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Abstract

In this work, a new similarity measure between images is presented, which is based on the concept of predictability of random vari-
ables evaluated through kernel functions. Image registration is achieved maximizing this measure, analogously to registration methods
based on entropy, like mutual information and normalized mutual information. Compared experimentally with these methods in differ-
ent problems, our proposal exhibits a more robust performance specially for problems involving large transformations and in cases
where the registration is done using a small number of samples, such as in nonparametric registration.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Due to its wide range of applications, image registration
is a problem that has been largely explored (see [8,17,12]
and references contained there in). It has become a funda-
mental task in many important fields such as robot vision
and medical image processing, among others. Given a
source and a reference image, represented by IS and IR,
respectively, the registration problem consists in finding a
transformation T that applied to IS aligns it spatially to
IR. Different approaches can be followed to solve the prob-
lem; many of them are based on the assumption that the
intensity of every point x in the image IR is conserved in
image IS but at a different spatial position T ðxÞ. This means
that the equality IS ½T ðxÞ� ¼ IRðxÞ holds for every point in IR

(known as the Optical Flow Constraint), and there is a huge
number of registration methods based on it [11,16,21,22,2].
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The optical flow constraint is not always applicable, for
example, when registering medical images obtained from
different modalities. For this case, registration by the max-
imization of Mutual Information ðMIÞ has been widely used
because it does not assume a functional relationship
between the intensities of the images; instead, it is based
on the fact that if aligned, the maximal dependency (infor-
mation) between the intensities is found.

Given two images, IT and IR, their mutual information is
defined as:

MIðIT ; IRÞ ¼ HðIT Þ þ HðIRÞ � HðIT ; IRÞ ð1Þ

where H is the entropy function of the image intensities. If
the space of intensity values is discrete, then the entropy
function is written as:

HðIÞ ¼ �
X

i

pi log pi ð2Þ

where pi is the probability to observe the intensity value i;
and in case of a continuous space, the entropy is defined as:

HðIÞ ¼ �
Z 1

�1
pðiÞ log½pðiÞ�di: ð3Þ
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The first applications of MI to the image registration prob-
lem, were published simultaneously by Viola et al. [23] and
Collignon et al. [3], both in the middle of the last decade.
Since then, a great number of publications has appeared
extending the initial work to problems like nonparametric
multimodal image registration [10,4], registration of stereo-
scopic pairs [7,13] or feature tracking in images [5].

In general, methods based on the maximization of MI,
start with an initial transformation T 0, leading to a MI

value MI0, and using a proper optimization method, a
sequence of transformations is generated in such a way that
the associated MI is increased until convergence. During
the optimization process, the increments in MI are calcu-
lated with the expression:

DMI ¼ DHðIT Þ þ DHðIRÞ � DHðIT ; IRÞ:

If the discrete version of the entropy (2) is considered, this
is a function of the entries of the probability vector; hence,
using a Taylor series expansion, a linear approximation for
the increment in entropy is given by:

DH ¼ �
X

i

½1þ log pi�Dpi:

Because the coefficient ½1þ log pi� is large for small prob-
ability values, this increment is highly determined by
small features in the images to be registered (which are
generally associated with small probability values). This
can trap the registration algorithm in local optima when
aligning small features, particularly if the small probabil-
ities are not accurately computed. This makes it difficult
to apply MI in cases where only a limited sampling is
available, for example when measuring entropy at a local
level in images, which is important in interesting prob-
lems like nonparametric image registration, and in the
segmentation of motion between frames, where local
measurements must be taken in order to learn the local
motion models and to have enough spatial definition at
the motion interfaces.

Another problem related to the application of MI,
occurs when working with images with a large background
compared to the region of interest, as frequently happens in
medical image problems. Under this circumstance the sum
of the marginal entropies can become larger than the joint
entropy, leading to an increase of MI, instead of decreasing
it in misregistration. Studholme et al. [20] proposed the use
of a normalized version of the MI to overcome this disad-
vantage. This measure is known as Normalized Mutual

Information ðNMIÞ:

NMIðIT ; IRÞ ¼
HðIT Þ þ HðIRÞ

HðIT ; IRÞ
: ð4Þ

In this work we propose a new criteria for the registra-
tion of images with different intensity structure (e.g.,
medical images in different modalities) which uses a
new predictability measure for probability distributions,
which we call Kernel-Predictability ðKP ). KP, evaluated
in the marginal and joint distributions of two images,
is integrated in a similarity measure between images,
normalized as (4), and applied to the registration prob-
lem. Unlike entropy, the increment of this measure when
updated by an iterative optimization method, is mostly
determined by the larger entries of the probability vector,
which is reflected in a higher robustness in problems
where only limited sampling is available. Our proposal
is discussed in Sections 2 and 3, and in Section 4 its per-
formance in image registration problems is compared to
that obtained under maximization of MI and NMI. The
experimental results show that an important reduction in
registration errors is obtained by the use of our method
compared to MI and NMI.

2. Kernel-predictability

In order to introduce our predictability measure for a
given distribution F, consider the following guessing game:
someone generates a value x1 from F and we guess x1 by
generating (independently) another value x2 from F. We
denote by Kðx1; x2Þ the obtained reward. Repeating this
game, we can define the average reward E½KðX 1;X 2Þ�. We
suppose that the reward function favors guesses close to
the true value, i.e., K is a decreasing function of the dis-
tance between x1 and x2. Under this assumption it is clear
that the less uncertainty is contained in F, the higher will
be the average reward.

