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Abstract We prove the rigidity under (compatible) circle actions of several twisted Dirac
operators on almost quaternionic manifolds, and the vanishing of the indices of some of them
as a consequence.
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1 Introduction

The rigidity of elliptic operators under group actions has been widely discussed in the con-
text of the elliptic genera on Spin manifolds [4,8,15,19,25–27], complex manifolds [10,14],
quasi-symplectic manifolds [20], Spinc manifolds [6,7,9] and non-spin π2-finite manifolds
[11–13]. Twisted signature and Dirac operators play a fundamental role in this subject, in
which several suitable twists have been proved to be rigid under group actions. The twists con-
sist of tensoring the (locally defined) spin bundle with appropriate vector bundles (endowed
with connections) prescribed by certain infinite (K -theoretic) product [15,27].

In this paper, we consider twisted Dirac operators on almost quaternionic manifolds resem-
bling those studied on quaternion-Kähler manifolds [18,24]. Here, we prove the subtle prop-
erty of rigidity under group actions for the operators in a similar fashion to [1], and obtain
the vanishing of some of the indices as a corollary. Notice that the rigidity of an operator
does not imply, in general, the vanishing of its index as the signature operator shows. It is
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worth recalling that vanishing theorems of this type have been useful in the classification of
positive quaternion-Kähler manifolds in dimension 8 and 12 (cf. [22] and [11], respectively).

The note is organized as follows. In Sect. 2 we recall some preliminaries on almost qua-
ternionic manifolds. In Sect. 3 we recall the definition of Dirac operators with coefficients
in auxiliary bundles and state our main Theorem 3.1. In Sect. 4, we describe some properties
of the fixed point sets of smooth circle actions preserving the almost quaternionic structure.
In Sect. 5 we prove Theorem 3.1 and one more rigidity theorem (Theorem 5.1).

2 Preliminaries

2.1 Almost quaternionic manifolds

A 4n-dimensional manifold M , n > 1, is called almost quaternionic if there is a rank 3 sub-
bundle Q of the endomorphism bundle End(T M) = T ∗M ⊗ T M such that locally Q has
an (admissible) basis {I, J, K } satisfying the relations I 2 = J 2 = −1 and K = I J = −J I .
The existence of the sub-bundle Q implies the reduction of structure of the frame bundle
of M to a sub-bundle P with structure group GLn(H) ×Z2 Sp(1) ⊂ GL4n(R). Thus, the
complexified tangent bundle of M has the form

T Mc = E ⊗ H,

where E and H correspond to the standard complex representations C
2n and C

2 of GLn(H)

and Sp(1), respectively.
Given any Riemannian metric g1 on an almost quaternionic manifold we can obtain a

quaternion-Hermitian metric g2 as follows

g2(v,w) = g1(v,w)+ g1(Iv, Iw)+ g1(Jv, Jw)+ g1(Kv, Kw),

where v,w are tangent vectors to M , so that

g2(Iv, Iw) = g2(v,w), g2(Jv, Jw) = g2(v,w), g2(Kv, Kw) = g2(v,w).

With this choice, M becomes an almost quaternion-Hermitian manifold. Thus, M has a
further reduction of its structure group to Sp(n)Sp(1). There are three local Kähler forms

ωI (v,w) = g2(v, Iw), ωJ (v,w) = g2(v, Jw), ωK (v,w) = g2(v, Kw),

and a globally defined, non-degenerate 4-form �, called the fundamental form, given by the
local formula

� = ωI ∧ ωI + ωJ ∧ ωJ + ωK ∧ ωK .

Since the stabilizer of � in GL4n(R) is Sp(n)Sp(1), the fundamental form characterizes
such a reduction of structure group [23].

Observe that now, E and H correspond to the standard representations of C
2n of Sp(n)

and C
2 of Sp(1), respectively. Note that

End(T M)c ∼= (E ⊗ H)⊗ (E ⊗ H)

= (E ⊗ E)⊗ (H ⊗ H)

= (
∧2

0 E ⊕ 1 ⊕ S2 E)⊗ (1 ⊕ S2 H)

= ∧2
0 E ⊕ 1 ⊕ S2 E ⊕ ∧2

0 E ⊗ S2 H ⊕ S2 H ⊕ S2 E ⊗ S2 H
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where
∧p

0 E denotes the primitive subspace in
∧p

E with respect to a symplectic form. The
Lie algebra sp(1) has the structure of the space of imaginary quaternions and, therefore, Q
is the associated rank 3 real vector bundle underlying S2 H .

