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Abstract

This note concerns the asymptotic behavior of a Markov process ob-

tained from normalized products of independent and identically distributed

random matrices. The weak convergence of this process is proved, as well as

the law of large numbers and the central limit theorem.

1. Introduction

Motivated by the study of ergodic properties of dynamical systems, the anal-

ysis of the asymptotic behavior of products of random matrices can be traced back,

at least, to the early sixties. Fundamental results were obtained in Furstenberg and

Kesten (1960), Furstenberg (1963) and Oseledec (1968). The first of these papers

considered a process {Mn} taking values in the space of k × k real matrices en-

dowed with an appropriate norm ‖ · ‖ and, assuming that the Mns are independent

and identically distributed (iid), the authors studied the grow rate of the products

Mn · · ·M1 given by

lim
n→∞

‖MnMn−1 · · ·M1‖1/n.
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It was proved that such a limit exists, and the law of large numbers as well as

the central limit theorem were established; later on, Fustenberg and Kifer (1983)

studied the asymptotic behavior of the vector norms

‖MnMn−1 · · ·M1x‖1/n, x ∈ Rk.

In the fundamental papers mentioned above, the main issue was to study the asymp-

totic growth of the products Mn · · ·M1, and the theory of Lyapunov exponents was

developed from logarithmic transformation of the products. In recent years, ap-

plications of products of random matrices in statistical physics, chaotic dynamical

systems, filtering and Schrodinger operators has motivated a deep study of this

theory; see, for instance, Cristiani, Paladin and Valpiani (1993), Atar and Zeitouni

(1997), Bougerol and Lacroix (1985) and Carmona and Lacroix (1990).

On the other hand, the assertion in Furstenberg and Kifer (1983) that ‘there

are simple questions that are unanswered’, can be completed requiring also simple

answers to simple questions. This work deals with some of those problems proving

the central limit theorem and the ergodic theorem for the Markov process explained

below using basic tools of probability and linear algebra. More precisely, the present

note is concerned with the process

MnMn−1 · · ·M1x, (1.1)

when the matrix valued random variables M1, M2, . . . are iid and the vector x ∈
R
k has nonnegative components. However, the focus of the paper is not on the

asymptotic growth already studied in the literature, but on the limit properties of

the probability vector Xn obtained by projecting (1.1) over the probability simplex

in Rk. The process {Xn} obtained in this way is a Markov chain and, under the

mild (communication) conditions in Assumption 2.1 below, the main objective of

the paper is to prove that {Xn} converges weakly and, more remarkably, that the

law of large numbers and the central limit theorem hold; see Theorems 2.1–2.3

in Section 2. Even though some limit theorems have been obtained previously

by Hennion (1997), see also Mukherjea (1987), the techniques used in this paper

are completely different with simple arguments based on fundamental theorems of

probability theory and linear algebra.

The motivation to study the asymptotic behavior of the process {Xn} just de-
scribed, comes from the analysis of partially observable Markov chains {St} evolving
over the finite set {1, 2, . . . , k} and endowed with a risk-sensitive performance index.

In such models, the true state of the underlying chain is not directly observed, but

at each time t the analyzer gets a signal Yt and knows the probabilities Qy x of the

true state St = x when the observed signal is Yt = y. The vector Xt represents the

beliefs about the true unobservable state at time t given the available information

up to time t, and the transfer matrix Mt is determined by the transition matrix
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of the chain {St}, the matrix [Qy x] relating observable signals and unobservable

states, and the costs incurred while the system is running. In this context, the

specific assumptions made below on the matrices Mn are satisfied when the ma-

trix [Qy x] has positive entries, and the unobservable chain {St} is communicating;

see Fleming and Hernández-Hernández (1999) and Cavazos-Cadena and Hernández-

Hernández (2004) for details. The arguments used to establish the main conclusions

of the paper combine algebraic and probabilistic ideas. The main algebraic tool is

the contraction property of positive matrices with respect to Birkhoff’s distance

(Seneta, 1980, Cavazos-Cadena, 2003). On the other hand, the probabilistic part is

based on the introduction of ‘delayed’ processes which are probabilistic replicas of

{Xn}.
The organization of the paper is as follows: In Section 2 the structural As-

sumptions are precisely formulated, the Markov process {Xn} is introduced, and the

main results are stated in the form of Theorems 2.1–2.3. Next, the basic technical

preliminaries involving Birkhoff’s distance and the delayed processes are given in

Section 3, and these results are used in Sections 4 and 5 to prove the weak conver-

gence result stated in Theorem 2.1, and the strong law of large numbers in Theorem

2.2, respectively.