The above motivates the following measure for a given
distribution F:

KP ðF Þ¼E½KðX 1;X 2Þ� ¼
Z

Rd

Z
Rd

Kðx1;x2ÞdF ðx1ÞdF ðx2Þ: ð5Þ

This functional measures the predictability of the random
variables distributed according to F, weighted by the kernel
function K, and we denominate it kernel-predictability. It
should be noted that KP is a predictability measure, so it
behaves in an inverse way compared to entropy, which is
an uncertainty measure.

For the discrete case, this becomes:

KP ðpÞ ¼
X

i

X
j

Kijpipj ¼ pTKp ð6Þ

where the entry ði; jÞ of the matrix K equals the reward gi-
ven for guessing the value xi when the generated value was
xj, i.e., Kij ¼ Kðxi; xjÞ. In the past, some measures have
been presented that are apparently similar to our proposal.
However an important difference must be noted. In [25], a
functional like (5) is used to compute the expected distance
between two groups of images. In [24,19], similarity mea-
sures between images are presented that can be confused
with one of the estimators for (5) (discussed below). How-
ever, these three measures are evaluated over two different
distributions, in contrast to (5), which takes only one distri-
bution for its argument and therefore represents a property
of the underlying distribution, such as its entropy or its
variance.
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We can measure the increment in kernel-predictability,
which may be associated to the optimization process as:

DKP ¼ 2
X

i

X
j

Kijpj

 !
Dpi:

Note that the increment for every element of the probabil-
ity vector, pi, is multiplied by the coefficient ð

P
jKijpjÞ; this

coefficient equals the ith element of the vector generated by
the product of the matrix K with the distribution vector p.
This product just smooths the probability vector p if we as-
sume that the closer Kij is to the main diagonal, the higher
its value. Consequently, ð

P
jKijpjÞ is larger for large pi val-

ues, and the increment in KP is mainly determined by the
larger entries of the probability vector, and for that reason,
by the most important features in the images to be regis-
tered. This is an important difference with respect to
entropy.

2.1. Kernel-predictability with Gaussian kernels

Many choices for K are possible; a natural one is the
Gaussian kernel, which is defined as:

Kðx1; x2Þ ¼
1

ð2pr2Þd=2
exp �kx1 � x2k2

2r2

 !
ð7Þ

where d is the dimension of the distribution and r a free
parameter.

For an arbitrary continuous distribution F, one can
build a nonparametric approximation of its density by
means of gaussian windows [6], centered over a set of
points faig (e.g., independent samples obtained from F):

fX ðxÞ ¼
1

N

XN

i¼1

fai;r2
ðxÞ ð8Þ

where fai ;r2
ðxÞ is the multivariate Gaussian density,

N ðai; r2
2IÞ, with a d � d covariance matrix r2

2I. Moreover,
if one uses a multivariate Gaussian kernel to measure
KP ðF Þ, using the fact that a convolution of two Gaussians
is another Gaussian, one can show that:
Fig. 1. Moving the gaussian window centered over a1 towards a�1 will reduce e
while entropy remains constant.
KP ðF Þ ¼ 1

Nð2pðr2 þ 2r2
2Þ

d=2

�
X

i

X
j

expð�jjai � ajjj2=2ðr2 þ 2r2
2ÞÞ: ð9Þ

Note that the higher the spread of the points faig in the dis-
tribution, the lower will be its KP value. The maximum is
reached when all the points in the set faig are equal, which
represents a single Gaussian distribution. In this case, the
value of KP is inversely proportional to the variance r2

of this distribution, which implies that the maximum value
of KP will be reached when r2 is equal to zero, i.e., if one
has a degenerate random variable that can only take one
fixed value. Note that this will be true for the discrete case
and for an arbitrary kernel as well, provided that the ele-
ments on the main diagonal of the matrix K contain the
maximal reward value, say KM (given for an exact predic-
tion). This follows from the next inequality:

KP ðpÞ ¼
X

i

X
j

Kijpipj 6 KM

X
i

X
j

pipj ¼ KM

and from the fact that KM is the value obtained for such
degenerate random variables.

One important difference of KP with respect to entropy
also follows from Eq. (9) and is illustrated in Fig. 1. If we
move the Gaussian window centered over a1 towards a�1,
i.e., if we move a portion of the mass of the distribution
to a position where there is practically no overlap with
the original distribution, KP will be reduced, since the
spread of the set faig will increase, and the entropy will
increase. However, if one moves a1 to a point a��1 which
is farther to the right, KP will be reduced even more, but
the entropy will remain practically constant. This property
of the entropy is not an advantage when applied in prob-
lems like image registration where the quality of a spatial
transformation is measured by the narrowness of the joint
distribution of gray tones between a pair of images; in this
case, the gradient of KP will contain more information
about the location of the optimal transformation.

