)
, be f ’s most preferred subset of W with cardinality at most q f

according to its preference ordering � f .
A matching µ is blocked by a worker w if she prefers remaining alone than being

matched to µ (w); i.e., ∅ �w µ (w). Similarly, µ is blocked by a firm f if µ ( f ) �=
Ch

(
µ ( f ) , q f ,� f

)
. We say that a matching is individually rational if it is not blocked

by any individual agent. A matching is blocked by a worker-firm pair (w, f ) if worker w

prefers being matched to f than to µ (w) and f would like to hire w; i.e., f �w µ (w)

and w ∈ Ch
(
µ ( f ) ∪ {w} , q f ,� f

)
.

Definition 2 A matching µ is pair-wise stable if it is not blocked by any individual
agent or any worker-firm pair.

Let W be a subset of W. A matching µ is blocked by a workers-firm coalition (W, f )
if all workers w in W prefer being matched to f than to µ (w) and f would like to
hire W ; formally if for all w ∈ W , f �w µ (w) and W ⊆ Ch

(
µ ( f ) ∪ W, q f ,� f

)
.

We say that (W, f ) forms a blocking coalition of µ. Let W f,µ be the set of workers
who prefer f to their match under µ and, thus, they are potential members of blocking
coalitions of µ. Formally, W f,µ = {w ∈ W | f �w µ (w)}.
Definition 3 A matching µ is group-stable if it is not blocked by any individual agent
or by any workers-firm coalition.

123



Welfare and stability in senior matching markets 375

A group-stable matching is also pair-wise stable; moreover core stability defined
by weak dominance and group stability coincide in such markets.5

3 Strategy proofness

We aim to design a core consistent procedure which assigns to all agents in the market a
match at least as preferred as their status-quo, and Pareto undominated. Unfortunately,
none of them is strategy-proof.

Definition 4 A mechanism is strategy-proof if it is a dominant strategy, for all agents,
to report their true preferences.

We now state the negative result.

Theorem 1 In senior matching markets, there is no core consistent and strategy-proof
mechanism that chooses a Pareto undominated matching and which guarantees to all
agents a match at least as preferred as the status-quo.

With respect to Alcalde and Barberà (1994), Example 2 exhibits new manipulations
due to core consistency.

Example 2 Consider the market (F , W, q, P) where F = { f1, f2, f3}, q f1 = q f2 =
q f3 = 1, W = {w1, w2, w3} and true preferences are

� f1 � f2 � f3 �w1 �w2 �w3

w3 w3 w1 f3 f1 f2
w2 w2 w3 f1 f2 f1
w1 f3

Suppose that the status-quo is

µ0 =
(

f1 f2 f3
w1 w2 w3

)
.

There are two matchings which are Pareto superior to the status-quo:

µ1 =
(

f1 f2 f3
w2 w3 w1

)
and µ2 =

(
f1 f2 f3
w3 w2 w1

)
.

Notice that µ1 is stable while µ2 is blocked by ( f2,w3), thus a core consistent procedure
should pick µ1. Nevertheless, if f1 reports �′

f1
where w3 is preferred to w1 and w2 is

not acceptable, the only matching Pareto superior to the status-quo is µ2, which has
to be selected, even if it is not core stable. Thus, in this market, firm 1 would gain by
misrepresenting its preferences through �′

f1
.

5 See Roth (1984).
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4 Status-quo stability

The status-quo is guaranteed to all agents. Thus, to be considered as a valid objection
to a matching, blocking coalitions have to be compatible with a reassignment that
makes all agents at least as well off as in the status-quo. In this sense, in Example 2, if
µ2 becomes the new status-quo, the blocking pair ( f2,w3) to µ2 is not valid since, if f2
and w3 are matched, f1 cannot be reassigned to a firm preferred to her status-quo, w3.

Definition 5 Consider a market (F ,W, q,�), a matching µ is status-quo stable if
for all blocking coalitions ( f, W ) ⊆ F × 2W to µ, there is no matching where f and
W are assigned to each other, possibly with other workers, which it is Pareto superior
to µ.

As for status-quo stability, there is no conflict between blocking coalitions and
Pareto optimality. Thus, given a status-quo µo, looking for matchings that are status-
quo stable and Pareto superior to µo is equivalent to looking for the set of matchings
Pareto superior to µo which are not Pareto dominated by another matching. Denote
the set SQS(µo); by transitivity of preferences it is not empty whenever there is at least
one matching Pareto superior to the status-quo. Example 1 also shows that picking a
matching randomly in SQS(µo) is not a core consistent procedure since both µ1 and
µ2 are status-quo stable.

Our aim is not only to reach a matching in SQS(µo) but to select a core stable
matching, whenever it exists. The status-quo stability procedure performs the task for
one-to-one markets.

4.1 The status-quo stability (SQS) procedure

The SQS procedure begins by a graph representation of our problem.

1. Each node represents a match as defined by the status-quo µo; if µo( f ) = w,
( f, w) is assigned a node, if µo( f ) = ∅, f is assigned a node and if µo(w) = ∅,
w is assigned a node.