On the other hand, the proof of the central limit theorem stated as Theorem

2.3 is substantially more technical, and the necessary preliminary results, concerning

the summations Sn =
∑n

t=1(f(Xn) − E[f(Xn)]) where f is a Lipchitz continuous

function, are presented in Sections 6–9. In Section 6 it is shown that E[S4n] =

O(n2), and in Section 7 it is proved that {E[S2n]/n} is a convergent sequence. Next,

these results are used to establish two fundamental properties of the family W of

weak limits of the sequence {Sn/
√

n} of normalized averages. Section 8 concerns

a uniform differentiability property of the characteristic functions of the members

of W, and in Section 9 the following divisibility property is established: Given a

positive integer m, each ν ∈ W is the distribution of a normalized mean of m iid

random variables whose common distribution also belongs to W.

After these preliminaries, the central limit theorem is finally proved in Sec-

tion 10.

Notation. Throughout the remainder N denotes the set of all positive inte-

gers. Given k ∈ N, Rk is the k-dimensional Euclidean space of column vectors with

real components. If S is a metric space, B(S) denotes the class of Borel subsets

of S, whereas P(S) stands for the space of all probability measures on B(S). On

the other hand, if f :S → R is a given function, ‖f‖ denotes the corresponding

supremum norm, i.e., ‖f‖ := supx∈S |f(x)|.

peri562_183-211.pdf   3 5/30/2008   11:34:07 AM



186 R. CAVAZOS-CADENA and D. HERNÁNDEZ-HERNÁNDEZ

2. Random probability vectors and main results

Throughout the remainder {Mn} is a sequence of k × k random matrices

defined on a probability space (Ω,F , P ), and the following conditions are supposed

to hold.

Assumption 2.1.

(i) M1, M2, . . ., are independent and identically distributed (iid);

(ii) all the entries of each matrix Mi are nonnegative;

(iii) there exists an integer N as well as B0, B1 > 0 such that

P
[
B1 ≥ (M1M2 · · ·MN )i j ≥ B0, i, j = 1, 2, . . . , k

]
= 1.

Notice that under this assumption the following statements are always valid:

For different positive integers n1, n2, . . . , nN

B1 ≥ (Mn1
Mn2

· · ·MnN
)i j ≥ B0, P -a.s. (2.1)

and for each n ∈ N and j = 1, 2, . . . , k

k∑
i=1

(Mn)i j > 0, P -a.s.. (2.2)

Next, let Pk ⊂ Rk be the space of k-dimensional probability vectors, i.e.,

Pk =
{
x = (x1, . . . , xk)

′ |xi ≥ 0, i = 1, 2, . . . , k,

k∑
i=1

xi = 1
}

,

and denote by 11 the vector in Rk which has all its components equal to 1. Using

this notation, (2.2) can be written as

(11′Mn)j > 0 P -a.s. for all j = 1, 2, . . . , k, n ∈ N. (2.3)

Definition 2.1. Let x ∈ Pk be arbitrary but fixed. The sequence {Xn} of

random probability vectors is recursively defined by X0: = x and

Xn: =
1

11′MnXn−1
MnXn−1, n ∈ N; (2.4)

by (2.3), the right-hand side of this equality is well-defined P -almost surely.
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Remark 2.1. From (2.4) it is not difficult to see that

Xn =
1

11′Mn · · ·M1X0
Mn · · ·M1X0, n ∈ N, (2.5)

so that if X0 = ei, the i-th vector in the canonical basis of Rk, then Xn is the i-th

column of the product Mn · · ·M1 normalized in such a way that its components add

up to 1.