2.2 Characteristic classes

In order to compute characteristic numbers of M we will use the splitting principle. Since
E ∼= E∗ and H ∼= H∗, we can write formally

E = L1 + L−1
1 + · · · + Ln + L−1

n and H = L + L−1, (1)

so that

T Mc = (L1 + L−1
1 + · · · + Ln + L−1

n )⊗ (L + L−1)

= L1L + L−1
1 L + · · · + Ln L + L−1

n L

+L1L−1 + L−1
1 L−1 + · · · + Ln L−1 + L−1

n L−1 (2)

where juxtaposition means tensor product. The total Chern classes of E and H can be formally
written as follows

c(E) = (1 + x1)(1 − x1) · · · (1 + xn)(1 − xn), c(H) = (1 + l)(1 − l),

where xi and l are formal roots corresponding to first Chern classes of Li and L , respectively,
and, therefore,

c(T Mc) = (1 − (x1 + l)2)(1 − (x1 − l)2) · · · (1 − (xn + l)2)(1 − (xn − l)2),

The Pontrjagin class of M is

p(T M) = (1 + (x1 + l)2)(1 + (x1 − l)2) · · · (1 + (xn + l)2)(1 + (xn − l)2),

and the Â-genus is given by

Â(M) =
n∏

j=1

(xi + l)/2

sinh(xi + l)/2
· (xi − l)/2

sinh(xi − l)/2

=
n∏

j=1

xi + l

e(xi +l)/2 − e−(xi +l)/2
· xi − l

e(xi −l)/2 − e−(xi −l)/2

Note that we could change (xi + l) for −(xi + l) or (xi − l) for −(xi − l).
The Chern characters of the relevant coefficient bundles are

ch(E) = ex1 + e−x1 + · · · + exn + e−xn

ch(H) = el + e−l ,

ch(Sq H) =
q∑

t=0

e(q−2t)l ,

and the ones of the exterior powers
∧p

E of E are given by the coefficients of the powers of
t in the following expression

ch(
∧

t E) = ch

⎛

⎝
n∑

p=0

(
∧p

E) · t p

⎞

⎠ =
n∏

i=1

(
(1 + texi ) · (1 + te−xi )

)
,
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where

∧
t E =

∞∑

p=0

(
∧p

E) · t p.

3 Rigidity and Dirac operators

3.1 Rigidity of elliptic operators

Definition 3.1 Let D : �(E) −→ �(F) be an elliptic operator acting on sections of the
vector bundles E and F over a compact manifold M . The index of D is the virtual vector
space ind(D) = ker(D) − coker(D). If M admits a circle action preserving D, i.e. such
that S1 acts on E and F , and commutes with D, ind(D) admits a Fourier decomposition
into complex one-dimensional irreducible representations of S1 ind(D) = ∑

am Lm , where
am ∈ Z and Lm is the representation of S1 on C given by λ 
→ λm . The elliptic operator D
is called rigid if am = 0 for all m �= 0, i.e. ind(D) consists only of the trivial representation
with multiplicity a0.

Let us recall three examples.

Example. The deRham complex

d + d∗ : �even −→ �odd

from even-dimensional forms to odd-dimensional ones, where d∗ denotes the adjoint of the
exterior derivative d , is rigid for any circle action on M by isometries since by Hodge theory
the kernel and the cokernel of this operator consist of harmonic forms, which by homotopy
invariance stay fixed under the circle action.

Example. The signature operator on an oriented manifold

ds : �+
c −→ �−

c

from even to odd complex forms under the Hodge ∗ operator is rigid for any circle action on
M by isometries since the kernel and cokernel of this operator consist of harmonic forms.

Example. The Dirac operator on a Spin manifold is rigid for any circle action by isometries
[1]. This time, however, the rigidity is not due to homotopy invariance.

