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160 B. Fernández et al.

Introduction

The ruin probability of the reserve of an insurance company, in finite and infinite
horizon, when there is the possibility to invest in a risky asset, has recently received
a lot of attention. It is well known that for the classical Cramér–Lundberg process
(where there is no investment and the claims have exponential moments), the ruin
probability decreases exponentially with respect to the initial wealth.

Hipp and Plum (2000), assuming that the price of stock is modeled by the Geometric
Brownian Motion, determined the strategy of investment which minimizes the ruin
probability using the Hamilton–Jacobi–Bellman equation. In Gaier et al. (2003), under
the same hypotheses as Hipp and Plum, obtained an exponential bound with a rate
that improves the classical Lundberg parameter by proposing a trading strategy that
consists in investing in the stock a constant amount of money, independent of the
current level of the reserve. Hipp and Schmidli (2004) showed that this strategy is
asymptotically optimal as the initial capital tends to infinity.

In this paper we study the problem from a different point of view. We follow the
approach introduced by Ferguson (1965) who conjectured that maximizing exponen-
tial utility from terminal wealth is intrinsically related to minimizing the probability
of ruin. Ferguson studied this problem for a discrete time and discrete space investor.
Browne (1995) verified the conjecture in a model without interest rate, where the stock
follows a Geometric Brownian Motion, and the Risk Process is a Brownian Motion
with drift, see Ferguson (1965), Browne (1995), and references therein. We consider
the wealth process of the reserve of an insurance company,

Xπ
t = x + ct −

Nt∑

j=0

Y j +
t∫

0

(a − η)πr dr

+
t∫

0

ηXπ
r dr +

t∫

0

σπr d Br ,

where x is the initial surplus, c is the premium rate, the claims (Y j ) j≥1 have exponential
moments, (πt )t≥0 is the amount invested at time t in a risky asset that follows a
Geometric Brownian Motion, and the rest of the wealth (Xπ

t − πt )t≥0 is invested in
a bond (see the complete formulation of the problem in Sect. 1). We first determine
the optimal strategy that maximizes an exponential utility function (− exp−γ x ) of the
wealth process for a finite horizon of time (T ). As a next step we examine the finite time
ruin probability of the reserve process controlled by the optimal strategy. We obtain an
exponential bound for the ruin probability that, when applied to the Classical Cramér
Risk Process, improves the classical Lundberg parameter for some values of γ . If
we take the particular value γ = r̂ , with r̂ as in Gaier et al. (2003)—their modified
Lundberg parameter—and with zero interest rate, our strategy is the same as the one
obtained by Gaier, Grandits and Schachermayer, and Hipp and Schmidli. Hence, we
can conclude that there is a deep relationship between maximizing the exponential
utility function and minimizing the probability of ruin.
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Optimal investment strategy with maximal risk aversion 161

There are other works showing the relation between utility maximization and ruin
probability minimization; when the claim process is a pure jump process (not neces-
sarily compound Poisson) it has been studied by Wang (2007), while the case when
the cash flow of the investor follows a jump diffusion process was analyzed in Yang
and Zhang (2005). For the case of the classic Cramér–Lundberg model with different
controls we refer to Guerra and Centeno (2008).

The organization of this paper is as follows. Section 1 is devoted to describe the
problem. In Sect. 2 we prove the verification theorem for the optimization problem,
Theorem 2.1. In Sect. 3 we give a closed form solution for an exponential utility
function and find, explicitly, the optimal strategy in Theorem 3.1. In Sect. 4 we estimate
a bound for the ruin probability in Proposition 4.1 and show that our results include
those of other authors (see, in particular, Remark 4.3). Finally, in the last Section, we
discuss numerical results.

1 Formulation of the problem

In this section we formulate an optimal investment problem for an insurance company
which is allowed to invest in the securities market. Let (�,F , P) be the underlying
probability space, where a Brownian motion (Bt )t≥0, a Poisson process (Nt )t≥0 with
constant intensity λ, and a sequence of independent non-negative random variables
(Yi )i≥1 with identical distribution ν are defined. It is assumed that (Bt )t≥0, (Nt )t≥0
and (Yi )i≥1 are independent, and for each t > 0 the filtration (Ft )t≥0 containing the
information up to time t is defined by

Ft = σ {Bs, Ns, Y j 11[ j≤Ns ], s ≤ t, j ≥ 1}.