From Assumption 2.1 and Definition 2.1 it follows that {Xn} is a Pk-valued
Markov process, and the main objective of this note is to study its asymptotic

behavior. For each n ∈ N, let μn ∈ P(Pk) be the distribution of Xn, i.e.,

μn(A) := P [Xn ∈ A], A ∈ B(Pk). (2.6)

The main results of this work are stated in the following three theorems.

Theorem 2.1. There exists μ ∈ P(Pk) such that μn
w−→μ. Moreover, μ does

not depend on the initial state X0 = x.

It is not difficult to see that μ ∈ P(Pk) in this theorem is the unique invariant

distribution of the Markov process {Xn}, and Theorem 2.1 is analogous to the

classical result for discrete-time Markov chains evolving on a finite state space: If

such a chain is communicating and aperiodic, then the rows the n-th power of the

transition matrix T converge pointwise to the unique invariant distribution of T .

Next, for each y ∈ Pk, let δy ∈ P(Pk) be the Dirac measure at y, i.e., for

A ∈ B(Pk),
δy(A) :=

{
1, if y ∈ A,

0, otherwise,

and for n ∈ N define the empirical measure μ̃n ∈ P(Pk) associated to X1, X2, . . . , Xn

as follows:

μ̃n(A) :=
1

n

n∑
j=1

δXj
(A), A ∈ B(Pk). (2.7)

The following is the ergodic theorem for {Xn}.
Theorem 2.2. Let μ ∈ P(Pk) be as in Theorem 2.1. In this case, μ̃n

w−→μ

with probability 1. More precisely, if f :Pk → R is a continuous function, then as

n →∞∫
Pk

f(x)μ̃n(dx) =
1

n

n∑
i=1

f(Xi)→
∫
Pk

f(x)μ(dx) =:μ∗(f), P -a.s.. (2.8)

The next result is a central limit theorem, and provides conditions under

which the (appropriately) normalized deviations of the time average
∫
Pk

f(x)μ̃n(dx)

around the limit value μ∗(f) in (2.8) approximate a normal distribution.
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Theorem 2.3. Let P+k be the set of all of x = (x1, . . . , xk)
′ ∈ Pk with xi > 0

for all i = 1, 2, . . . , k, and assume that f :P+k → R is Lipschitz continuous, i.e., for

some constant Lf

|f(x)− f(y)| ≤ Lf‖x− y‖, x,y ∈ P+k , (2.9)

where ‖v‖ denotes the Euclidean norm of v ∈ R
k. In this context, the following

assertions (i) and (ii) hold:

(i) limn→∞
1
nVar (

∑n
i=1 f(Xi)) =: v < ∞ exists and, moreover, v does not depend

on the the initial state X0 = x.

(ii) As n →∞
√

n

[∑n
i=1 f(Xi)

n
− μ∗(f)

]
d−→N (0, v) , (2.10)

where N (0, v) is the normal distribution with mean 0 and variance v, and

following the usual convention, if v is null, N (0, v) is interpreted as the unit

of mass at zero.

Before going into the details of the proofs, let w ∈ Rk be arbitrary, and notice

that application of Theorem 2.3 to the function f(x) = w′x leads to

√
nw′

[∑n
i=1 Xi

n
− μ∗

]
d−→N (0, vw) ,

where

μ∗ =

∫
Pk

xμ(dx) (2.11)

is the mean of the invariant distribution μ in Theorem 2.1, and vw =

lim
n→∞

n−1w′Vnw where Vn is the variance matrix of X1 + · · · + Xn. Since this

latter limit exists for each w ∈ Rk, it follows that {n−1w1Vnw2} is a convergent

sequence for every w1,w2 ∈ Rk, so that

lim
n→∞

n−1Var (X1 + · · ·+ Xn) =:V (2.12)

is well-defined and does not depend on the initial state X0 = x. Therefore, vw =

w′V w, and it follows that

√
nw′

[∑n
i=1 Xi

n
− μ∗

]
d−→N (0,w′V w) .