3.2 Twisted Dirac operators

In this subsection, let M be a 4n-dimensional oriented Riemannian manifold. M is Spin if
its orthonormal frame bundle PSO(4n) admits a double cover by a principal bundle PSpin(4n)

with structure group Spin(4n), the universal cover of SO(4n). This gives rise to new bundles
over M such as the spinor bundle� corresponding to the faithful complex representation of
Spin(4n) of dimension 22n . By using a real or quaternionic structure on� (depending on the
parity of n) and an invariant Hermitian metric we get an equivariant isomorphism � ∼= �∗.
The spinor representation decomposes as

� = �+ ⊕�−,

where �+ and �− are irreducible representations of equal dimension.
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The representation of Spin(4n) on End(�) ∼= �⊗� has kernel {±1}, so that it factors
through SO(4n) and

�⊗� ∼=
4n⊕

k=0

∧k
T,

where T = T Mc denotes the complexified tangent bundle of M and
∧k

T denotes its kth
exterior power. The inclusion of T = ∧1

T in End(�) ∼= �⊗� gives rise to a Spin(4n)-equi-
variant homomorphism µ: T ∗ ⊗� −→ � called Clifford multiplication with the property

µ(T ∗ ⊗�±) = �∓.

The Levi-Civita connection on PSO(4n) can be lifted to PSpin(4n) to define a covariant
differentiation ∇ on �

∇: �(�) −→ �(T ∗ ⊗�),

and the Dirac operator is defined as the composition

/∂ = µ ◦ ∇ : �(�) −→ �(�),

which is elliptic and self-adjoint. Since the spin representation decomposes, the Dirac oper-
ator can be split into two parts

/∂: �(�+) −→ �(�−), /∂∗: �(�−) −→ �(�+).

In terms of dual bases {ei } and {ei } of T and T ∗, respectively,

/∂(ψ) =
4n∑

i=1

µ(ei ⊗ ∇eiψ)

for ψ ∈ �(�+).
We are interested in Dirac operators with coefficients in auxiliary vector bundles F

equipped with a covariant derivative ∇F : �(F) −→ �(T ∗ ⊗ F). The Dirac operator
twisted by F (or with coefficients in F)

(/∂ ⊗ F): �(�+ ⊗ F) −→ �(�− ⊗ F),

is defined by

(/∂ ⊗ F)(ψ ⊗ f ) = /∂(ψ)⊗ f +
4n∑

i=0

µ(ei ⊗ ψ)⊗ ∇F
ei

f,

whereψ ∈ �(�), f ∈ �(F). Note that, even if the manifold is not Spin, the spinor bundle�
can be defined locally. Furthermore, by taking the tensor product of� with another suitably
chosen locally defined vector bundle F , we can still get a globally defined vector bundle
�⊗ F and a Dirac operator /∂ ⊗ F defined by the same formulae.

3.3 Dirac operators on almost quaternionic manifolds

In this subsection, let M be a compact, almost quaternion-Hermitian manifold and� denote
the (locally defined) Spin bundle of M . Depending on whether M is Spin or not, one can
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consider tensor products of � with other bundles such as F p,q = ∧p
E ⊗ Sq H to get a

globally defined vector bundle

�⊗ F p,q = �⊗ ∧p
E ⊗ Sq H.

In general, for�⊗ F p,q to be defined, p + q must be even if M is Spin, and p + q must be
odd if M is not Spin. After choosing connections on

∧p
E and Sq H , there is a Dirac operator

for sections of these bundles

/∂ ⊗ F p,q = /∂ ⊗ (
∧p

E ⊗ Sq H),

and by the Atiyah–Singer Theorem, the index of this operator can be computed by

ind(/∂ ⊗ F p,q) = 〈
ch(

∧p
E)ch(Sq H) Â(M), [M]〉.

We are now ready to state our main theorem.

Theorem 3.1 Let M be a compact 4n-dimensional almost quaternionic manifold admitting
a smooth circle action preserving the almost quaternionic structure. Then there exists a com-
patible quaternion-Hermitian metric so that the circle action is isometric and the twisted
Dirac operators /∂ ⊗ F p,q are rigid (under the action) if p + q ≤ n and p + q ≡ n (mod 2).

Furthermore,

ind(/∂ ⊗ F p,q) = 〈
ch(F p,q) Â(M), [M]〉 = 0

if p + q < n.

Remark 3.1 On any compact, oriented, smooth manifold, the signature operator can be seen
as a Dirac operator twisted by the Spinor vector bundle

ds = /∂ ⊗�.

With respect to Sp(n)Sp(1), the spin representation splits as follows

� = Fn,0 ⊕ Fn−1,1 ⊕ · · · ⊕ F0,n .