2. From each node with a worker w, draw all arrows towards6 nodes with firms f
such that both w and f prefer each other to their respective status-quo.

3. Identify all cycles and paths defined as follows.
A cycle is an ordered set S of pairs ( f, w) which appear only once in S, where,
in the graph constructed as mentioned in 1 and 2
(a) from each node ( f, w) in S an arrow points to another node in S,
(b) ( f, w) is pointed by an arrow from another node in S, moreover
(c) ( f ′, w′) follows ( f, w) in S only if ( f, w) points to ( f ′, w′) in the graph,

finally the first pair in S is said to follow the last one.
A path is an ordered set S with one and only one single worker w , one and only
one firm f and possibly pairs ( f ′, w′), they all appear only once in S and, in the
graph constructed as mentioned in 1 and 2

6 Thus, it is a directed graph.
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(a) the node with the single worker w points to another node in S and is the first
element in the set,

(b) for each node ( f ′, w′) in S there is one arrow that points to another node in
S and ( f ′, w′) is pointed to by an arrow from another node in S,

(c) the node with the single firm f is pointed to by another node in S and is the
last element in the set,

(d) [( f ′, w′) or f ′] follows [( f, w) or w] in S only if [( f, w) or w] points to
[( f ′, w′) or f ′] in the graph.

Let P be the set of all paths and cycles and denote as p an element in P . We
are now ready to construct all possible Pareto improvements that may lead the
market to status-quo stability, and select one of them.

4. A composition c is a subset of P such that:
(a) for all p, p′ ∈ c, p ∩ p′ = ∅ and
(b) for all p′′ ∈ P which do not belong to c, there is at least one p ∈ c and

p′′ ∩ p �= ∅.
Let C be the set of all compositions. We say that a worker w prefers composition
c to composition c′ if she prefers the firms which follow her in c to the one in c′.

5. Given a status-quo µo and a composition c in C, the induced matching µ(µo, c)
is such that
(a) if a firm f ′ belongs to a path or a cycle p in the composition c, it is assigned

the worker w of the previous element (single worker or couple) in p;
(b) otherwise it is assigned the same match as in µo.
Let I (µo, C) be the set of induced matchings by all compositions in C.
5.1 If I (µo, C) = {∅} then SQ − S(µo) := µo, otherwise let i := 1,

5.2 If I (µo, C) = {∅}, go to 5.5.
Otherwise, pick a worker and let her choose within I (µo, C) her favorite matching
in I (µo, C); if she is indifferent between different matchings, pick a second worker
to break the tie and so on and so forth until a single matching µi is selected. If
i := 1, let µ ≡ µi .
5.3 Let all firms f make simultaneous offers to all groups of workers which are
preferred to µi ( f ) for all f .
5.4 If no offer is accepted by all workers in a group, SQ − S(µo) := µi ,
otherwise I (µo, C) := I (µo, C)�µi , i := i + 1; go to 5.2.
5.5 SQ − S(µo) := µ.

We now perform the SQS procedure in a simple market.

Example 3 Consider the market (F , W, q, P) where F = { f1, f2, f3, f4}, q f1 =
q f2 = q f3 = q f4 = 1, W = {w1 , w2, w3, w4} and preferences are

� f1 � f2 � f3 � f4 �w1 �w2 �w3 �w4

w4 w3 w1 w2 f4 f1 f4 f2
w1 w1 w4 w3 f2 f4 f2 f3
w2 w2 w3 w4 f1 f2 f3 f4
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Fig. 1 Stages 1–2: the graph
representation

Suppose that the status-quo is

µ0 =
(

f1 ∅ f2 f3 f4
∅ w1 w2 w3 w4

)
.

The SQS works as follows:
1–2. We represent the status-quo by the graph in Fig. 1.
3. There are two cycles:

p1 = [( f2, w2) , ( f4, w4) , ( f3, w3)] and
p2 = [( f3, w3) , ( f4, w4)] ,

and two paths:

p3 = [(w1), ( f2, w2), ( f1)] and
p4 = [(w1), ( f1)] .

4. The set of compositions is C = {c1, c2, c3} where

c1 = ([(w1), ( f1)], [( f2, w2), ( f4, w4), ( f3, w3)]),
c2 = ([(w1), ( f1)], [( f3, w3), ( f4, w4)]), and
c3 = ([(w1), (( f2, w2)), ( f1)], [( f3, w3), ( f4, w4)]) .

5. Then I (µo, C) = {
µ1, µ2, µ3

}
where

µ1 =
(

f1 f2 f3 f4
w1 w3 w4 w2

)
,

µ2 =
(

f1 f2 f3 f4
w1 w2 w4 w3

)
and

µ3 =
(

f1 f2 f3 f4
w2 w1 w4 w3

)
.

Now, if w3 is selected to pick a matching in I (µo, C), she only discards µ1, and if w2
is selected, µ3 is singled out. Offers are emitted by w1 and w4, respectively, to f4 and
f2. Since none is accepted, µ3 is stable, SQ − S(µo) = µ3.
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Theorem 2 states that our SQS procedure finds a status-quo stable matching and it
is a core consistent procedure.