Since this convergence holds for every w ∈ Rk, Cramer’s theorem yields the follow-

ing.
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Corollary 2.1. Under Assumption 2.1,

√
n

[∑n
i=1 Xi

n
− μ∗

]
d−→Nk (0, V )

where μ∗ ∈ Pk and the k × k matrix V do not depend on the initial state X0 = x

and are specified in (2.11) and (2.12), respectively.

The proofs of Theorems 2.1 and 2.2, based on the preliminaries contained in

the following section, are presented in Sections 4 and 5, respectively. On the other

hand, the proof of Theorem 2.3 is substantially more technical, and will be given in

Section 10 after the necessary tools are established in Sections 6–9.

3. Basic preliminaries

This section contains the fundamental technical results that will be used to

establish Theorems 2.1–2.3. Firstly, the essential algebraic tool, concerning a con-

traction property of positive matrices, is briefly discussed.

Birkhoff’s Distance. Let Ck be the positive cone in Rk, i.e.,

Ck: = {x ∈ Rk : xi > 0, i = 1, 2, . . . , k},

so that the set P+k of positive probability vectors is given by

P+k = Ck ∩ Pk.

On Ck define the Birkhoff (pseudo) metric by

dB(x,y) = max
i,j=1,2,...,k

log

(
xi/yi
xj/yj

)
, x,y ∈ Ck, (3.1)

so that

dB(cx, dy) = dB(x,y), x,y ∈ Ck, c, d > 0, (3.2)

and if x,y ∈ P+k , then dB(x,y) = 0 leads to x = y. Thus, dB(·, ·) induces a

genuine metric on P+k , and it is not difficult to verify that this metric is topologically

equivalent to the Euclidean one. The contraction property in the following lemma,

whose proof can be found in Seneta (1980), or in Cavazos-Cadena (2003), will play

a central role in the subsequent development.
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Lemma 3.1. (i) Let A be a k × k real matrix, and assume that for some

constants B0, B1 > 0,

B1 ≥ Ai j ≥ B0, i, j = 1, 2, . . . , k. (3.3)

In this case there exists a constant

β0 ≡ β0(B0, B1) < 1

such that the following Birkhoff’s inequality holds:

dB(Ax, Ay) ≤ β0dB(x,y), x,y ∈ Ck.

(ii) In particular, if each matrix A(1), A(2), . . . , A(r) satisfies (3.3), then

dB

(
r∏

i=1

A(i)x,

r∏
i=1

A(i)y

)
≤ βr

0dB(x,y), x,y ∈ Ck.

Support of μn. For each a ∈ (0, 1/k], define

Ka: = {x ∈ Pk : xi ≥ a}, (3.4)

which is a compact subset of P+k . Observing that

a ≤ xi/yi ≤ 1/a, i = 1, 2, . . . , k, x,y ∈ Ka (3.5)

it follows from (3.1) that

dB(x,y) ≤ log(1/a2) = −2 log(a), x,y ∈ Ka. (3.6)

On the other hand, for x ∈ [1, b] where b > 1, the mean value theorem implies that

(x− 1)/ log(x) = x0 for some x0 ∈ [1, b], so that x− 1 ≤ b log(x). Given x,y ∈ Ka,

select i∗ such that
xi∗

yi∗
= max

i=1,2,...,k

xi
yi
∈ [1, 1/a].

With this notation, xi − yi = yi(xi/yi − 1) ≤ yi(xi∗/yi∗ − 1) ≤ (xi∗/yi∗ − 1) ≤
log(xi∗/yi∗)/a ≤ dn(x,y)/a. Interchanging the roles of x and y it follows that

|xi − yi| ≤ dn(x,y)/a, and then

‖x− y‖ ≤
√

k

a
dB(x,y), x,y ∈ Ka. (3.7)

Next, it will be shown that, for n large enough, Xn takes values in a set Ka.
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Lemma 3.2. For each n ≥ N , P [Xn ∈ Kα] = 1, where α = B0/kB1, so that

μn is supported on Kα; see Assumption 2.1, (2.6) and (3.4).