The market where the insurer can invest is composed by a bank account S0 and a risky
asset St , whose dynamics satisfy

S0
t = S0

0 eηt , S0
0 = 1,

d St = St (adt + σd Bt ), S0 = s0,

where η, a, and σ are constants.
On the other hand the risk process is described by the classical Cramér–Lundberg

model, using a compound Poisson process for the claims. Given the initial surplus x
and the premium rate c > 0, the risk process

Rt = x + ct −
Nt∑

i=1

Yi ,

where (Yi )i≥1 model the claim amounts.
We are interested in a finite time horizon problem. Then, at each time t ∈ [0, T ],

with T > 0 fixed, the insurer divides his wealth Xt between the risky and the riskless
assets and if a claim is received at that time, it is paid immediately. Let πt be the
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162 B. Fernández et al.

amount of wealth invested in the risky asset at time t , which takes values in R, while
the rest of his wealth Xt − πt is invested in the bank account. Then, if at time s < T
the surplus of the company is x , the wealth process satisfies the dynamics

Xs,x,π
t = x + c(t − s) −

Nt∑

j=Ns+1

Y j +
t∫

s

(a − η)πr dr

+
t∫

s

ηXs,x,π
r dr +

t∫

s

σπr d Br , (1.1)

with the convention that
∑0

j=1 = 0. When s = 0, we write Xπ
t .

Definition 1.1 We say that π = (πt )t≥0 is an admissible strategy if it is a Ft -
progressively measurable process such that

P[|πt | ≤ Aπ , 0 ≤ t ≤ T ] = 1.

Note that the constant Aπ may depend on the strategy, and Eq. (1.1) has a unique
solution (see Theorem V.7 in Protter 2005). We denote the set of admissible strategies
with A.

A utility function U : R → R is defined as a twice continuously differentiable
function, with the property that U (·) is strictly increasing and strictly concave. We
consider the optimization problem consisting on maximizing the expected utility of
the terminal wealth at time T, i.e. we are interested in the following value function:

W (s, x) = sup
π∈A

E
[
U
(
Xs,x,π

T

)]
. (1.2)

We say that an admissible strategy π∗ is optimal if W (s, x) = E[U (Xs,x,π∗
T )].

The main results of this paper can be summarized as follows: when the risk prefe-
rences of the insurer are exponential, the optimal investment problem described above
can be solved explicitly and, for the optimal investment strategy, it is possible to obtain
an estimate of the associated ruin probability.

2 Verification theorem

In order to find a solution to the optimal investment problem formulated in (1.2) we
will use dynamic programming techniques. The dynamic programming approach is
suitable in view of the Markov structure of the stochastic processes involved in the
model. See, for instance, Fleming and Soner (1993) for a general background in the
theory of optimal stochastic control. The Hamilton–Jacobi–Bellman (HJB) equation
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Optimal investment strategy with maximal risk aversion 163

associated with the optimal stochastic control problem is given by

0 = ∂V

∂t
(t, x) + max

π̃∈R

{
σ 2

2
π̃2 ∂2V

∂x2 (t, x) + (π̃(a − η) + ηx)
∂V

∂x
(t, x)

}

+ c
∂V

∂x
(t, x) + λ

∫

R

[V (t, x − y) − V (t, x)]ν(dy), (2.3)

with terminal condition V (T, x) = U (x). Next we establish a verification theorem,
which relates the solution of the HJB equation (when it exists) to the value function
(1.2).

Theorem 2.1 Assume that there exists a classical solution V (t, x) ∈ C1,2([0, T ]×R)

to the HJB equation (2.3) with boundary condition V (T, x) = U (x). Assume also that
for each π ∈ A

T∫

0

∫

R

E|V (s, Xπ
s− − y

)− V
(
s, Xπ

s−
) |2ν(dy)ds < ∞ (2.4)

and
T∫

0

E
[
πs−

∂V

∂x

(
s, Xπ

s−
)]2

ds < ∞. (2.5)

Then, for each s ∈ [0, T ], x ∈ R,

V (s, x) ≥ W (s, x).

If, in addition, there exists a bounded measurable function π∗ : [0, T ]×R → R such
that

π∗(t, x) ∈ argmaxπ∈R

{
σ 2

2
π2 ∂2V

∂x2 (t, x) + (π(a − η) + ηx)
∂V

∂x
(t, x)

}
,

then π∗
t = π∗(t, Xπ∗

t− ) defines an optimal investment strategy in feedback form if (1.1)

admits a unique solution Xπ∗
t and

V (s, x) = W (s, x) = EU
[

Xs,x,π∗
T

]
.

In order to prove this theorem we need the following lemma. Its proof can be
adapted from Lamberton and Lapeyre (1996, Lemma 7.2.2) and will be omitted.

Lemma 2.1 Let φ(t, x, y) : R+ × R × R → R be a measurable function such that,
for each y ∈ R, the function (t, x) → φ(t, x, y) is continuous and let (Xπ

t )t≥0 be the

123



164 B. Fernández et al.

right continuous process defined in (1.1) for an admissible strategy π . Assume that
for every t ∈ [0, T ]

E

⎛

⎝
t∫

0

ds
∫

R

φ2(s, Xπ
s , y)ν(dy)

⎞

⎠ < ∞.