Theorem 2 Consider a market (F ,W, q,�), q f = 1 for all f ∈ F and a status quo
µo then

1 SQ − S(µo) is status-quo stable, and Pareto superior to µo or is µo,

2 whenever the set of core stable matchings Pareto superior to µo is non-empty,
SQ − S(µo) is the core stable matching unanimously preferred by workers (and
worst for firms).

4.2 Comments

If none of the status-quo stable matchings is core stable, workers might not agree on
a ranking of matching in SQS(µo), thus the order in which they are picked in the
procedure might affect the output matching.

The procedure is not monotonic in the status-quo in the sense that a preferred
status-quo does not ensure a preferred outcome of the SQS procedure. In particular
the advantage of being guaranteed the status-quo might well be balanced by the fact
that switching to a better position is conditioned by the simultaneous improvement
of the match. Indeed, if a worker/firm is the best alternative for her/its match, she/it
cannot switch to another position.

This simultaneous improvement requires a central intervention since, unlike in the
Top trading cycle procedures, agents might belong to two different paths or cycles,
hence compatible reassignments are not likely to occur without coordination. Moreo-
ver, Stage 5 is necessary for the SQS procedure to be core consistent.

Finally, the status-quo stability procedure is not adaptable to many-to-one markets
when firms have preferences which are not responsive. The Weakened Stability (WS)
algorithm, in contrast, does not require any assumption about the preferences of firms
over subsets of workers.

5 Branch and bound algorithms and weakened stability

5.1 The optimization problem

We assume that preferences of firms are represented by utility functions, generically
denoted u f for firm f . We choose the reversed order representation: the lower the
utility, the better; and the best subset of workers is assigned utility 0.7 In this approach
blocking coalitions are comparable: the more a blocking coalition impacts the utility
of the firm, the stronger it is.

Formally, let (S, f ) be a blocking coalition of µ, then u f (µ( f ))−u f (S) measures
the welfare improvement of f if the blocking is completed. Our stability index is the
sum of utility improvements for firms from all blocking coalitions.

7 This is convenient for the algorithm, although not necessary.
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Definition 6 Consider a market (F ,W, q,�); for a matching µ, let

i ≡
∑

All blocking coalition (S, f ) of µ.

u f (µ( f )) − u f (S),

then µ is said to be weakened stable of order i .

Notice that a matching weakened stable of order 0 is core stable. Denote by W Si

the set of matchings that are weakened stable of order i . We now define the utilita-
rian societal welfare function W (µ) = ∑

f ∈F u f (µ( f )) that we aim to minimize,
choosing a matching within the set of weakened stable matchings of the lowest order.

Formally, given a status-quo µo, our problem is

min
µ is Pareto superior to µ0

W (µ)

s.t. µ ∈ W Si and (1)

W Sj = ∅ if j < i.

Hence, a matching µ is selected instead of another matching µ′ in the following cases:
(a) whenever the order of stability of µ is lower than the one of µ′, (b) whenever the
order of stability of µ or µ′ are the same but W (µ) < W (µ′); otherwise µ and µ′
are indifferent. Notice that the status-quo is the solution to the program when it is not
Pareto dominated. The following algorithm finds this (these) optimal matching(s).

5.2 The weakened stability algorithm

For all firms f ∈ F , let B f (µo) = {W ⊆ 2W |W � f µo( f )} be the set of subsets
of workers f prefers to its status-quo, and for all workers w ∈ W , let Bw(µo) =
{ f ∈ W| f �w µo(w)} be the set of firms w prefers to her status-quo. Let A =
× f ∈F (B f (µo) ∪ {∅}), where for all elements in A, the profile of workers where the
f th entry is interpreted as being assigned to firm f . Notice that A contains all matchings
Pareto superior to µo, that is why we will restrict our attention to assignments in A. We
also observe that some of the matchings in A may not be Pareto superior to µo since
preferences of workers are not taken into account in A. Finally, some assignments in
A may not be matchings since, for instance, a worker might be assigned to many firms.

The WS algorithm belongs to the family of Branch and Bound (BB) algorithms.
This technique is one of the most commonly used in optimization problems8 when all
or some of the decision variables are discrete (integer or mixed programing) and no
characterization of optima exists; namely unlike first and second order conditions in
differential calculus environments. As a consequence, the set of decision variables, A
in our case, has to be scrutinized.

In our problem, there are as many decision variables as firms in the market, hence,
the number of solutions can be very large: we call any matching a solution, and a

8 Branch and Bound algorithms are used to solve, for instence, the classical assignment problem in operation
research.
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matching that solves (1) is an optimal solution. The efficiency of BB algorithms relies
on the fact that, instead of analyzing a particular solution at a time, they discard sets
of solutions. We denote R ≡ (W1, . . . , Wn,∅, . . . ,∅) , R ⊆ A, the set of solutions
where the subset of workers W f is assigned firm f for f = 1, . . . , n, and there is no
specific subset assigned to firms f = n + 1, . . . , F .