Proof. Let J be the k × k matrix with all its components equal to 1. Since

Xn is a probability vector, it follows that

JXn = 11,

whereas (2.1) yields that

B0J ≤ Mn · · ·Mn−N+1 ≤ B1J P -a.s.,

where the inequalities are componentwise. On the other hand, from Definition 2.1

it is not difficult to see that for n ≥ N

Xn =
1

11′Mn · · ·Mn−N+1Xn−N
Mn · · ·Mn−N+1Xn−N ,

and then, with probability 1,

B011 = B0JXn−N ≤ Mn · · ·Mn−N+1Xn−N ≤ B1JXn−N = B111

so that 11′Mn · · ·Mn−N+1Xn−N ≤ B111
′11 = kB1. Combining this with the last two

displayed equations it follows that Xn ≥ (B0/kB1)11 = α11 P -a.s. for n ≥ N .

Delayed Processes. For each nonnegative integer n set

Y0: = X0, Yn: = MnMn−1 · · ·M1X0, (3.8)

so that

Xn =
1

11′Yn
Yn; (3.9)

see (2.5). Also, for nonnegative integers n and m define

Yn, 0: = X0, Yn,m: = MnMn−1 · · ·Mn−m+1X0, n ≥ m > 0, (3.10)

and

Xn,m: =
1

11′Yn,m
Yn,m, n ≥ m; (3.11)

notice that

Xn, n = Xn, n = 0, 1, 2, . . . . (3.12)

The delayed process starting at time m is defined as {Xm+t, t : t = 0, 1, 2, 3, . . .}.
Using Assumption 2.1 these definitions immediately yield the following.
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Lemma 3.3. For each nonnegative integer m the following properties are sat-

isfied by the delayed process {Xm+t, t : t = 0, 1, 2, . . .} at time m:

(i) {Xm+t, t : t = 0, 1, 2, . . .} and the original process {Xt : t = 0, 1, 2, 3, . . .}
have the same distribution.

Consequently,

(ii) For n ≥ m, Xn,m and Xm have the same distribution.

(iii) (X1, X2, . . . , Xm) and {Xm+t, t : t ∈ N} are independent.

By convenience, the following convention is enforced throughout the remainder

of the paper: For nonnegative integers n and m,

Xn,m: = Xn, n < m. (3.13)

The following estimate of the distance between Xn and the delayed vector Xn,m

will be useful.

Lemma 3.4. (i) Let B0, B1 > 0 and the positive integer N be as in Assumption

2.1(iii), and let β0 = β0(B0, B1) ∈ (0, 1) and α > 0 be as in Lemmas 3.1 and 3.2,

respectively. In this case,

dB(Xn, Xn,m) ≤ βmK, n = 0, 1, 2, . . . , m ≥ 2N P -a.s., (3.14)

where

β = β
1/N
0 ∈ (0, 1) and K =

−2 log(α)
β2N

.

(ii) Let {X ′
n} be as in Definition 2.1 with X0 = y. In this case

dB(Xm, X ′
m) ≤ βmK, m ≥ 2N.

Proof. (i) By (3.13), the inequality in (3.14) holds when n < m, so that it

is sufficient to consider the case n ≥ m ≥ 2N . Let m ≥ 2N be fixed and write

m = (s + 1)N + r, where 0 ≤ r < N and s ≥ 1. Notice that for n ≥ m

dB(Xn, Xn,m) = dB(Yn, Yn,m) (3.15)

by (3.2) and (3.8)–(3.11), and set

Aj =

N−1∏
i=0

Mn−(j−1)N−i, j = 1, 2, . . . , s. (3.16)

Next, observe that (3.8) and (3.10) can be written as

Yn =

s∏
j=1

AjZ1, Yn,m =

s∏
j=1

AjZ0,
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where

Z1 = Mn−NsMn−Ns−1 · · ·M1x, Z0 = Mn−NsMn−Ns−1 · · ·Mn−m+1x

and the right-hand side of these equalities contain, at least, N factors Mt. Setting

ci = 11′Zi and Ẑi = (1/ci)Zi, it follows by Assumption 2.1 and Lemma 3.2 that

Ẑi ∈ Kα P -a.s., and in this case

dB(Ẑ1, Ẑ0) ≤ −2 log(α), P -a.s., (3.17)

by (3.6), whereas

Yn = c1

s∏
j=1

AjẐ1, Yn,m = c0

s∏
j=1

AjẐ0

and (3.2) together imply that

dB (Yn, Yn,m) = dB

⎛
⎝ s∏

j=1

AjẐ1,

s∏
j=1

AjẐ0

⎞
⎠ .