Then the process (Mt )t≥0 defined by

Mt =
Nt∑

j=1

φ
(
τ j , Xπ

τ j
, Y j

)
− λ

t∫

0

ds
∫

R

φ
(
s, Xπ

s , y
)
ν(dy),

where τn = inf{t ≥ 0, Nt = n}, is a square integrable martingale and

M2
t − λ

t∫

0

ds
∫

R

φ2 (s, Xπ
s , y

)
ν(dy),

is a martingale.

Proof of Theorem 2.1 Given π ∈ A, 0 ≤ s < T and x ∈ R, Ito’s formula implies
that, for any r ∈ [s, T ),

V
(
r, Xs,x,π

r

) = V (s, x) +
r∫

s

∂V

∂t

(
t, Xs,x,π

t−
)

dt

+
r∫

s

∂V

∂x

(
t, Xs,x,π

t−
) {

c + (a − η)πt− + ηXs,x,π

t−
}

dt

+ σ 2

2

r∫

s

∂2V

∂x2

(
t, Xs,x,π

t−
)
π2

t−dt

+
∑

s≤t≤r

[
V
(
t, Xs,x,π

t
)−V

(
t, Xs,x,π

t−
)]+

r∫

s

∂V

∂x

(
t, Xs,x,π

t−
)
σπt−d Bt

= V (s, x) +
r∫

s

∂V

∂t

(
t, Xs,x,π

t−
)

dt

+
r∫

s

∂V

∂x

(
t, Xs,x,π

t−
) {

c + ηXs,x,π

t− + (a − η)πt−
}

dt

+ σ 2

2

r∫

s

∂2V

∂x2

(
t, Xs,x,π

t−
)
π2

t−dt
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+ λ

r∫

s

∫

R+

[
V
(
t, Xs,x,π

t− − y
)− V

(
t, Xs,x,π

t−
)]

ν(dy)dt

+
⎡

⎣
∑

s≤t≤r

[
V
(
t, Xs,x,π

t
)− V

(
t, Xs,x,π

t−
)]

− λ

r∫

s

∫

R+

[
V
(
t, Xs,x,π

t− − y
)− V

(
t, Xs,x,π

t−
)]

ν(dy)dt

⎤

⎦

+
r∫

s

∂V

∂x

(
t, Xs,x,π

t−
)
σπt−d Bt . (2.6)

The last term is a martingale because it is an stochastic integral with respect to Brow-
nian motion and the integrand satisfies (2.5). Moreover, defining

φ(t, x, y) := V (t, x − y) − V (t, x), (2.7)

and the stopping times as (τ j ) j≥1, we have that

Nr∑

j=Ns+1

φ

(
τ j , Xs,x,π

τ−
j

, Y j

)
=
∑

s≤t≤r

(
V
(
t, Xs,x,π

t
)− V

(
t, Xs,x,π

t−
))

.

From the previous lemma, the term

⎡

⎣
∑

t≤r

[
V
(
t, Xπ

t

)− V
(
t, Xπ

t−
)]− λ

r∫

0

∫

R+

[
V
(
t, Xπ

t− − y
)− V

(
t, Xπ

t−
)]

ν(dy)dt

⎤

⎦

is a martingale. Now, using the hypotheses that V solves the HJB equation (2.3) and
since the probability of a jump at a fixed time t is zero, taking expectations on both
sides of (2.6), it follows that

EV
(
r, Xs,x,π

r

) = V (s, x) + E

r∫

s

Aπ V
(
t, Xs,x,π

t
)

dt

≤ V (s, x) + E

r∫

s

sup
π∈R

Aπ V
(
t, Xπ

t

)
dt

= V (s, x), (2.8)

where Aπ is the operator
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166 B. Fernández et al.

Aπ (V (t, x)) = ∂V

∂t
(t, x) + ∂V

∂x
(t, x)(c + πt (a − η) + ηx)

+ σ 2

2
π2

t
∂2V

∂x2 (t, x) + λ

∫

R

[V (t, x − y) − V (t, x)]ν(dy). (2.9)

Letting r = s, we get

W (s, x) ≤ V (s, x).

The assumptions stated in the second part of the Theorem imply thatπ∗ is an admissible
feedback control. Repeating the above calculations with πt = π∗(t, Xπ∗

t −), it follows
that inequality (2.8) becomes an equality. Hence,

V (s, x) = E
[
U
(

Xs,x,π∗
T

)]
≤ W (s, x),

and together with the first part implies that

V (s, x) = W (s, x).