For all R = (W1, . . . , Wn,∅, . . . ,∅) we define ZL(R), the upper bound of the
objective function of problem (1)9 reached by solutions in R. Formally,

ZL(R) =
n∑

f =1

u f (W f )

+
F∑

f =n+1

min
{

u f (W f )|W f ∈ B f (µo), W f ⊆ W\ ∪n
f =1 W f

}
.

Thus, ZL(R) is the minimal value reached by the objective function when all firms
n + 1, . . . , F are assigned their favorite subset of workers among those not assigned
at R. We call R the assignment in R for which the value of the objective function is
ZL(R). It might be that R is neither a matching nor stable, in any case if this lower
bound does not improve upon the tentative optimal solution when the last one is stable
of order 0, no matching in R will be optimal, therefore solutions in R are discarded.10

We keep a record of the following information: in W S P(µ0) the best current so-
lution in the process, in it its order of weakened stability and in ZU the value of its
objective function.

The stack, S, is the set of solutions that the algorithm still has to scrutinize. At each
iteration, the algorithm picks a set of solutions R ≡ (W1, . . . , Wn,∅, . . . ,∅) in S,
deletes it from the stack (S := S \ R), and performs the following tests:

(a) When the tentative optimal solution11 is core stable, is the value of the objective
function of the tentative solution smaller than the upper bound of R?

(b) Can one assign to each of the unassigned workers in R a firm preferred to the
status-quo?

(c) Can one assign to each of the unassigned firms in R a group of workers preferred
to the status-quo?

If the answer to at least one question is positive, the optimal solution cannot belong
to R, another set of solutions in the stack is considered. Otherwise, one cannot discard
solutions in R = (W1, . . . , Wn,∅, . . . ,∅), we break off R in subfamilies of the form
R′ = (W1, . . . , Wn, Wn+1,∅, . . . ,∅). There are as many subfamilies as subsets of
workers unassigned in R preferred to the status-quo by firm fn+1. Thus, for each
Wn+1 in Bn+1 and W\ ∪n

f =1 W f Pareto superior to the status-quo, a subfamily of

9 ZL (R) ≥ minµ∈R W (µ)

10 The use of the tentative optimal objective values motivates the term Bound in the expression “Branch
and Bound Algorithm”.
11 The tentative optimal solution is the solution which is optimal within the set of solutions already scru-
tinized.
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solutions R′ = (W1, . . . , Wn+1,∅, . . . ,∅) has to be inspected. These solutions are
included in the stack; i.e., S := S ∪ {R′} for all such R′.

If a solution is such that all firms are assigned a subset of workers, its order of
stability is computed as well as the value of the societal welfare function. If its order
of stability of µ is lower than the one of the tentative solution, or the same but the
value of the societal welfare function is lower, it becomes the new tentative solution.
Otherwise, it is discarded.

The algorithm stops when the stack is empty. Then the last tentative solution be-
comes the outcome of the algorithm. The detail of the algorithm is in the Appendix.12

Example 4 shows how our procedure works.

Example 4 Consider the market (F , W, q, P) where F = { f1, f2, f3}, q f1 = q f2 =
q f3 = 1, W = {w1, w2, w3} and preferences are

� f1 � f2 � f3 �w1 �w2 �w3

w2 w1 w1 f3 f1 f1
w3 w2 w2 f2 f3 f3
w1 w3 w3 f1 f2 f2

Moreover,

u f1
(w2) = 0 = u f2

(w1) = u f 3(w1)

u f1
(w3) = 1 = u f2

(w2) = u f 3(w2)

u f1
(w1) = 2 = u f2

(w3) = u f 3(w3)

The status-quo is

µ0 =
(

f1 f2 f3
w1 w2 w3

)
.

Thus, at t = 1:

W S P(µ0) = µ0, i = u f1
(w1) + u f2

(w2) + u f 3(w3) = 2 + 1 + 2 and
ZU = [u f1

(w3) − u f1
(w1)] + [u f1

(w2) − u f1
(w1)] + [u f2

(w1) − u f2
(w2)]

+[u f3
(w2) − u f3

(w3)] + [u f3
(w1) − u f3

(w3)].
= [2 − 1] + [2 − 0] + [1 − 0] + [2 − 1] + [2 − 0]
= 1 + 2 + 1 + 1 + 2 = 7

S = (∅, ∅, ∅).

Iteration 1: pick R = {(∅, ∅, ∅)}.
(a) When the tentative optimal solution is core stable, is the value of the objective

function of the tentative solution smaller than the upper bound of R?
The tentative solution is not stable.

12 Notation in the Example differs slightly from the notation used in Appendix.
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(b) Can one assign to each of the unassigned workers in R a firm preferred to the
status-quo?
Yes.

(c) Can one assign to each of the unassigned firms in R a group of workers preferred
to the status-quo?
Yes.

Then S = {(w2, ∅, ∅), (w3, ∅, ∅), (w1, ∅, ∅)}.
Iteration 2: pick R = (w2, ∅, ∅).

(a) The tentative solution is not stable.
(b) Yes.
(c) Yes.