By the iid part of Assumption 2.1, and observing that each matrix Aj is the product

of N factors Mi, it follows that all the entries Aj lay in [B0, B1] P -a.s., and then

dB(Yn, Yn,m) ≤ βs
0dB(Ẑ1, Ẑ0), P -a.s.,

by Lemma 3.1. Together with (3.15) and (3.17), this implies that

dB(Xn, Xn,m) ≤ βs
0(−2 log(α)) = βN(s+1)+r (−2 log(α))

βN+r
≤ βm (−2 log(α))

β2N

and (3.14) follows, establishing part (i). The proof of part (ii) is similar.

4. Convergence to the invariant distribution

In this section Theorem 2.1 will be proved. To begin with, recall that {μn}
is a sequence of probability measures on the Borel sets of the space Pk, which is

compact. Therefore, Prohorov’s theorem yields that there exists a subsequence

{μnr
} and μ ∈ P(Pk) such that

μnr

w−→μ as r →∞. (4.1)
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Proof of Theorem 2.1. With μ ∈ P(Pk) as above, it will be proved that

the whole sequence {μn} converges weakly to μ. Recalling that μn is supported on

the compact set Kα ⊂ P+k when n ≥ N , by Lemma 3.2, it is sufficient to show that

for every nonempty open set A ⊂ P+k
lim inf
n→∞

μn(A) ≥ μ(A). (4.2)

Given such a set A, for each ε > 0 define

Aε: = {x ∈ A : y ∈ A if y ∈ P+k satisfies dB(x,y) < ε},

and notice that each Aε is open, so that

lim inf
r→∞

μnr
(Aε) ≥ μ(Aε), (4.3)

by (4.1). Moreover,

Aε ↗ A as ε ↘ 0. (4.4)

Next, let δ > 0 be arbitrary but fixed satisfying Aδ �= ∅ and, with β and K as in

Lemma 3.4, select an integer m ≥ 2N such that

βmK < δ, (4.5)

and for nr ≥ m set

Ωn, nr
: = [dB(Xn, Xn, nr

) ≤ βnrK], n ≥ nr(≥ m).

Then, the definition of Aδ and (4.5) together yield

Ωn, nr
∩ [Xn, nr

∈ Aδ] ⊂ [Xn ∈ A]

so that

μn(A) = P [Xn ∈ A] ≥ P [Ωn, nr
∩ [Xn, nr

∈ Aδ]] = P [Xn, nr
∈ Aδ], n ≥ nr,

where the equality used that P [Ωn, nr
] = 1, by Lemma 3.4(i). Using now that Xn, nr

and Xnr
have the same distribution, by Lemma 3.3(ii), it follows that P [Xn, nr

∈
Aδ] = P [Xnr

∈ Aδ] = μnr
(A), and the above displayed relation is equivalent to

μn(A) ≥ μnr
(Aδ) for n ≥ nr, so that

lim inf
n→∞

μn(A) ≥ μnr
(Aδ).

Taking the limit inferior as r →∞ it follows that

lim inf
n→∞

μn(A) ≥ lim inf
r→∞

μnr
(Aδ) ≥ μ(Aδ),
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where the second inequality is due to (4.3) and, via (4.4), this implies (4.2). Now

let {X ′
n} be the process corresponding to the initial condition X0 = y. Since

dB(Xn, X ′
n) ≤ βnK P -a.s. when n ≥ 2N , by Lemma 3.4(ii), it follows that

dB(Xn, X ′
n) → 0 as n → ∞ P -a.s.; since Xn and X ′

n belong to Kα for n ≥ N , by

Lemma 3.2, using (3.7) it follows that ‖Xn−X ′
n‖ → 0 P -a.s., so that X ′

n = Xn+Zn

where Zn → 0 with probability 1, and Slutsky’s theorem yields that {X ′
n} converges

weakly to μ, i.e., the limit distribution μ does not depend on the initial state.