When s = T the theorem follows directly from the terminal condition V (T, x) =
U (T, x). ��

Remark 2.1 In the next section a closed form solution to the HJB equation (2.3) will
be found if the insurer has an exponential risk preference. Also, an estimate for the
ruin probability when the optimal investment strategy is followed will be obtained.

3 Explicit solutions for exponential utility function

In this section we will obtain an explicit solution to the HJB equation (2.3) when the
utility function is of exponential type, i.e.

U (x) = −e−γ x .

Also, using the verification theorem proved in the previous section, an explicit optimal
strategy π∗ will be found.

In view of the form of the utility function and the dynamics of the wealth process
Xπ

t , we propose as solution to the HJB equation the function

W (t, x) = −Kt exp {−γ xeη(T −t)}, (3.10)

where the function Kt will be defined below.
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Optimal investment strategy with maximal risk aversion 167

From the definition of W (t, x) we have that

∂W

∂t
= {−K ′

t − Kt [γ xηeη(T −t)]} exp {−γ xeη(T −t)}, (3.11)

∂W

∂x
= Kt exp {−γ xeη(T −t)}γ eη(T −t), (3.12)

∂2W

∂x2 = −Ktγ
2e2η(T −t) exp{−γ xeη(T −t)} (3.13)

and

λ

∫

R

[W (x − y) − W (x)]ν(dy)

= −Ktλ exp {−γ xeη(T −t)}
⎡

⎣
∫

R

[exp {γ yeη(T −t)} − 1]ν(dy)

⎤

⎦ . (3.14)

Substituting expressions (3.11–3.14) in (2.3), we obtain

−K ′
t − Ktγ xηeη(T −t) + Kt (c + ηx)γ eη(T −t)

+ max
π

{
−1

2
σ 2π2 Ktγ

2e2η(T −t) + Ktγ (a − η)πeη(T −t)
}

−λKt

∫

R

[exp{γ yeη(T −t)} − 1]ν(dy)

= −K ′
t + Kt cγ eη(T −t)

+ max
π

{
Kt e

η(T −t)
[
−1

2
σ 2π2γ 2eη(T −t) + γ (a − η)π

]}

−λKt

∫

R

[exp{γ yeη(T −t)} − 1]ν(dy), (3.15)

and the maximum in the last expression is attained at

π∗(t, x) = a − η

γ σ 2 e−η(T −t).

Substituting π∗ in (3.15), we obtain the following first order differential equation for
Kt :

K ′
t − Kt

[
1

2

(a − η)2

σ 2 − λβt + cγ eη(T −t)
]

= 0, (3.16)

where

βt :=
∫

R

[exp{γ yeη(T −t)} − 1]ν(dy).
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In view of (3.10), the terminal condition W (T, x) = −e−γ x will be satisfied when
KT = 1. Hence, the solution of the ODE (3.16) is given by

Kt = exp

⎧
⎨

⎩−1

2

(a − η)2

σ 2 (T − t) + cγ

η
[1 − eη(T −t)] + λ

T∫

t

βsds

⎫
⎬

⎭ .

Remark 3.1 When the interest rate η is zero, βt is independent of t . In this case its
constant value is denoted by β.

Theorem 3.1 Assume that

∫

R

exp{4γ yeηT }ν(dy) < ∞.

Then, the value function defined in (1.2) has the form

W (t, x) = − exp

⎧
⎨

⎩−1

2

(a − η)2

σ 2 (T − t) + cγ

η
[1 − eη(T −t)] + λ

T∫

t

βsds

⎫
⎬

⎭

· exp {−γ xeη(T −t)}, (3.17)

and

π∗(t, x) = a − η

γ σ 2 e−η(T −t)

is an optimal strategy.
In particular, when η = 0 we have that

W (t, x) = − exp

{
−1

2

a

σ 2 (T − t) + cγ (T − t) + λβ(T − t)

}
e−γ x (3.18)

and

π∗(t, x) = a

γ σ 2 .

Proof We have checked already that the function W (t, x) defined in (3.10) solves the
HJB equation (2.3). Now, we would like to apply Theorem 2.1 and, in order to do
that, we shall verify first that the needed assumptions are satisfied. Let π ∈ A be
an admissible strategy. Next we get an estimate which yields the first condition (2.4)
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when η = 0. Observe that substituting the definitions of W (t, x) and Xπ
t we get

E
∫

R

|W (t, Xπ
t− − y) − W (t, Xπ

t−)|2ν(dy) = K 2
t E exp{−2γ Xπ

t−}
∫

R

[eγ y − 1]2ν(dy)

= K 2
t

∫

R

[eγ y − 1]2ν(dy)E exp{−2γ Xπ
t−} (3.19)

= K 2
t

∫

R

[eγ y − 1]2ν(dy)e−2γ (x+ct)

·E exp

⎧
⎨

⎩−2γ a

t∫

0

πr dr − 2γ σ

t∫

0

πr d Br + 2γ

Nt−∑

j=1

Y j

⎫
⎬

⎭

(3.20)

Now, define the following exponential martingale

Lt = exp

⎧
⎨

⎩−4γ σ

t∫

0

πr d Br − 1

2
(4γ )2σ 2

T∫

0

π2
r dr

⎫
⎬

⎭ .