Then S = {(w2, w1, ∅), (w3, ∅, ∅), (w1, ∅, ∅)}.
Iteration 3: pick R = (w2, w1, ∅).

(a) The tentative solution is not stable.
(b) Yes.
(c) Yes.

Then S = {(w2, w1, w3), (w3, ∅, ∅), (w1, ∅, ∅)}.
Iteration 4: pick R = (w2, w1, w3).

i((w2, w1, w3)) = [u f3
(w1) − u f3

(w3)] = 2 < 7

ZL((w2, w1, w3)) = 2

Thus
W S P(µ0) : = (w2, w1, w3)

i : = 2

ZU : = 2.

and S = {(w3, ∅, ∅), (w1, ∅, ∅)}.
Iteration 5: pick R = (w3, ∅, ∅).

(a) The tentative solution is not stable.
(b) Yes.
(c) Yes.

Then S = {(w3, w2, ∅), (w3, w1, ∅), (w1, ∅, ∅)}.
Iteration 6: pick R = (w3, w2, ∅).

(a) The tentative solution is not stable.
(b) Yes.
(c) Yes.

Then S = {(w3, w2, w1), (w3, w1, ∅), (w1, ∅, ∅)}.
Iteration 7: pick R = (w3, w2, w1),

i((w3, w2, w1)) = [u f1
(w2) − u f1

(w3)] = 1 = i

ZL((w3, w2, w1)) = 2
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Thus
W S P(µ0) : = (w2, w1, w3)

i : = 1

ZU : = 2.

and S = {(w3, w1, ∅), (w1, ∅, ∅)}.
Iteration 8: pick R = (w3, w1, ∅).

(a) The tentative solution is not stable.
(b) Yes.
(c) Yes.

Then S = {(w3, w1, w2), (w1, ∅, ∅)}.
Iteration 9: pick R = (w3, w1, w2)

i((w3, w1, w2)) = [u f3
(w2) − u f3

(w1)] = 1 = i

ZL((w3, w1, w2)) = 2 = ZU

Thus
W S P(µ0) : = {(w2, w1, w3), (w3, w1, w2)}

i : = 1

ZU : = 2.

and S = {(w1, ∅, ∅)}.
Iteration 10: pick R = (w1, ∅, ∅)

(a) The tentative solution is not stable.
(b) Yes.
(c) Yes.

Then S = {(w1, w2, ∅)}.
Iteration 11: pick R = (w1, w2, ∅)

(a) The tentative solution is not stable.
(b) Yes.
(c) Yes.

Then S = {(w1, w2, w3)}.
Iteration 12: pick R = (w1, w2, w3)

i((w1, w2, w3)) = 7 > i

ZL((w3, w1, w2)) = 5 > ZU

It is discarded and S = {∅} and W S P(µ0) := {(w2, w1, w3), (w3, w1, w2)}. This
concludes Example 4.

We are now ready to state our main result.

Theorem 3 Consider a market (F ,W, q,�) and a status quo µo then W S P(µ0) is
a solution to (1).
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In particular, if the status quo is the empty matching, our algorithm finds a core
stable matching whenever such matching exists, dispensing with the condition of q-
substitutability.

Corollary 1 Consider a market (F ,W, q,�) and let the status-quo µo be the empty
matching. Then, when a core stable matching exists, the output of the WS algorithm
is core stable.

Moreover a solution to (1) cannot be Pareto dominated: let µ and µ′ be two mat-
chings such that µ dominates µ′. All blocking coalitions to µ are also blocking coa-
litions to µ′ by transitivity of the preferences. The reverse is not true. Thus, the order
of stability of µ is smaller than the order of stability of µ′.

Corollary 2 W S P(µ0) is status-quo stable.

6 Concluding remarks

Since the WS algorithm selects the firm-best core stable matching whenever it exists,
it recovers the same incentive properties of the mechanisms studied in Dubins and
Freedman (1981) and Roth (1982, 1984) on the respective settings. Nevertheless, the
simplicity of Example 1 and Proposition 1 suggest that the lack of existence of a core
stable solution is not pathological. Moreover, manipulating core consistent procedures
does not seem to require a sophisticated behavior, as suggests Example 2.

Our motivation to develop Weakened Stability is not primarily applicability. Rather,
we are interested in capturing features of matching markets usually ignored by the mo-
deler. Nevertheless, some properties of the solution concept look attractive. First, it is
core consistent and core stability has shown to be a remarkable property of enforcea-
bility. Second, there is no conflict between Weakened stability and Pareto efficiency:
if a matching dominates another in Pareto terms, its order of stability is lower. Third,
in some countries, workers of the public sector are associated to an index which takes
into account their seniority, professional performance or family situation. This index
makes them comparable; in particular it is used to define priority orders. Thus, building
up a societal welfare function might be seen as the formalization of a real life practice.
Moreover, these functions depend on observable variables, coping partially with the
problem of manipulability. Finally, Branch and Bound algorithms are versatile tools
able to solve a large scope of variations from problem (1). In particular, we believe it
is relevant to compare the performances of BB algorithms and the procedure used by
the National Resident Matching Program.