Although the rigidity of the signature operator is known, it is interesting to notice that
each one of the pieces in

ds = /∂ ⊗ (Fn,0 ⊕ Fn−1,1 ⊕ · · · ⊕ F0,n)

is also rigid.

4 S1 action and fixed points

In this section, let M be a compact, almost quaternionic manifold admitting a smooth circle
action preserving the almost quaternionic structure.

4.1 Infinitesimal automorphism of the structure

First, choose a Riemannian metric g0 on M and average it over the circle action to get a
S1-invariant metric g1

g1(v,w) =
∫

S1
g0(λ∗v, λ∗w)dλ,
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where v,w ∈ T M . Now, given a local admissible basis {I, J, K }, consider the almost
quaternion-Hermitian metric g2 given, as before, by

g2(v,w) = g1(v,w)+ g1(Iv, Iw)+ g1(Jv, Jw)+ g1(Kv, Kw).

With these choices, the manifold M is now an almost quaternion-Hermitian with an isometric
circle action which preserves the almost quaternionic structure. Let ∇ denote the Levi-Civita
connection on M .

Let X denote the Killing vector field of the circle action. Now the circle action preserves
the almost quaternion-Hermitian structure if and only if X is an infinitesimal automorphism
of the structure, i.e.,

(LX g2)(v,w) = X (g2(v,w))− g2(LXv,w)− g2(v,LXw) = 0,

(LX�)(v,w, x, y) = X (�(v,w, x, y))−�(LXv,w, x, y)−�(v,LXw, x, y)

−�(v,w,LX x, y)−�(v,w, x,LX y) = 0.

Since we have the Levi-Civita connection, the equations are equivalent to

0 = X (g2(v,w))− g2(∇Xv − ∇vX, w)− g2(v,∇Xw − ∇wX),

0 = X (�(v,w, x, y))−�(∇Xv − ∇vX, w, x, y)−�(v,∇Xw − ∇wX, x, y)

−�(v,w,∇X x − ∇x X, y)−�(v,w, x,∇X y − ∇y X).

At a fixed point p of the circle action, X p = 0, (X (g2(v,w)))|p = 0, (X (�(v,w, x, y)))|p =
0, (∇Xv)|p = 0, etc., so that

0 = (g2(∇vX, w)+ g2(v,∇wX))|p, (3)

0 = (�(∇vX, w, x, y)+�(v,∇wX, x, y)+�(v,w,∇x X, y)

+�(v,w, x,∇y X))|p. (4)

Lemma 4.1 Let V be a real vector space and 	 : V ×k −→ R a multilinear map. Let
A ∈ GL(V ) and a ∈ gl(V ) such that A = eta = 1 + ta + t2a2/2! + · · · . Then, A preserves
	

	(Av1, . . . , Avk) = 	(v1, . . . , vk)

if and only if

	(av1, v2, . . . , vk)+ · · · +	(v1, . . . , vk−1, avk) = 0.

Proof If A preserves 	

	(v1, . . . , vk) = 	(Av1, . . . , Avk)

= 	(v1 + tav1 + · · · , · · · , vk + tavk + · · ·)
= 	(v1, . . . , vk)+ t (	(av1, v2, . . . , vk)+ · · · +	(v1, . . . , vk−1, avk))

+O(t2),

which implies

	(av1, v2, . . . , vk)+ · · · +	(v1, . . . , vk−1, avk) = 0.

Conversely, assume

	(av1, v2, . . . , vk)+ · · · +	(v1, . . . , vk−1, avk) = 0.
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Examine

	(Av1, . . . , Avk) = 	(v1 + tav1 + · · · , · · · , vk + tavk + · · ·)
= 	(v1, . . . , vk)+t (	(av1, v2, . . . , vk)+ · · · +	(v1, . . . , vk−1, avk)),

+ 1

2! t2[	(a2v1, v2, . . . , vk)+ · · · +	(v1, . . . , vk−1, a2vk)

+2	(av1, av2, . . . , vk)+ · · · + 2	(v1, . . . , avk−1, avk)] + O(t3)

Observe that the coefficient of t2 (up to a factor) is

	(a2v1, v2, . . . , vk)+ · · · +	(v1, . . . , vk−1, a2vk)

+2	(av1, av2, . . . , vk)+ · · · + 2	(v1, . . . , avk−1, avk)

= 	(a(av1), v2, . . . , vk)+	(av1, av2, . . . , vk)+ · · · +	(av1, . . . , vk−1, avk)

+	(v1, a(av2), . . . , vk)+	(av1, av2, . . . , vk)+ · · · +	(v1, av2, . . . , avk)

...