Notice that Novikov’s condition is satisfied in view of that strategy π is bounded (by
constant Aπ ), according with the definition of admissible strategies. Then, from the
independence of Nt and Y j , j = 1, 2, . . ., and using Holder’s inequality and the form
of the moment generating function,

E exp

⎧
⎨

⎩−2γ a

t∫

0

πr dr − 2γ σ

t∫

0

πr d Br + 2γ

Nt−∑

j=1

Y j

⎫
⎬

⎭

= E exp

⎧
⎨

⎩

t∫

0

[
−2γ aπr + 8γ 2σ 2π2

r

]
dr

⎫
⎬

⎭

· L
1
2
t exp

⎧
⎨

⎩4γ

Nt−∑

j=1

Y j

⎫
⎬

⎭

1/2

≤ e
[
2γ |a|Aπ+8γ 2σ 2 A2

π

]
T {ELt }1/2

⎧
⎨

⎩E exp

⎧
⎨

⎩4γ

Nt−∑

j=1

Y j

⎫
⎬

⎭

⎫
⎬

⎭

1/2

= e
[
2γ |a|Aπ+8γ 2σ 2 A2

π

]
T exp

⎧
⎨

⎩
λt

2

⎡

⎣
∫

R

e4γ yν(dy) − 1

⎤

⎦

⎫
⎬

⎭

< ∞.
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In order to prove the second condition (2.5), notice that

E[πt Wx (t, Xπ
t−)]2 ≤ A2

πγ 2Ee−2γ Xπ

t− . (3.21)

Then, using the same arguments given after (3.19), it follows that the right-hand side
of (3.21) is finite. Now, once we have verified the hypotheses of Theorem 2.1, it can
be applied to derive the results of the theorem.

When the interest rate η is non-zero, we apply the following argument. Given Xπ
t

the unique solution of (1.1), set

X̃π
t := eη(T −t) Xπ

t , c̃t := eη(T −t)c,

ν̃(dy × dt) := eη(T −t)ν(dy × dt), S̃t = eη(T −t)St ,

where ν(dy × dt) is the random Poisson measure associated with the Poisson process
(Nt )t≥0 and the distribution ν(dy) of the random variables (Y j ) j≥1. Then, X̃π

t solves
the equation

X̃π
t = x +

t∫

0

[(a − η)πr + c̃r ]dr +
t∫

0

σπr d Br −
t∫

0

∫

R

yν̃(dy × dr),

which corresponds to the case when the interest rate is zero, with drift a − η. Hence,
the results can be derived from the first part of the proof. ��

4 Ruin probability

In this section we shall estimate the ruin probability when the insurer follows the
optimal strategy obtained in the previous section, and we show our results include
those of Gaier et al. (2003).

Recall that the wealth process associated with the optimal investment strategy π∗
is given by

X∗
t = x + ct −

Nt∑

j=1

Y j +
t∫

0

(a − η)2

γ σ 2 e−η(T −r)dr

+
t∫

0

ηX∗
r dr +

t∫

0

(a − η)

γ σ
e−η(T −r)d Br , for η ≥ 0. (4.22)

On the other hand, it is clear that

P[X∗
s ≤ 0, for some s ∈ [0, t]] = P

[
sup

s∈[0,t]
−X∗

s ≥ 0

]
. (4.23)
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The upper bound for the ruin probability will be proved with the aid of the following
result, which is a particular case of Lemma 3.1 in Denis et al. (2005).

Lemma 4.1 Let (Ht )t≥0 be the process defined by:

Ht = z +
t∫

0

αsd Bs +
t∫

0

bsds +
Nt∑

i=1

Y ′
i , t ≥ 0. (4.24)

where

1. (Bt )t≥0 is a standard Brownian motion,
2. The process (αt )t≥0 is predictable,
3. (bt )t≥0 is adapted,
4. The last term is a compound Poisson process, i.e. (Nt )t≥0 is a Poisson process

with intensity λ > 0, independent of the jump sizes (Y ′
i )i≥1; both are independent

of (Bt )t≥0.