Appendix

We investigate now the sufficient conditions which guarantee the existence of a group
stable matching Pareto superior to a status-quo. We recall the following definitions.

Definition 7 A matching µ is worker quasi-stable if it is individually rational and for
any blocking coalition (S, f ), µ(w) = ∅, for all w ∈ S.
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Definition 8 A matching µ is firm quasi-stable if it is individually rational and for any
firm f, worker w∈µ( f ) and subset of workers S ⊆W f,µ, w∈Ch(µ( f )∪ S, q f ,� f ).

Definition 9 A matching µ is quasi-stable if it is individually rational and for every
blocking coalition (S, f ), for every w ∈ µ( f ), w ∈ Ch(µ( f ) ∪ S, q f ,� f ) and
µ(w) = ∅, for all w ∈ S.

Proposition 1 Consider a market (F ,W, q,�) and a matching µ0. Assume that the
set of matchings Pareto superior to µo is non-empty, we know that one of them is
core stable when firms have q-substitutable preferences and the input matching is
quasi-stable.

Proof The argument is constructive: if the matching of departure is quasi-stable, in
particular it is firm quasi-stable. Since firms have q-substitutable preferences, Pro-
position 1 in Cantala (2004) shows that applying his modified version of the DA
algorithm leads to a core stable matching and that all along the sequence of tentative
matchings, workers are never dismissed and all assignments are firm quasi-stable.
by quasi-stability, original blocking pairs only involve unmatched workers, therefore
resolving them makes no firm worse off and no new blocking coalition appears along
the process. Thus, all agents get better assignments, no new blocking pair appears,
all tentative matchings are quasi-stable and the resulting matching, say µ, is Pareto
superior to the status-quo matching. Finally since µ is stable, it is Pareto efficient.

One cannot dispense with q-substitutability since, then, it might happen that no
stable matching exists. The next example shows that quasi-stability is also necessary
for Proposition 1 to hold.

Example 5 Consider the market (F , W, q, P) where F = { f1, f2, f3}, q f1 = q f2 =
q f3 = 1, W = {w1, w2, w3} and � is given by the following profile

� f1 � f2 � f3 �w1 �w2 �w3

{w1} {w3} {w2} { f1} { f1} { f3}
{w2} {w1} {w3} { f2} { f3} { f2}

.

Assume that the worker quasi-stable status-quo is

µ0 =
(

f1 f2 f3 ∅
w2 ∅ w3 w1

)
.

The only matching Pareto superior to µ0 is

µ1 =
(

f1 f2 f3
w2 w1 w3

)
,

which is blocked by ( f1, w1).
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Proof of Theorem 2 We observe that only arrows representing blocking pairs are
drawn on the graph (step 2). Moreover, blocking pairs lead to a Pareto improve-
ment only if dropped mates (if any) are also assigned a blocking mate (by definition
preferred to the status-quo). Thus, one needs to identify all the ordered sets of blocking
pairs (with the interpretation that [( f ′, w′) or f ′] follows [( f, w) or w] if (w, f ′) is
the blocking pair to be completed13) such that:

(a) if completed simultaneously, the market experiences a Pareto improvement and
(b) if one or some of them is withdrawn from the set, there is no such Pareto impro-

vement.

Obviously Cycles and Paths are such sets; we show that they are the only ones. It is also
clear that no blocking pair can appear twice in the sets since agents cannot complete
two blocking pairs simultaneously. We adopt the convention that a set begins by a
node with a worker (and possibly a firm) pointing towards another node (if there is no
“pointing” in the set, neither are there blocking pairs). Since blocking is simultaneous,
the order only matters in keeping track of who blocks with whom. Thus, if there is
an unmatched worker in the set, there is no loss of generality in shifting all elements,
ranking this unmatched worker first and following the original ordering; that is why,
if there is an unmatched worker in the set, we put her first in the set.

Case 1 The set starts with an unmatched worker w.
If this worker blocks with an unmatched firm f , {w, f } is the Pareto improving set

as defined above, it is a path.
If this worker blocks with a matched firm f , the mate of f , w′, will have to be

assigned a firm f ′ in the set that is preferred to the status-quo. If this firm is unmatched,
the set is {w, ( f, w′), f ′}, it is a path. Otherwise a pair ( f ′, w′′) has to follow ( f, w′) so
as to assign w′ a firm f ′ that is preferred to her status-quo. One can iterate the argument,
until an unmatched firm appears in the sequence. If such unmatched firms did not exist,
the blocking pairs specified by the ordered set would not be Pareto improving for the
worker of the last pair, who would then remain unmatched. Therefore, the set is a path
in any case. If there is more than one unmatched worker in the set, by the previous
argument they would generate independent paths, since no pair can appear twice.
Hence one of the paths might be withdrawn from the set without altering the Pareto
improvement of agents in the other set.

Case 2 The set starts with a pair ( f, w).
By our convention, there is no unmatched worker in the set. So as to compensate

f for the fact that w blocks with another firm f ′, the last element of the set in the
sequence has to be a couple ( f n, wn) where wn blocks with f . We observe that no
unmatched firm can be included in the set, since the firm will not point to any other
agent, in particular to couples, as required. Thus, the set is a cycle.