Constructing the matrix K in (6) according to the Gauss-
ian kernel (ignoring the normalizing constant for simplic-
ntropy and KP. Moving a1 further to the right will reduce even more KP,
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ity), generates two interesting cases when evaluating the
kernel at extreme values of the amplitude parameter r. In
the first case the Gaussian kernel can be approximated by
the Kronecker delta for very small values of r in the follow-
ing way:

Gðxi; xjÞ ¼ dij ¼
1 ifxi ¼ xj

0 otherwise:

�
ð10Þ

for this case, KP ðpÞ ¼ 1� GiniðpÞ, where Gini is the well
known Gini entropy of Machine Learning [9]. The Gini en-
tropy is maximized, and the associated KP minimized, un-
der the uniform distribution.

For large values of r the Gaussian kernel can be approx-
imated by:

Grðx1; x2Þ � 1� kx1 � x2k2

2r2
ð11Þ

and for this case, KP ðpÞ � 1�
P

i
Var½ðX Þi �
r2 , where Var½ðX Þi� is

the variance of the ith element of the multivariate random
variable X. It can be shown that for univariate distributions
with finite domain over the interval ½a; b�, the distribution
with maximal variance, and hence minimal associated
KP, has a density equally concentrated on its two extreme
values, a and b.

Random variables with uniform distribution are more
difficult to predict than variables that take only two differ-
ent values with the same probability, thus we prefer KP to
behave in a way similar to the Gini entropy; for this reason
we choose small values for the width of the Gaussian ker-
nel; in practice for univariate random variables we take r
around 2–10% of their range.
2.2. Estimation of the kernel-predictability

The expression (5) is a regular statistical functional of
degree two (two refers to the number of arguments of K),
and for its estimation three different approaches are avail-
able in the literature [14,15]. The estimators are always
based on a sampling set composed by n independent and
identically distributed random variables, X ¼ fX 1;X 2; . . . ;X ng,
with X i � F ; 8i; and are defined as:

cKP 1 ¼ 2

nðn� 1Þ
Xn�1

i¼1

Xn

j¼iþ1

KðX i;X jÞ ð12Þ

cKP 2 ¼ 4

n2

Xn=2

i¼1

Xn

j¼n=2þ1

KðX i;X jÞ ð13Þ

cKP 3 ¼ 1

n2

Xn

i¼1

Xn

j¼1

KðX i;X jÞ: ð14Þ

For the estimator cKP 1, the kernel is evaluated over all dif-
ferent pairs of variables in X; in cKP 2, the set X is divided in
two subsets and the kernel is evaluated at each pair formed
by taking one variable from the first set and other variable
from the second one; finally, in the third estimator, cKP 3,
the kernel is evaluated in all possible pairs of variables,
as with estimator cKP 1, but it adds the evaluations where
the first and second variable coincide. The first two estima-
tors are unbiased. If the kernel K is symmetric then cKP 1 has
the minimal variance among all the unbiased estimators, as
shown in [14,15]; cKP 2 has more variance than cKP 1 but has
a lower computational cost; the estimator cKP 3 has minimal
variance among these three estimators, but is biased. When
the sampling set is increased in size, the variances of these
estimators tend to the same value and the bias of the esti-
mator cKP 3 tends to zero.

3. Image registration with kernel-predictability

Application of KP to the registration problem can be
done considering the joint distribution of the intensities
of the images IR and IT , that is, pðIR; IT Þ ¼ pðIJðT ÞÞ. The
intuitive idea is that when T ¼ T � (the correct aligning
transformation), pðIJ ðT �ÞÞ should be more concentrated
than pðIJ ðT ÞÞ for T –T �, and therefore, KP ½pðIJ ðT �ÞÞ� >
KP ½pðIJ ðT ÞÞ� for T –T �. For example, if there exists a deter-
ministic tone transfer function U, between IR and
IT � ; pðIJ ðT �ÞÞ must be ordered along a ridge-like structure
determined by U: in this case, the conditional density
pðIT � jIR ¼ iÞ ¼ dðIT � � UðiÞÞ, and any other transformation
must redistribute the conditional density at different tone
values. It is not enough, however, to consider only the
KP evaluated over the joint distribution of IR and IT ,
because, for example, it can be maximized under transfor-
mations that assign all points in the image IS to a single
point in IR. Restriction over the solution space can be con-
sidered normalizing the joint KP, in a way similar to what
is done for mutual information [20]. We propose the next
similarity measure between images based on KP:

SKP ðIT ; IRÞ ¼
KP ½pðIJ Þ�

KP ½pðIT Þ� þ KP ½pðIRÞ�
: ð15Þ

This similarity measure makes a comparison between the
predictability of the joint distribution and that of the mar-
ginal distributions for the images IT and IR. An upper
bound for SKP in the discrete case is derived in Appendix
A. For the particular case where the kernel K used for the
evaluation of KP is the Kronecker delta, it is possible to
show rigorously that SKP reaches its global maximum
for T ¼ T � (see Appendix A). This kernel, however, is
not appropriate for practical computations, because in this
case the gradient of SKP has very little information about
the location of its maximum. In general, at least a local
maximum of SKP is obtained for Gaussian kernels as well;
to see this, note that for T different, but close to
T �;KP ½pðIT Þ� þ KP ½pðIRÞ� � KP ½pðIT � Þ� þ KP ½pðIRÞ� and
KP ½pðIJ ðT �ÞÞ� > KP ½pðIJ ðT ÞÞ�, since pðIJ ðT ÞÞ is less concen-
trated than pðIJ ðT �ÞÞ (see Eq. (9) and discussion above). In
practice, this condition holds also for smooth kernels, for
which KP behaves very much like the Gaussian case (see
Section 2.1).