Assume that

(i) E(
∫ t

0 α2
s ds) < ∞ for all t > 0,

(ii) (bt )t≥0 is integrable,
(iii) The law of the non-negative, non-degenerate i. i. d. random variables (Y ′

i )i≥1
admits a Laplace transform L(r) for 0 < r < K ≤ ∞,

(iv) There exist 0 < δ < K and a constant Mt (δ) ≥ 0 such that for all s ∈ [0, t],

δ

s∫

0

budu + δ2

2

s∫

0

α2
udu + λs(L(δ) − 1) ≤ Mt (δ), a.e. (4.25)

Then, for each δ > 0 such that Mt (δ) ≥ 0 we have

P

[
sup
s≤t

Hs ≥ 0

]
≤ eδz+Mt (δ). (4.26)

Proof We have

P

(
sup
s≤t

Hs ≥ 0

)
= P

(
δ sup

s≤t
Hs ≥ 0

)

≤ P

(
sup

0≤s≤t
Ms ≥ exp (−zδ − Mt (δ))

)
,

where (Mt )t≥0 is the martingale defined by

Ms = exp

⎛

⎝δ

⎡

⎣
s∫

0

αud Bu +
Nt∑

i=1

Y ′
i

⎤

⎦− δ2

2

s∫

0

α2
udu − λs(L(δ) − 1)

⎞

⎠ .
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(Mt )t≥0 is a martingale since it is the product of a continuous martingale and a pu-
rely discontinuous one. The maximal inequality for exponential martingales gives the
result. ��

Observe that inequality (4.26) can be useful if δz + Mt (δ) < 0, as will be the case
when we obtain a bound for the Ruin Probability in the following Proposition.

Proposition 4.1 Assume that

1. The law of the random variables (Yi )i≥1 admits a Laplace transform L(r) for
0 < r < K ≤ ∞, if K < ∞, limr→K L(r) = ∞, and the following safety
loading condition is satisfied

(
c + (a − η)2

γ σ 2

)
e−ηT − λθ > 0, if η ≥ 0, (4.27)

where E[Y1] = θ . Then, the ruin probability satisfies

P

[
sup
s≤t

−X∗
s ≥ 0

]
≤ e−δ∗z,

where δ∗ is the positive root of the equation:

hη(δ) = −δ

(
c + (a − η)2

γ σ 2

)
e−ηT + δ2

2

(a − η)2

γ 2σ 2 e−2ηT + λ(L(δ) − 1) = 0.

(4.28)
2. In addition, if η = 0, and δ1

2 < γ < 1
θ

, where δ1 is the root of the equation

h1(δ) = −δc + λ(L(δ) − 1) = 0, (4.29)

then
δ1 < δ∗. (4.30)

Proof 1. It is clear that for η > 0, we can not apply Lemma 4.1 to the process
−X∗

t , t ≥ 0. We will use two auxiliary processes Zt , Z1
t , t ≥ 0 defined by:

Zt = X∗
t e−ηt , (4.31)

Z1
t = x +

(
c + (a − η)2

γ σ 2

)
e−ηT t −

Nt∑

i=1

Yi +
t∫

0

a − η

γ σ
e−ηT d Bs . (4.32)
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By the integration by parts formula we have

Zt = x +
t∫

0

e−ηr cdr −
Nt∑

j=1

e−ητ j Y j +
t∫

0

e−ηr (a − η)2

γ σ 2 e−η(T −r)dr

+
t∫

0

ηe−ηr X∗
r dr +

t∫

0

e−ηr a − η

γ σ
e−η(T −r)d Br −

t∫

0

ηe−ηr X∗
r dr

= x +
t∫

0

e−ηr cdr −
Nt∑

j=1

e−ητ j Y j +
t∫

0

(a − η)2

γ σ 2 e−ηT dr

+
t∫

0

a − η

γ σ
e−ηT d Br . (4.33)

It follows that

−Zt ≤ −Z1
t , t ≥ 0

and since

X∗
t ≤ 0 if and only if Zt ≤ 0,

then

P

[
sup

0≤s≤t
−X∗

s ≥ 0

]
= P

[
sup

0≤s≤t
−Zs ≥ 0

]
≤ P

[
sup

0≤s≤t
−Z1

s ≥ 0

]
.

For each δ ≥ 0 let Mt (δ) = thη(δ). Note that

lim
δ→K

hη(δ) = ∞,

since if K < ∞ by hypothesis limδ→K L(δ) = ∞, and if K = ∞, we have
a positive quadratic term. Then, there exists δ > 0 such that Mt (δ) ≥ 0. Then,
applying Lemma 4.1 to the process −Z1

t , we obtain

P

[
sup

0≤s≤t
−X∗

s ≥ 0

]
≤ P

[
sup

0≤s≤t
−Z1

s ≥ 0

]
≤ e−δx+Mt (δ).