Hence, P contains all sets of blocking pairs such that, if they are completed simul-
taneously, all agents involved in the set will improve with respect to the status-quo.
Of course, it might be that unmatched firms or workers, or matched worker-firm
pairs are involved in many paths and cycles and, nevertheless one cannot complete

13 Both w and f ′ might be involved in blocking pairs with other agents in the set.

123



388 D. Cantala, F. Sánchez Sánchez

simultaneously many blocking pairs. A composition of P (Step 4) is a set of compatible
cycles and paths such that no other element in P is compatible with them.

We argue now that there is no matching Pareto superior to the one generated by a
composition since the algorithm stops:

• either at step 5.4 when a matching is stable (in which case there is no matching
Pareto superior to it, otherwise some agents would block);

• or at 5.5, when µ1 is selected. Consider step 5.2 that leads to the selection of µ1.
If only one worker is necessary to select µ1, it means that this worker strictly
prefers µ1 to any other matching in I (µo, C). If many workers are necessary to
pick µ1, notice that each time a matching in I (µo, C) is discarded by a worker,
the discarded matching is strictly worse than µ1 for this worker. Thus, µ1 is not
Pareto dominated by any matching in I (µo, C).

We prove now that the procedure picks the workers’ optimal stable matching whe-
never it exists. We know from the lattice Lemma (Knuth 1976) that in one-to-one
markets, if workers do not rank unanimously two stable matchings, by letting them
choose their best mate between both matchings, not only does the picking function
leads to a matching but leads to a stable one. Of course, if the two matchings are Pareto
superior to the status-quo, so is the new matching. Thus, if there are stable matchings
Pareto superior to the status-quo, one of them is unanimously preferred by workers.
That is why we let workers choose their favorite matchings in I (µo, C) and check if
those choices are stable. Specifically, if no offer emitted by firms is accepted by any
worker, this is the outcome matching. Else another matching is chosen by new workers
until a stable matching is found. If all sets of status-quo matching have been scruti-
nized and none of the matching is stable, the outcome matching is the first tentative
matching. �

The WS algorithm
We keep a record of the following information: in W S P(µ0) the best current

solution in the process, in it its order of weakened stability and in ZU the value
of its objective function.

1. Initial round

• For all f ∈ F define the function B f : M → 22W
such that

B f (µ) = {S ⊆ 2W | #S ≤ q f and S � f µ( f )}. Let A = × f ∈F (B f (µ) ∪
{∅}).[Define the subsets of workers preferred by firms to a matching µ.]

• For all w ∈ W define the function Bw : M → 2F∪{∅} such that
Bw(µ) = {m ∈ F∪{∅}|m �w µ(w)}. [Define the set of firms preferred by
workers to a matching µ.]

• For all f ∈ F define the function W f : 22W ×2F∪{∅} → 22W
such that

W f (µ) = {W ∈ W | W ⊆ B f (µ) and for all w ∈ W , f ∈ Bw(µ)}. [Define
the set of subsets of workers who block µ with f .]

• Define the function i0 : (22W
)#F → � such that

i(µ) = ∑
f ∈F

∑
W∈W f (µ) u f (µ( f )) − u f (W ) [i(µ) is the order of stability

of matching µ.]
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• For all R ⊂ A, define the function ZL : A → � such that ZL(R) =∑n
f =1 u f (W f ) + ∑F

f =n+1 min{u f (W f )|W f ∈ B f (µo), W f ⊆ W\ ∪n
f =1

W f }.
• W S P(µ0) = µo. [The initial tentative optimal solution is the status-quo.]
• ZU = ZL(µo). [The objective value of the initial tentative solution is the one

of the status-quo.]
• i0 := i(µo) [i is the order of stability of the status-quo.]
• S = {(∅, . . . ,∅)}. [At the beginning, we have to review all possible solutions.]
• t ≡ 1.

(a)Iteration
2. Selection within the stack S, of a solution.

If S = ∅ then stop. [If the stack is empty, there are no more subsets to analyze
and the tentative optimal solution is the solution to (1).]
Otherwise, let R be such that R = arg minR′∈S ZL(R′), S := S\{R}. [We select
the family of solutions with minimal lower bound.]14

3. Fathoms. One discards R or checks whether the optimal solution may belong to
R.

3.1 If it−1 = 0 and ZU < ZL(R) then go to 2. [If the tentative optimal
solution is core stable and its objective function is smaller than the
lower bound of R, solutions in R are discarded.]

3.2 If { fn+1, . . . , fF , {∅}} ∩ Bw(µo) = ∅ for (at least) one w ∈ W\ ∪n
f =1

W f , then go to 2. [If all unassigned firms are worse than the status-quo,
the solution cannot belong to R for (at least) one unassigned worker,
R is discarded.]

3.3 If for some firm f ∈ { fn+1, . . . , fF } no W f ∈ B f (µo) is such that
W f ⊆ {W ∪{∅}}\∪n

f =1 W f , then go to 2. [If one cannot assign a group
of workers preferred to the status-quo to each of the unassigned firms,
R is discarded.]