5. Ergodic theorem

In this section Theorem 2.2 will be established. The argument relies on Lemma

3.4 as well as on the two lemmas stated below. To begin with, let f :Pk → R be as

in the statement of Theorem 2.2, and for each integer m ≥ 2N define

S̃r =

m∑
i=1

f(X[(r−1)m+i],m), r = 2, 3, 4, . . . . (5.1)

Lemma 5.1.

(i) For each r = 2, 3, 4, . . .

E[S̃r] = mE[f(Xm)] = m

∫
Pk

f(x)μm(dx).

(ii) The S̃r’s have the same distribution.

(iii) S̃2t, t = 1, 2, 3, . . . are iid and, similarly, S̃1+2t, t = 1, 2, 3, . . . are iid.

Proof. (i) By Lemma 3.3(ii), Xt,m and Xm have the same distribution for

t ≥ m, and then the expectation of each term in the summation in (5.1) is E[f(Xm)];

notice that E[f(Xm)] exists, since the support of μm is contained in the compact

set Kα ⊂ P+k , and f is continuous on Pk.
(ii) Recalling that X0 = x is fixed, (3.8) and (3.9) show that for a certain

function F

(X(m+1),m, . . . , X2m,m) = F (M2, . . . , M2m)

and

(X((r−1)m+1),m, . . . , Xrm,m) = F (M(r−2)m+2, . . . , Mrm); (5.2)

since the matrices Mi are iid, via (5.1) this yields that the variables S̃r are identically

distributed.

(iii) Using (5.2) it follows that for t ≥ 2,

(X((r+t−1)m+1),m, . . . , X(r+t)m,m) = F (M(r+t−2)m+2, . . . , M(r+t)m),

so that S̃r+t depends on the matrices Mi with i > rm + 1; see (5.1). Since Sr is a

function of the matrices Mj with j ≤ mr, by (5.1) and (5.2), the independence of

the matrices Mt immediately yields part (iii).
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Lemma 5.2. As n →∞

lim
n→∞

1

mn

n∑
r=2

S̃r = E[f(Xm)] P -a.s. (5.3)

and

lim
n→∞

1

n

n∑
t=1

f(Xt,m) = E[f(Xm)] P -a.s.; (5.4)

see (3.11) and (3.13).

Proof. By Lemma 5.1, S̃2, S̃4, S̃6, . . . are iid with mean mE[f(Xm)], so that

lim
n→∞

1

n

n∑
r=1

S̃2r = mE[f(Xm)] P -a.s.;

similarly,

lim
n→∞

1

n

n∑
r=1

S̃2r+1 = mE[f(Xm)] P -a.s..

These relations together yield

lim
n→∞

1

n

n∑
r=2

S̃r = mE[f(Xm)] P -a.s.,

which is equivalent to (5.3). Observe now that
∑n

r=2 S̃r =
∑nm

t=m+1 f(Xt,m), so

that (5.3) yields

lim
n→∞

1

nm

nm∑
t=m+1

f(Xt,m) = E[f(Xm)] P -a.s.,

and using that Xt,m belongs to the compact set Kα with probability 1 for t > m,

this immediately leads to (5.4).

Proof of Theorem 2.2. Given ε > 0 let δ > 0 be such that

|f(x)− f(y)| ≤ ε, if x,y ∈ Kα and dB(x,y) ≤ δ,

and select an integer m ≥ 2N satisfying βmK ≤ δ, where β and K are as in Lemma

3.4. In this case, via (3.14) it follows that |f(Xt)− f(Xt,m)| ≤ ε P -a.s., and then

1

n

[
n∑
t=1

f(Xt)−
n∑
t=1

f(Xt,m)

]
≤ ε P -a.s..
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Therefore, (5.4) implies that

lim sup
n→∞

1

n

n∑
t=1

f(Xt) ≤ E[f(Xm)] + ε =

∫
Pk

f(x)μm(dx) + ε P -a.s.