The existence of a positive root follows from the continuity of hη(δ) and the fact
that hη(δ) < 0 in a neighborhood of 0 since for δ > 0,
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hη(δ)

δ
= −

(
c + (a − η)2

γ σ 2

)
e−ηT

+ δ

2

(a − η)2

γ 2σ 2 e−2ηT + λ(L(δ) − 1)

δ
.

From the safety loading hypothesis (4.27) we have:

lim
δ→0

hη(δ)

δ
= −

(
c + (a − η)2

γ σ 2

)
e−ηT + λθ < 0.

Then, there exists δ∗ > 0 (the root of Eq. 4.28) such that

P

[
sup

0≤s≤T
−X∗

s

]
≤ e−δ∗x .

If η = 0, we can apply directly Lemma 4.1 to the process X∗
t .

2. Finally, to prove the second part of the Proposition we only need to verify that
δ1 < δ∗.
Note that substituting δ1 in Eq. (4.28) for η = 0, we obtain:

h0(δ
1) = −δ1 a2

γ σ 2 + (δ1)2

2

a2

γ 2σ 2 .

Observing that h0(δ
1) < 0 if and only if δ1

2 < γ, the result follows.
��

Remark 4.1 Equation (4.29) corresponds to a Cramér Lundberg Process without
investment, δ1 is the Classical Lundberg parameter, and (4.30) says we can have a
better exponential rate in the case with investment.

Remark 4.2 The case η = 0 is simpler than η > 0, but it is important in view of
(4.30). Here,

X∗
t = x + ct −

Nt∑

i=1

Yi +
t∫

0

a2

γ σ 2 dr +
t∫

0

a

γ σ
d Br , (4.34)

the safety loading condition becomes

c + a2

γ σ 2 − λθ > 0, if η = 0, (4.35)

and

h0(δ) = −δ

{
c + a2

γ σ 2

}
+ δ2

2

a2

γ 2σ 2 + λ(L(δ) − 1) = 0. (4.36)
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Remark 4.3 For each γ > 0, let δ(γ ) the root of h0(δ) as in (4.28). (Recall that in
this case η = 0.) If we let M(γ ) = a

γ σ
, then we have

0 = h0(δ(γ )) = h0(δ(γ ), M(γ ))

= −δ(γ )

(
c + M(γ )a

σ

)
+ δ(γ )2

2
M(γ )2 + λ[L(δ(γ )) − 1].

Using the implicit function theorem, it can be shown that δ(γ ) is a maximum when
δ(γ ) = γ. In this case we obtained the same upper bound for the Ruin Probability
as in Gaier, Grandits and Schachermayer Gaier et al. (2003), and the asymptotically
optimal strategy obtained by Hipp and Schmidli Hipp and Schmidli (2004).

Proposition 4.2 Assume that the random variables Yi , i ≥ 1 are exponentially dis-
tributed with mean θ and

0 < γ <
e−ηT

θ
. (4.37)

Then

W (t, x) = − exp

{
−1

2

a − η

σ 2 (T − t) + cγ

η
[1 − eη(T −t)]

−λ

η
log

(
1 − γ θ

1 − γ θeη(T −t)

)}
· exp {−γ xeη(T −t)}.

In particular, if η = 0, and

0 < γ <
1

θ
,

then

W (t, x) = − exp

{
−1

2

a

σ 2 (T − t) + cγ (T − t) − λ
γ θ

1 − γ θ
(T − t)

}
e−γ x .

Proof In this case the function βt is given by

βt = 1

θ

∞∫

0

[
exp {γ yeη(T −t)} − 1

]
e−y 1

θ dy.

Then βt is finite if and only if

0 < γ <
e−η(T −t)

θ
, for all t ∈ [0, T ],

which is equivalent to expression (4.37).
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Under this condition

βt = 1

η

θγ ηeη(T −t)

1 − θγ eη(T −t)

= 1

η

d log

dt

(
1 − γ θeη(T −t)

)
,

and we get

T∫

t

βsds = 1

η
log

(
1 − γ θ

1 − γ θeη(T −t)

)
.

In particular if η = 0 we have

βt = γ θ

1 − γ θ
,

T∫

t

βsds = γ θ

1 − γ θ
(T − t).

The proof is complete. ��

In the exponential case, for η = 0, h0(δ) becomes

h0(δ) = a2θ

2γ 2σ 2 δ2 −
((

c + a2

γ σ 2

)
θ + a2

2γ 2σ 2

)
δ +

(
c + a2

γ 2σ 2 − θλ

)
. (4.38)

For each γ ∈ (0, 1/θ) we obtain a positive root δ(γ ) of h0 of the form

δ(γ ) = cσ 2γ 2

a2 + γ + 1

2θ
+
√(

cσ 2γ 2

a2 + γ + 1

2θ

)2

− 2

θ

(
(c − λθ)σ 2γ 2

a2 + 1

)
.