Registration of the images IS and IR is done by searching
for the transformation T which maximizes the SKP value
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between the corresponding IT image and IR. The transfor-
mation can be classified as parametric or nonparametric;
for each case, a different registration strategy must be fol-
lowed as detailed below. Assuming it is clear from the con-
text for which images the similarity measure is evaluated,
we will write SKP ðT Þ instead of the expression SKP ðIT ; IRÞ.
3.1. Parametric registration

Suppose the transformation T is determined by a vector
of m real parameters, a ¼ ða1; a2; . . . ; amÞ, and m is consid-
erably smaller than the total number of points in the
images to be registered; in this case, we write T ðx; aÞ instead
of T ðxÞ (e.g., when registering images under affine or pro-
jective transformations). For ease of notation, the intensity
values associated to an arbitrary sampled coordinate X i,
can be abbreviated with the expressions: I i

R ¼ IRðX iÞ;
I i

T ¼ IS ½T ðX i; aÞ�, and Ii
J ¼ ðI i

T ; I
i
RÞ. Then, an approxima-

tion to (15) using the estimator (13) can be written in the
following way:

dSKP ½T ðaÞ� ¼
cKP J ½T ðaÞ�cKP T ½T ðaÞ� þ cKP R

ð16Þ

with

cKP J ½T ðaÞ� ¼
Xn=2

i¼1

Xn

j¼n=2þ1

KrJ ðIi
J ; I

j
J Þ

cKP T ½T ðaÞ� ¼
Xn=2

i¼1

Xn

j¼n=2þ1

KrM ðI i
T ; I

j
T Þ

cKP R ¼
Xn=2

i¼1

Xn

j¼n=2þ1

KrM ðI i
R; I

j
RÞ;

KrJ is the kernel employed to measure the predictability of
the joint distribution of IT and IR, and KrM for the marginal
distributions of IT and IR. Note that the constant coefficient
in the estimators can be ignored due to normalization.

For example, if Gaussian kernels are used (ignoring the
normalizing constants), then:

KrJ ðIi
J ; I

j
J Þ ¼ GrJ ðIi

J ; I
j
JÞ ¼ exp �kI

i
J � I

j
Jk

2

2r2
J

( )
ð17Þ

KrM ðI i; IjÞ ¼ GrM ðI i; IjÞ ¼ exp �ðI
i � IjÞ2

2r2
M

( )
: ð18Þ

The maximization can be done using stochastic gradient as-
cent, starting with an initial transformation defined by the
vector a0 and actualizing it with the relation:

atþ1 ¼ at þ kra
dSKP ½T ðatÞ�

with:
ra
dSKP ½T ðatÞ� ¼ 1cKP T ½T ðatÞ� þ cKP R

ra
cKP J ½T ðatÞ�

�
cKP J ½T ðatÞ�

ðcKP T ½T ðatÞ� þ cKP RÞ2
ra
cKP T ½T ðatÞ�

ð19Þ

and in particular, when using the kernels (17) and (18),
these gradients become:

ra
cKP J ½T ðatÞ� ¼� 1

r2
J

Xn=2

i¼1

Xn

j¼n=2þ1

GrJ ðIi
J ;I

j
J ÞðI i

T � Ij
T ÞðraI i

T �raIj
T Þ

ra
cKP T ½T ðatÞ� ¼� 1

r2
M

Xn=2

i¼1

Xn

j¼n=2þ1

GrM ðI i
T ;I

j
T ÞðI i

T � Ij
T ÞðraI i

T �raIj
T Þ:

The gradient can be estimated using a different sampling set
for every iteration, giving a stochastic behavior to the gra-
dient ascent (as is proposed in [23]) which allows the opti-
mization procedure to escape from local optima; in this
sense the use of the estimator (13) is more suitable due to
the fact that its higher variance introduces an additional
stochastic component. Besides it has the lowest computa-
tional cost among the three options.

When working with large transformations, the part of
the image IR in the overlapping region between the two
images can vary with T, and the gradient of the similarity
must consider this variation. Unfortunately there is no
explicit dependence of IR on the transformation; therefore
one must approximate the gradient of the similarity by
finite differences. The partial derivative of (16) with respect
to any parameter ai can be evaluated with centered finite
differences as:

odSKP
oai
½T ðatÞ� �

dSKP ½T ðat þ �ieiÞ� � dSKP ½T ðat � �ieiÞ�
2�i

;

ð20Þ

where ei is a vector with a one in the ith component and
zeros in the rest, and �i is a small real value. Using this
approximation, the similarity must be evaluated twice for
each parameter in the transformation and because every
evaluation determines a different overlapping region be-
tween the images, in order to calculate accurately the gra-
dient, the samples used for estimation must lie in the
intersection of all overlapping regions.

The use of (20) for the gradient approximation is
advantageous in the case of registrations with large
transformations, where the variation of IR during the
process is not negligible; otherwise one can ignore this
variation and employ the simpler approach defined in
(19). In this paper, the approximation (20) was employed
for registration.