3.4 If n + 1 < F go to 4 [If more than one firm is not assigned any subset
of workers, the solution is partitioned in subsets of solutions ...].
Else for f = F define WF = {W ⊆ W\ ∪F−1

f =1 W f such that [... else
subsets in WF are the only ones which complete R to form a matching
Pareto superior to the status-quo ...]
(a) W ∈ BF (µo),
(b) F ∈ Bw(µo) for all w ∈ W
(c) if µo(w) �= ∅ for w ∈ W\ ∪F−1

f =1 W f , then w ∈ WF }. [... in
particular matched workers at the status quo have to be included.]

3.4.1 If WF = ∅, go to 2.
Else, let N ≡ #WF and l ≡ 1.

3.4.2.1 If l ≤ N , select one W ∈ WF , delete it from WF and construct R′ =
(W1, . . . , W ).

14 In order to improve the efficiency of the algorithm, one would idealy choose the family of solution with
lower bound of stability. Nevertheless this lower bound is not computable, that is why we use as lower
bound the value of the objective function.
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Else t = t +1, go to 2. [One completes R assigning F to an acceptable
subset of workers, including a fortiori those who are matched at the
status-quo.]

3.4.2.2 If i(R′) < it−1 or (i(R′) = it−1 and ZL(R′) ≤ ZU )
then it = i(R′), W S P(µ0) = R′, ZU = ZL(R′). [A new tentative
solution has been detected.]
In any case l = l + 1, go to 3.4.2.1.

4. Branching: in case we cannot discard R, we break it off in smaller subsets. Notice
that only Pareto superior matchings are included in the stack.
S := S ∪ {(W1, . . . , Wn+1,∅, . . . ,∅) ⊆ A such that
(a) (W1, . . . , Wn,∅, . . . ,∅) = R, [New solutions in S are subfamilies of R . . .]
(b) Wn+1 ⊆ W\ ∪n

f =1 W f , [. . . obtained by complementing R with subsets of
available workers . . .]
c Wn+1 ∈ B fn+1(µo), fn+1 ∈ Bw(µo) for all w ∈ Wn+1}. [. . . compatible
with the Pareto criterion.]
Then go to 2.

Proof of Theorem 3 We observe that the algorithm is well behaved in the sense that
it always ends. To see this, notice first that, when an iteration ends up by a branching,
one does not add new solutions to the stack but keeps the subset of solutions selected
within a partition of the solution (we consider only the solutions that might be Pareto
superior to the status-quo). Since the number of firms is finite, so is the number of
iterations which end up by a branching. Furthermore, solutions are deleted from the
stack at iterations which do not end up by a branching, hence the stack will end up
empty and the algorithm will end.

So as to prove that the output matching of the algorithm is the optimal solution to
problem (1), we argue that none of the three following errors occurs.

Error 1. A solution has not been scrutinized that should have been scrutinized.
At the initial round, all possible solutions preferred to the status-quo by firms are

included in the stack. Solutions are eliminated from the stack when it is analyzed.
Then, either it is discarded, either it is selected as a new tentative solution or one
proceeds to branching. In this case, only solutions which are Pareto superior to the
status-quo are introduced in the stack (other solutions cannot be optimal for (1)) and,
thus, will be analyzed later on.

Error 2. A solution has been discarded which should not have been discarded.
In a given iteration, assume that the tentative optimal solution, W S P(µ0), is correct;

i.e., it is optimal within the set of solutions already scrutinized. The solution R is
discarded at the following steps:

3.1. When the tentative matching is core stable and the lower bound of R is greater
than the objective value of the tentative solution, no solution in R can be optimal.

3.2. If for (at least) one worker unassigned at R none of the firms unassigned at R
is at least as good as the status-quo, no solution in R can be incentive compatible with
µo for this worker.

3.3. If for (at least) one firm unassigned at R none of the subsets of workers unas-
signed at R is at least as good as the status-quo, no solution in R can be incentive
compatible with µo for this firm.
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3.4. Solutions in R which are not Pareto Superior to the status-quo are discarded,
they cannot be optimal solutions to (1).

3.4.2 and 3.4.3. All matchings in R which are Pareto superior to the status-quo are
compared to the tentative solution and discarded if their order of stability is higher
than the one of the tentative solution, or, in case of a tie, when their objective value is
higher.

Hence, if the tentative solution is correct, so is the fact to discard families of solutions
at 3.1, 3.2, 3.3, 3.4, 3.4.2 and 3.4.3.

Error 3. A solution has been selected as tentative optimal solution which should
not have been selected.

In a given iteration, assume that the tentative optimal solution W S P(µ0), is correct;
i.e., it is optimal within the set of solutions which have been already scrutinized. The
solution R is selected at 3.4.3. There, all solutions in R which are Pareto superior to
the status-quo are compared sequentially to the tentative solution and selected as the
new tentative solution if their indices of stability and their values are lower than those
of the tentative solution.

Hence, if the tentative solution is correct, so is the fact to select a new tentative
solution at 3.4.3. �
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