+	(v1, v2, . . . , a(avk))+	(av1, v2, . . . , avk)+ · · · +	(v1, . . . , avk−1, avk)

= 0,

and similarly for the coefficients of the higher powers of t . Hence,

	(Av1, . . . , Avk) = 	(v1, . . . , vk).

��
Lemma 4.1, (3), (4) and [23, Lemma 9.1] prove the following.

Lemma 4.2 Let M be a compact 4n-dimensional almost quaternionic manifold admitting
a smooth circle action preserving the almost quaternionic structure. Then, there exists a
compatible quaternion-Hermitian metric so that the circle action is isometric, and at a fixed
point p, (∇ X)|p belongs to the Lie algebra of the structure group, sp(n)⊕ sp(1). ��
Remark 4.1 Notice that we have chosen a particular metric so that the vector field X becomes
a Killing vector field. In general, however, Killing vector fields may not preserve the Sp(n)
Sp(1) structure since this structure is parallel only when the Riemannian manifold is quater-
nion-Kähler.

4.2 Exponents of the S1 action and fixed point submanifolds

In this section, let M be a compact, almost quaternion-Hermitian manifold with an isometric
circle action preserving the almost quaternionic structure.

Let P ⊂ M S1
be an S1-fixed submanifold. The tangent space at a point p ∈ P can be

decomposed as follows

T Mp = Lm1 + · · · + Lm2n

where mi ∈ Z are the exponents of the action so that z ∈ S1 acts via multiplication by zmi

on Lmi . The sign of these exponents can be changed in lots of two.
We can be more precise about these exponents. Since the S1 action on M is isometric,

it lifts to the tangent bundle and to the bundle of orthonormal frames while preserving the
Levi-Civita connection. On a fixed submanifold P , S1 acts on the fibers of the restricted
bundles S2 H |P ,

∧2
E |P , etc., since by Lemma 4.2, (∇ X)|p ∈ sp(n)⊕ sp(1). By composing
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with projections to both factors we see that S1 lies inside maximal tori of Sp(n) and Sp(1),
respectively. In this way, E p , Hp , S2 Hp ,

∧2
E p , etc., can be decomposed formally into sums

of complex line bundles under the S1 action, and we can take the formal decompositions (1)
to be the ones given by S1 at p ∈ P . Thus, z ∈ S1 acts on L2

j |p and L2|p by multiplication

by ze j and zh , respectively, for some integers e j = e j (P) ∈ Z and h = h(P) ∈ Z. In this
way, by (2), the mi become either

±mi = ea + h

2
or ± mi = ea − h

2

for some 1 ≤ a ≤ n, where n of the exponents must be of the first type and the remaining n
exponents must be of the second type.

Now, let us suppose that P has positive dimension. That means that over P some mi are
equal to zero. For instance, if m j = e j −h = 0, there are two possibilities: either e j +h = 0
or not.

Case e j + h = 0. In this case e j = h = 0. Since not all of the exponents can be zero,
we see that the real dimension of P is a multiple of 4. Furthermore, h = 0 implies that the
action of S1 on S2 H |p is trivial, so that no almost complex structure is being distinguished
by the S1 action, but we will still have a quaternionic structure over P (see below).

Case e j + h �= 0. Here h �= 0, which means that the real dimension of P increases by
2 for each e j �= −h, and there can only be up to n of them. Furthermore, since h �= 0, the
action on S2 H |p is non-trivial, so that there is a distinguished one-dimensional subspace of
S2 H |p as a trivial summand giving us an almost complex structure on T P (see below).

Proposition 4.1 Let M be a 4n-dimensional almost quaternion-Hermitian manifold admit-
ting a non-trivial isometric circle action preserving the almost quaternionic structure. If M S1

is not empty, the connected components P ⊂ M S1
are either

• almost quaternionic submanifolds of real dimension a multiple of 4,
• or almost complex submanifolds of real dimension at most 2n.

Proof Let X denote the Killing vector field of the S1 action. The tangent space to a component
P ⊂ M S1

is given as

Tp P = {Y ∈ Tp M |∇Y X = 0}.
At an S1-fixed point p ∈ P , X is determined by (∇ X)|p and, by Lemma 4.2, (∇ X)|p belongs
to sp(n)⊕ sp(1).