3.2. Nonparametric registration

To obtain a nonparametric (dense) field, the registration
must find a different translation vector for each point in the
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images; in this case, the transformation for every pixel is
defined in the following way: T ðxiÞ ¼ xi þ ui;
i 2 f1; . . . ;Ng. A large amount of sampling is necessary
in order to estimate accurately the complete transforma-
tion field, u ¼ fu1; . . . ; uNg, and the registration by the
maximization of our similarity measure can be prohibitive
due to its quadratic cost over the sampling size. Instead of
maximizing it globally, one can restrict its evaluation to a
local level, focusing on a small region around each point
in the images; then we can maximize the sum of the local
similarities for every point x. For example, if we consider
a small squared region defined by the window W x centered
on the point x, then the local similarity will be a function
only of the translation vectors associated to the points
enclosed by W x, that is the set vx ¼ fuiji 2 W xg. Besides
the reduction of the computational cost, evaluating the
similarity at a local level can help to avoid the irregularities
of the probability distributions of the intensities, which
results from large spatial inhomogeneities in the intensity
of the images. Also regularization of the field u must be
considered. Therefore, for nonparametric registration, the
minimization of the following energy is proposed, which
is a combination of a data fidelity term, ED, and a smooth-
ness term, ES :

EðuÞ ¼ EDðuÞ þ kESðuÞ

where

EDðuÞ ¼
X

x

f�dSKP W xðvxÞg ð21Þ

ESðuÞ ¼
X

x

X
x02Nx

kux � ux0 k2

( )
ð22Þ

k is a constant which controls the smoothness of the field,
and N x is a small neighborhood around the point x.

The local similarity is evaluated in the following way:

dSKP W xðvxÞ ¼
dKP J ðvxÞdKP T ðvxÞ þdKP RðxÞ

¼
P

i;j2W x
KrJ ðIi

J ; I
j
J ÞP

i;j2W x
KrM ðI i

T ; I
j
T Þ þ

P
i;j2W x

KrM ðI i
R; I

j
RÞ
:

ð23Þ

For this case I i
T ¼ ISðxi þ uiÞ. We have written the cKP R va-

lue as a function of the centering point, x, in order to stress
its local evaluation. Note that now the estimator (14) is
being used; this is due to the fact that when working with
small windows, only a few samples are available for the
estimation of the similarities, and the smaller variance of
(14) allows for a more accurate calculation of the field;
the estimator (12) can be used as well with little difference
in the results, but the use of estimator (13) should be
avoided, mostly for very small windows (e.g., windows
with 3� 3 pixels).

The minimization is done by gradient descent. When
using the Gaussian kernels (17) and (18), the partial deriv-
ative of the data fidelity term in Eq. (21) with respect to any
translation vector ul is:

oED

oul
¼ 2

X
x:l2W x

X
i2W x

fJ ðxÞGrJ ðIl
J ;I

i
JÞ�

fMðxÞGrM ðIl
T ; I

i
T Þ

( )
ðIl

T � I i
T ÞrISðxlþulÞ

ð24Þ

where: fJ ðxÞ ¼ 1

r2
J ½cKP T ðvxÞþcKP R ðxÞ�

; f MðxÞ ¼
cKP J ðvxÞ

r2
M ½cKP T ðvxÞþcKP R ðxÞ�2

,

and rISðxl þ ulÞ is the spatial gradient of the image IS

evaluated at the point ðxl þ ulÞ. Note that the first sum runs
over every window, W x, containing the point l, and the
second one runs over every point within the window W x.

Finally, the gradient of the smoothness term is:

oES

oul
¼ 4 jNljul �

X
l02Nl

ul0

 !
:

Image registration by the use of (24) can be time consum-
ing for large windows (e.g., 7� 7 pixels or more). Suppos-
ing that a local kernel-predictability has been evaluated for
a given point x and for a fixed set of vectors v0

x , then it is
possible to make an approximation to evaluate the ker-
nel-predictability for a new set of vectors vx, making a lin-
ear approximation in Taylor series around v0

x in the
following way:cKP ðvxÞ � cKP ðv0

xÞ þ ðvx � v0
xÞ

Trv
cKP ðv0

xÞ: ð25Þ
Once the values of cKP ðv0

xÞ and rv
cKP ðv0

xÞ are evaluated, the
approximation to the kernel-predictability is reduced from
jW j2 kernel evaluations, to the calculation of a product of
two vectors containing jW j elements without any kernel
evaluation. Substituting the linearized approximations forcKP J ðvxÞ and cKP T ðvxÞ in (23), it can be rewritten as:

dSKP W xðvxÞ ¼
cKP Jðv0

xÞ þ ðvx � v0
xÞ

Trv
cKP J ðv0

xÞcKP T ðv0
xÞ þ ðvx � v0

xÞ
Trv

cKP T ðv0
xÞ þdKP RðxÞ

:

ð26Þ
Substitution of (26) into the term (21) simplifies the gradi-
ent of the data fidelity term to:

oED

oul
¼ �

X
x:l2W x

ffJ ðxÞ½rv
cKP J ðv0

xÞ�l � fMðxÞ½rv
cKP T ðv0

xÞ�lg

ð27Þ

where ½rv
cKP J ðv0

xÞ�l and ½rv
cKP T ðv0

xÞ�l, are the lth compo-
nent of the kernel-predictability gradients:

½rv
cKP Mðv0

xÞ�l¼�
2

r2
M

X
i2W x

GrM ðI l
T ; I

i
T ÞðIl

T � I i
T ÞrIS½xlþðv0

xÞl�

½rv
cKP J ðv0

xÞ�l¼�
2

r2
J

X
i2W x

GrJ ðIl
J ;I

i
JÞðIl

T � I i
T ÞrIS½xlþðv0

xÞl�

and I i
T ¼ IS ½xi þ ðv0

xÞi�; f J ðxÞ ¼ 1bKP T ðv0
x Þþðvx�v0

x ÞTrv
bKP T ðv0

x ÞþcKP R ðxÞ
;

f MðxÞ ¼
bKP J ðv0

x Þþðvx�v0
xÞ

Trv
bKP J ðv0

x Þ

½ bKP T ðv0
xÞþðvx�v0

x ÞTrv
bKP T ðv0

x ÞþcKP R ðxÞ�2
.
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The optimization by gradient descent using (27),
requires a periodical reevaluation of the values and gradi-
ents of the kernel-predictability, in practice, after every
5–10 iterations. Using this approach an important reduc-
tion in the convergence time is reached without loosing
too much accuracy.
4. Results

In this section we present some results obtained with the
application of our proposal to different image registration
problems.
Table 1
Composition of the five transformations sets

Set / (degrees) a; b c; d t (pixels for each
component)

S1 ½�10�; 10�� ½0:9; 1:1� ½�0:1; 0:1� ½�10:0; 10:0�
S2 ½�20�; 20�� ½0:8; 1:2� ½�0:2; 0:2� ½�20:0; 20:0�
S3 ½�30�; 30�� ½0:7; 1:3� ½�0:3; 0:3� ½�30:0; 30:0�
S4 ½�40�; 40�� ½0:6; 1:4� ½�0:4; 0:4� ½�40:0; 40:0�
S5 ½�50�; 50�� ½0:5; 1:5� ½�0:5; 0:5� ½�50:0; 50:0�

The width of the generating interval for each parameter is progressively
augmented.
4.1. Parametric registration

In the first set of experiments we compared the perfor-
mance of our method with respect to registration by max-
imization of mutual information and normalized mutual
information, in affine registration problems. For these mea-
sures, two different implementations were considered. The
first one, uses the discrete version of the entropy (2),
approximating the probability distributions by normalized
histograms, and performing the optimization with the sim-
plex method [18]; this implementation is widely used and its
advantages over other implementations (in all cases using
the discrete version of the entropy) are documented by
Zhu and Cochoff [26]. The second implementation is based
on the continuous version of the entropy (3), using Parzen
windows for the estimation of the probability densities, and
following [23] for the entropy estimation; these approxima-
tions are:

HðIRÞ ¼ �
1

jAj
X
i2A

log
1

jBj
X
j2B

GrM ðI i
R � Ij

RÞ
( )

ð28Þ

H ½ILðT Þ� ¼ �
1

jAj
X
i2A

log
1

jBj
X
j2B

GrM ðI i
T � I j

T Þ
( )

ð29Þ

H ½ILðT Þ; IR� ¼ �
1

jAj
X
i2A

log
1

jBj
X
j2B

GrJ ðI i
J � Ij

J Þ
( )

; ð30Þ

where A and B, are two different sets of sampled coordi-
nates in the overlapping region of the images, and Gr, is
the normal density with variance r2; the optimization is
done using stochastic gradient ascent, approximating the
partial derivatives with centered finite differences.

Affine transformations can be applied multiplying a
squared matrix A with a point p and adding a translation
vector t, to generate a transformed point p0. The matrix
A is a composition of three simpler transformations: a rota-
tion R, a scaling S, and a shearing H; this is represented by:

p0 ¼ Apþ t ¼ ðRSHÞpþ t:

The order of the matrices multiplication is arbitrary, and
for bidimensional transformations the exact representation
for each matrix is:
R ¼
cos / � sin /

sin / cos /

� �
S ¼

a 0

0 b

� �
H ¼

1 c

0 1

� �
1 0

d 1

� �
:

Five sets, composed of 50 affine transformations each one,
were generated assigning random values for the /; a, b; c,
and d parameters, and for the translation vector. These val-
ues were sampled uniformly from certain intervals, as is
summarized in Table 1.

Different bidimensional images were used for registra-
tion (see Fig. 2). Reference images were created applying
a change in intensity and affine transformations to the
original images (128� 128 pixels), and then extracting a
square of 90� 90 pixels from the center of the transformed
images, as is shown in Fig. 2(a)–(c), excepting images 2(d)
(217� 181 pixels), which correspond to two magnetic res-
onances obtained by the simulator at the Montreal Neuro-
logical Institute [1]; for this case, the floating image is a T 1-
weighted MRI with 9% of noise level and 40% of spatial
inhomogeneities in intensity, and the reference images were
created applying affine transformations to a corresponding
T 2-weighted image. The intensities of every image pair
were scaled between 0 and 100; after that, the change in
intensity was applied through the function