5 Numerical examples

In order to illustrate the behavior of the ruin probability for infinite horizon when the
optimal strategy of investment πt = a

γ σ 2 is applied, we present some numerical results
for the case where the claims are exponentially distributed, with the parameter values
used by Hipp and Plum (2000), and for different values of γ ∈ (0, 1

θ
). The parameters

have the following values: a = σ = θ = λ = 1, c = 2, and η = 0.

Graph 1 shows how the root δ(γ ) of h0(δ) varies for different values of γ. For our
data the Lundberg parameter for the classical case δ1 is 0.5. The maximum value of
δ∗ is obtained at 0.640388 and for γ ∈ (0.25, 0.9] the root is larger that 0.5.
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Modified Lundberg parameter:

0.15
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Graph 1

Let

Qt =
Nt∑

i=1

Yi − ct −
t∫

0

a2

γ σ 2 dr −
t∫

0

a

γ σ
d Br , (5.39)

denote the surplus; observe that Qt = x − X∗
t . Let τ(x) = inf0≤t<∞{t > 0|Qt > x},

we are interested in estimating

P[τ(x) < ∞] = E(11τ(x)<∞).

We use a Monte Carlo method with importance sampling to estimate the ruin
probability. These problems can be handled if we change the probability measure
to one that increases the probability of occurrence of {τ(x) < ∞} (via importance
sampling). Asmussen (2000, Chap. XI) used an exponential change of measure for
the classical case. In our case, we propose the probability measure P∗ obtained from
P by the Radon–Nykodim derivative

d P∗

d P
= eδQτ (x)−τ(x)h0(δ),

where h0(δ) is given by (4.38). If we choose as δ, the root δ∗ of h0, the calculation of
the ruin probability reduces to

E(11[τ(x)<∞]) = E∗(e−δ∗ Qτ (x)11[τ(x)<∞]).

With this method we obtain a considerable reduction of the variance (which implies
that fewer paths are needed for the Monte Carlo simulation). The diffusion part of the
process was approximated by the Euler method with N time steps. The very nature
of Euler’s scheme gives lower bounds for the ruin probabilities. When δ = δ∗ the
estimation is optimal in an asymptotic sense, and for variance reduction, the variance
is bounded by e−2δ∗x .

Graph 2 compares the probability of survival, for values of z ∈ [0, 6] for γ =
0.640388, γ = 0.3 and when there is no investment. Observe that is smaller when
there is no investment.
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Survival Probability
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In the following table we show the 95% confidence intervals obtained numerically
versus the bound e−δ∗x (Proposition 4.1), for T = 100, γ = 0.640388, η = 0,

and 100,000 paths. As before, the diffusion part of the process was approximated
by the Euler method. Here we used N = 100 and 10,000 time steps. Note that the
numerical scheme used, due to the discretization, can only give lower bounds for the
Ruin Probability.

x N = 100 Upper bound N = 10, 000
1 [0.1928,0.1947] 0.5270 [0.2374,0.2397]
2 [0.1022,0.1032] 0.2778 [0.1170,0.1182]
3 [0.0541,0.0547] 0.1464 [0.0619,0.0625]
4 [0.0287,0.029] 0.0772 [0.0323,0.0325 ]
5 [0.0151,0.0152] 0.0470 [0.0171,0.0173 ]
6 [0.0079,0.0080] 0.0214 [0.0091,0.0092 ]
7 [0.00418,0.00422] 0.0113 [0.00450,0.00454]
8 [0.00221,0.00223] 0.0057 [0.00253,0.00255]
9 [0.00117,0.00118] 0.0031 [0.00132,0.00133]
10 [0.00061,0.00062] 0.0016 [0.00071,0.00072]

The table shows that as N is larger the approximation of the Ruin Probability
improves by increasing, and it is always lower than the upper bound, as expected.

6 Concluding remarks

We have presented an explicit solution to the HJB equation associated to the optimal
investment problem of an insurance company when the utility function is of exponen-
tial type with parameter γ > 0. An optimal solution was derived from the previous
equation and exponential bounds for the ruin probability were found.

For the case without investment in a bond we can compare our results to other in the
literature: we obtained an optimal value of γ that gives us the same upper bound for
the Ruin Probability as in Gaier et al. (2003), and the asymptotically optimal strategy
obtained by Hipp and Schmidli (2004).
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We can conclude that there is a deep relationship between maximizing the
exponential utility function and minimizing the Probability of Ruin, supporting Fer-
guson’s conjecture.

Numerical simulations were used to compare the survival probability for different
values of γ. Finally, we compared numerical estimations of the ruin probability with
the upper bound obtained.
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