For the first case, the action of S1 on the fibers of S2 Hp is trivial, i.e. h = 0, so that the
projection on the sp(1)-factor is also zero and

(∇ X)|p = σ ∈ �(S2 E |p).

Thus, for any almost complex structure η ∈ �(Q|P ) and Y ∈ Tp P

∇ηY X = σ(ηY )

= ησY

= η∇Y X

= 0,

so that ηY ∈ Tp P , since the action of sp(1) commutes with the one of sp(n). In other words,
Q|P gives endomorphisms of T P , thus making P an almost quaternionic submanifold of
M .

123



148 Geom Dedicata (2008) 134:139–152

For the second case, since h �= 0, the action of S1 on the fibers of S2 Hp is non-trivial,
i.e., the splitting

S2 Hp = L2 + 1 + L−2

contains an honest trivial line bundle determined by the projection of ∇ X to sp(1), which is
nonzero. Thus

(∇ X)|p = tξ + σ ∈ �(S2 Hp ⊕ S2 E p),

for some ξ of constant unit length and t ∈ R. Now, for Y ∈ Tp P

∇ξY X = (tξ + σ)(ξY )

= tξξY + σξY

= ξ(tξ + σ)Y

= ξ∇Y X

= 0,

so that ξY ∈ Tp P , and ξ is an almost complex structure on T P . ��
This proposition generalizes results of [5] and [3].

5 Rigidity of twisted Dirac operators

First, let us make the following remark.

Remark 5.1 Consider the function of z ∈ C

F(z) = zk

z−mex − zme−x

where x is an unknown, k,m ∈ Q and, for simplicity, let us assume m > 0. We wish to
control the behaviour of the function F(z) at 0 and ∞. Thus,

lim
z→0

F(z) = lim
z→0

zk+m

ex − z2me−x
= 0 (5)

if k > −m, and

lim
z→∞ F(z) = lim

z→∞
zk−m

z−2mex − e−x
= 0 (6)

if k < m. Hence, F has zeroes at 0 and ∞ if |k| < |m|.
In fact, even if k + m = 0

lim
z→0

F(z) = lim
z→0

1

ex − z2me−x
= 1

ex
(7)

and

lim
z→∞ F(z) = lim

z→∞
z−2m

z−2mex − e−x
= 0, (8)

and analogously if k − m = 0.
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Proof of Theorem 3.1. Consider the bundle F p,q and assume the corresponding twisted
Dirac operator is defined. By the Atiyah–Singer index theorem, the index of the elliptic
operator /∂ ⊗ F p,q can be computed as follows

ind(/∂ ⊗ F p,q) = 〈
ch(

∧p
E) · ch(Sq H) · Â(M), [M]〉

=
〈(∑

(e((−1)ε1 xi1 +···+(−1)εr xir ) + e−((−1)ε1 xi1 +···+(−1)εr xir )
)

×
( q∑

t=0

e(q−2t)l

)

×
⎛

⎝
n∏

j=1

xi + l

e(xi +l)/2 − e−(xi +l)/2
· xi − l

e(xi −l)/2 − e−(xi −l)/2

⎞

⎠ , [M]
〉

.

where 1 ≤ i1 < . . . < ir ≤ n, r ≤ p, r ≡ p (mod 2), and εi = 0, 1. By the Atiyah–Singer
fixed point theorem [2], the equivariant version of the index can be written in terms of the
local data of M S1

(see [16, p. 67])

ind(/∂ ⊗ F p,q)z =
∑

P⊂M S1

µp,q(P, z)

where z ∈ S1 be a generic element of S1, µp,q(P, z) is the local contribution of the fixed
point connected component (submanifold) P ⊂ M S1

µp,q(P, z) =
〈(∑

(z−((−1)ε1 ei1 +···+(−1)εr eir )/2e((−1)ε1 xi1 +···+(−1)εr xir )

+z((−1)ε1 ei1 +···+(−1)εr eir )/2e−((−1)ε1 xi1 +···+(−1)εr xir ))
)

×
( q∑

t=0

z(q−2t)h/2e−(q−2t)l

)

×
∏

ei +h=0

(xi + l)
∏

e j −h=0

(x j − l)

×
n∏

i=1

1

z−(ei +h)/4e(xi +l)/2 − z(ei +h)/4e−(xi +l)/2

×
n∏

i=1

1

z−(ei −h)/4e(xi −l)/2 − z(ei −h)/4e−(xi −l)/2
, [P]

〉

.