IR ¼ 100ð IL
100
Þ1:35 for images 2(a) and (b) and IR ¼

100ð1� IL
100
Þ1:35 for 2(c). This process was repeated for every

transformation in each set, and the algorithms executed for
registering the original images to the reference images. For
every registration, two Gaussian pyramids of three levels
were constructed by alternatively smoothing (with a Gauss-
ian kernel) and sub-sampling the original source and refer-
ence images; then, the registration started with the identity
transformation in the coarsest level of the pyramids and the
resulting transformation for every level was used as the ini-
tial transformation for the subsequent level. The implemen-
tation details for the two discrete algorithms were set
according to Zhu and Cochoff [26]. For the case of contin-
uous entropy, two different sets of coordinates composed
of 50 samples each one were used. A multiple of the iden-
tity matrix, r2I , was used as the covariance matrix in the



Fig. 2. Images used for registration. For cases (a)–(c), reference images were obtained applying changes in intensity and affine transformations to the
original images, and then extracting a subsquare of the center of the transformed images. For case (d), the reference images were generated applying only
affine transformations to a MR in modality T 2.
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estimation of the joint entropy of images, and for the mar-
ginal entropies the variance was set to the value r2; this
value was fixed manually, considering a percentage of the
dynamic range of the images to be registered. The values
used in these experiments were r ¼ 5% for image 2(a)
and r ¼ 10% for the rest of the images. In the case of
SKP, estimator (13) was employed, using the same number
of samples for estimation as was done with MI and NMI,
and the width of the kernels used were set with the same
considerations, except that a fixed value of r ¼ 8% was
used for all registrations. The number of successful regis-
trations for each set and for each algorithm, is plotted in
Fig. 3; a registration was considered successful if the mean
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Fig. 3. Successful registrations in function of the complexity of the transforma
SPK means ‘‘Similarity based on Kernel-Predictability”, CNMI and DNMI r
finally CMI and DMI, refers to ‘‘Continuous” and ‘‘Discrete Mutual Informa
error between the applied and recovered vector fields was
lower than one pixel. It can be noted that, almost in all
cases, our method outperformed all versions of registration
by mutual information and normalized mutual informa-
tion, specially for large transformations; and that the algo-
rithms based on the discrete version of the entropy have no
robustness when used for registrations with large
transformations.

Considering the algorithms based on the continuous
estimation of entropy, our method presents another advan-
tage. Due to the quadratic cost of the estimation of both
kernel-predictability and entropy, a very important param-
eter is the number of samples used for registration; the
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Fig. 4. Successful registrations as a function of the number of samples used for estimation. The plots show results corresponding to images 2(a)–(d). In the
plot SKP means ‘‘Similarity based on Kernel-Predictability”, CNMI refers to ‘‘Continuous Normalized Mutual Information”; finally CMI refers to
‘‘Continuous Mutual Information”.
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plots in Fig. 4 show the performance of the three methods
when varying this parameter, in this case the set S3 of affine
transformations (described in Table 1) was used in the four
images; as can be seen, our method works considerably
well even using a very small sampling for estimation, which
is not the case of mutual information and normalized
mutual information.

Finally, the performance of our proposal was evaluated
under different kernel functions. Registration of the four
image pairs (shown in Fig. 2) was repeated for SKP using
the one-dimensional kernels described in Table 2 for the
evaluation of the marginal KP’s. The joint KP was evalu-
ated in each case, employing a separable kernel generated
by the product of the two marginal kernels, that is
KJ ðIi

J ; I
j
J Þ ¼ KMðI i

R; I
j
RÞKMðI i

T ; I
j
T Þ. It can be noted in

Fig. 5(a)–(d) that the selection of the kernel for registration
by maximization of SKP is not a critical factor. Small dif-
ferences were obtained for different smooth kernels, how-
ever a poor performance is obtained in the case of the
triangular kernel.
Table 2
Different kernels used for registration with SKP

Gaussian kernel
Cauchy kernel

Exponential kernel
Triangular kernel
4.2. Nonparametric registration

The robustness of our proposal for working correctly
with large transformations and using only few samples,
makes it very suitable to be applied in nonparametric reg-
istration problems. In order to measure the performance ofdSKP in these problems, 10 different synthetic transforma-
tion fields were generated using two grids with 15� 15
nodes of cubic B-spline functions, and assigning random
values to every node. Then, for each pixel ðx; yÞ in the
image, a translation vector ðuðx; yÞ; vðx; yÞÞ was defined in
the following way:

uðx; yÞ ¼
P15

i¼1

P15

j¼1

U ijb½k1ðx� xiÞ�b½k2ðy � yjÞ�

vðx; yÞ ¼
P15

i¼1

P15

j¼1

V ijb½k1ðx� xiÞ�b½k2ðy � yjÞ�
ð31Þ

where Uij; V ij � Uf�7; 7g, for all centering nodes ðxi; yjÞ,
and kd is the proportion of nodes versus the image dimen-
Kðx1; x2Þ ¼ exp½�ðx1 � x2Þ2=r2�
Kðx1; x2Þ ¼ 1

1þaðx1�x2Þ2

Kðx1; x2Þ ¼ expð�jx1 � x2j=r2Þ
Kðx1; x2Þ ¼ 1� ajx1 � x2j for ajx1 � x2j < 1 and Kðx1; x2Þ ¼ 0, otherwise
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Fig. 5. Registration results for SKP using different kernels (described in Table 2). The plot shows registration results using SKP with Gaussian (g), Cauchy
(c), exponential (e) and triangular kernels (l).