Here, we have substituted

M by P,

e±xi by z∓ei /2e±xi ,

e±l by z∓h/2e±l .

The exponents of
∧p

E ⊗ Sq H are of the form

(−1)ε1 ei1 + · · · + (−1)εp eir ± sh

where 1 ≤ i1 < . . . < ir ≤ n, r ≤ p, r ≡ p (mod 2), s ≤ q , s ≡ q (mod 2), and εi = 0, 1.
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From Remark 5.1 we see that /∂ ⊗ F p,q is rigid, i.e. does not depend on z, if
∣
∣
∣
∣
∣

r∑

a=1

(−1)εa eia ± sh

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

r∑

a=1

(−1)εa

(
eia + h

2
+ eia − h

2

)

±
s∑

b=1

(
h + e jb

2
+ h − e jb

2

)∣
∣
∣
∣
∣

≤ 1

2

[
r∑

a=1

(|eia + h| + |eia − h|)+
s∑

b=1

(|h + e jb | + |h − e jb |)
]

≤ 1

2

n∑

i=1

(|ei + h| + |ei − h|),

which is fulfilled as long as there exists an s-tuple of indices j1 < · · · < js such that
{ j1, . . . , js} ⊂ {1, . . . , n}− {i1, . . . , ir }. More precisely, the last inequality holds if p + q ≤
n so that the function µp,q(P, z) has finite values at 0 and ∞. Each equivariant index
ind(/∂ ⊗ ∧p

E ⊗ Sq H)z , as well as being a rational function of the complex variable z, it
also belongs to the representation ring R(S1) of S1 which can be identified with the Laurent
polynomial ring Z[z, z−1]. Notice that as an equivariant index, it can only have poles on the
unit circle; as a Laurent series it can only have poles at 0 and ∞. Thus it has no poles at all
and is constant in the variable z.

Furthermore, if p + q < n, and p + q ≡ n (mod 2), µp,q(P, z) has zeroes at 0 and ∞,
so that the equivariant index ind(/∂ ⊗ F p,q)z vanishes at 0 and ∞. Hence,

ind(/∂ ⊗ ∧p
E ⊗ Sq H) = ind(/∂ ⊗ ∧p

E ⊗ Sq H)1 = 0. ��
Remark 5.2 We can see from the proof of Theorem 3.1 that the exponents of the S1 action
at the fixed points determine the rigidity (and vanishing) of the equivariant indices of several
twisted Dirac operators. We cannot, however, apply the same arguments to obtain general
rigidity theorems for other twisted Dirac operators, such as /∂ ⊗ S2 E since we would have
the following inequalities

|ei + e j | < 1

2

n∑

i=1

(|ei + h| + |ei − h|) for i < j,

|ei − e j | < 1

2

n∑

i=1

(|ei + h| + |ei − h|) for any i, j,

2|ei | < 1

2

n∑

i=1

(|ei + h| + |ei − h|) for all i.

The last set of inequalities may not be fulfilled in general.

Despite Remark 5.2 we can prove the following rigidity theorem.

Theorem 5.1 Let M be an 8n-dimensional almost quaternion-Hermitian manifold admitting
an isometric circle action preserving the almost quaternionic structure. Then the operators

/∂ ⊗ T Mc and /∂ ⊗ S2 E

are rigid.

Proof For /∂ ⊗ T Mc (the Rarita-Schwinger operator) recall that

T Mc = E ⊗ H = F1,1,
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so that Theorem 3.1 gives another proof of its rigidity not requiring the Witten rigidity theo-
rem for the elliptic genus [4]. Note that in this dimension, almost quaternionic manifolds are
Spin [21].

For /∂ ⊗ S2 E , on the other hand, observe that
∧2
(T Mc) = S2 E ⊕ ∧2

E ⊗ S2 H ⊕ S2 H.

Given that M is Spin [21], the Witten rigidity theorem [4] says that the operator /∂⊗∧2
(T Mc)

is rigid. Since the operators /∂ ⊗ F2,2 and /∂ ⊗ F0,2 are also rigid, the operator /∂ ⊗ S2 E must
also be rigid. ��
Remark 5.3 Theorems 3.1 and 5.1 are applicable to the compact homogeneous quaternionic
manifolds given by Joyce [17].
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