Fig. 6. Images used for nonparametric registration. Reference images were created applying changes in intensity and different synthetic transformation
fields to the original images.
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Fig. 8. Execution time for nonparametric registration with SKP as a
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size 200 iterations of the gradient descent were run in every level of the
Gaussian pyramid. The tests were run on a pentium 4, 3.0 GHz, PC.
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sion in the direction d. The cubic B-spline functions used
are:

bðzÞ ¼

2
3
� jzj2 þ jzj

3

2
; jzj < 1:

ð2�jzjÞ3
6

; 1 6 jzj < 2

0; jzjP 2:

8>><>>:
The synthetic fields were applied to two images after a
change in intensity determined by two different tone trans-
fer functions, f1ðIÞ ¼ 100ð I

100
Þ1:35 and f2ðIÞ ¼

100ð1� I
100
Þ1:35 for every image, as shown in Fig. 6. Then,

our nonparametric registration algorithm was executed to
recover the original transformation field and the error mea-
sured for each case. The error was calculated as the average
length of the difference between the applied and recovered
vectors for all pixels. As was done with parametric registra-
tion, Gaussian pyramids of three levels were used for the
source and reference images; in the coarsest level of the
pyramids every vector of the transformation field was ini-
tialized to zero and for all the subsequent levels, the trans-
formation was started with the resulting field of the
previous level. For comparison, the registration algorithm
was run substituting dSKP in the term (21) by the corre-
sponding expressions for MI and NMI based on the contin-
uous entropy (Eqs. (28)–(30)). As described in Section 3.2,
the similarity measures were evaluated at a local level using
small windows placed over each pixel in the images, and
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Fig. 7. Mean error in nonparametric registration for different window sizes. T
using the tone transfer function f1ðIÞ ¼ 100ð I

100
Þ1:35 (left plot), and f2ðIÞ ¼ 100ð1

image 6(b).
windows of different sizes were considered. The results
are summarized in Fig. 7(a)–(d); as can be seen, important
reductions in the mean error are obtained with our pro-
posal compared to MI and NMI when using small windows
for registration, and again, due to the quadratic cost of the
estimations over the number of samples, this is reflected in
important savings in the execution time (see Fig. 8). To
facilitate a qualitative comparison of the errors, the regis-
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he first row shows results for image 6(a) and reference images generated
� I

100
Þ1:35 (right plot). The second row shows the corresponding results for



Fig. 9. Registered images for a specific transformation. In the first row,
the reference image is shown (the same for each case), and in the second
the registered images for SKP (left), NMI (center) and MI (right). The
estimation of the deformation field was done locally using windows of
3� 3 pixels around every pixel in the images. The respective errors were:
1.23, 1.57 and 1.60 pixels.
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tered images by the three methods for a specific transfor-
mation are shown in Fig. 9.
5. Conclusions

In this paper, we have proposed the use of a new sim-
ilarity measure for image registration, based on a novel
concept of kernel-predictability for random variables.
The performance of our registration method was com-
pared with mutual information and normalized mutual
information in different registration situations, including
nonparametric registration, and we have shown experi-
mentally that using our method, important reductions in
registration errors are obtained, mainly when used for
large transformations and in situations where only a small
sampling is available. This robustness is due to the fact
that the new similarity measure is controlled by the most
important features in the images.
Appendix A

An upper bound for the registration measure SKP for
the discrete case may be found in the following way: sup-
pose one uses a kernel K to measure KP for the intensity
distributions of a pair of images I ; J , which has the prop-
erty: Kði; iÞ ¼ 1 P Kði; jÞ, for i–j. One may then construct
a separable kernel K2 for measuring KP for the joint distri-
bution pIJ ðI ; JÞ as:

K2ðði1; j1Þ; ði2; j2ÞÞ ¼ Kði1; i2ÞKðj1; j2Þ
we now have:
KP ðpIJ ðI ; JÞÞ ¼
X

i1

X
i2

X
j1

X
j2

pIJ ði1; j1ÞpIJ ði2; j2Þ

� K2ðði1; j1Þ; ði2; j2ÞÞ
¼
X

i1

X
i2

pIði1ÞpIði2ÞKði1; i2Þ

�
X

j1

X
j2

pðj1ji1Þpðj2ji2ÞKðj1; j2Þ

6

X
i1

X
i2

pIði1ÞpIði2ÞKði1; i2Þ ¼ KP ðpðIÞÞ

In a similar way, one can see that KP ðpIJ ðI ; JÞÞ 6 KP ðpðJÞÞ,
so that SKP ðI ; JÞ 6 1

2
.

Now, consider a reference image IR and a transformed
image IT , and assume that when the transformation T �,
which correctly aligns both images, is used, one has that
the intensities iR; iT � are related by a deterministic, invert-
ible tone transfer function U, so that pðiT � jiRÞ ¼
dðiT � � UðiRÞÞ. Assume also that Kði; jÞ ¼ dði� jÞ (a Kro-
necker delta function). In this case, from the above equa-
tion one can see that KP ðpðIR; IT � ÞÞ ¼ KP ðpðIRÞÞ ¼
KP ðpðIT � ÞÞ, so that SKP ðIR; IT � Þ ¼ 1

2
, which means that

SKP reaches its global maximum when T ¼ T �.
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