Using that m ≥ 2N is an arbitrary integer satisfying βm
1 K ≤ δ, taking the limit as

m goes to ∞ on the right-hand side of this inequality, the convergence μm
w−→μ in

Theorem 2.1 yields

lim sup
n→∞

1

n

n∑
t=1

f(Xt) ≤
∫
Pk

f(x)μ(dx) + ε P -a.s.

so that

lim sup
n→∞

1

n

n∑
t=1

f(Xt) ≤
∫
Pk

f(x)μ(dx) P -a.s.,

since ε > 0 is arbitrary. Observing that this inequality also holds with −f instead

of f , Theorem 2.2 follows.

6. Fourth moment of normalized means

The remainder of the paper is dedicated to prove Theorem 2.3, which estab-

lishes the asymptotic normality of the sequence {Wn}, where

Wn: =
√

n

[∑n
i=1 f(Xi)

n
− μ∗(f)

]
, (6.1)

and μ∗(f) is as in (2.8). Instead of studying the limit behavior of {Wn} it is

convenient to analyze the sequence {Sn/
√

n} where

Sn =

n∑
t=1

[f(Xt)− E[f(Xt)]] , n = 1, 2, 3, . . . , (6.2)

so that

E[Sn] = 0, n ∈ N. (6.3)

The argument used to establish Theorem 2.3 has been divided into four steps, and

the most basic facts are contained in this and the following section. The present

objective is to show that {Wn} and {Sn/
√

n} have the same limit behavior, and

that the fourth moment of Sn/
√

n remains bounded as n goes to ∞. This latter

result implies that the family of distributions of the variables Sn/
√

n is tight—so

that it has weak limits in P(R), by Prohorov’s theorem—and is the basis to establish

the uniform differentiability properties in Section 8. Before going any further, it is
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convenient to introduce some notation as well as a simplifying assumption that will

be enforced throughout the remainder of the paper. As in the statement of Theorem

2.3, let f :P+k → R be a Lipschitz continuous function. Since the distribution of Xn

is concentrated on the compact set Kα for n ≥ N (see Lemma 3.2), without loss of

generality it will be assumed that the function f is supported on a compact set Kα′

with α′ ≤ α. In this case ‖f‖ is finite and, moreover, (2.9) and (3.7) together yield

that, for some constant L,

|f(x)− f(y)| ≤ LdB(x,y), x,y ∈ P+k . (6.4)

Next, having in mind (3.8)–(3.13), for nonnegative integers t and m define

Zt: = f(Xt)− E[f(Xt)], (6.5)

and

Zt,m: = f(Xt,m)− E[f(Xt,m)], (6.6)

so that

|Zt|, |Zt,m| ≤ 2‖f‖ < ∞, and E[Zt,m] = E[Zt] = 0; (6.7)

notice that

Sn =

n∑
t=1

Zt, n = 1, 2, 3, . . . , (6.8)

by (6.2) and (6.5). Observe now that Lemma 3.4 and (6.4) together yield that

for every t ∈ N, |f(Xt) − f(Xt,m)| ≤ KLβm whenever m ≥ 2N . Setting C =

max{2‖f‖, KL}/β2N it follows that

|f(Xt)− f(Xt,m)| ≤ Cβm P -a.s. (6.9)

and

|E[f(Xt)]− E[f(Xt,m)]| ≤ Cβm (6.10)

are always valid; consequently,

|Zt − Zt,m| ≤ 2Cβm P -a.s.. (6.11)

The next lemma yields that {Wn} and {Sn/
√

n} have the same asymptotic distri-

bution.

Lemma 6.1. As n →∞, Wn − Sn√
n
→ 0.
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Proof. Given an integer m, let t ≥ m be arbitrary.

Since Xt,m and Xm have the same distribution, by Lemma 3.3(ii), (6.10)

implies that |E[f(Xt)] − E[f(Xm)]| ≤ Cβm for every t ≥ m, and observing that

E[f(Xt)] →
∫
Pk

f(x)μ(dx) = μ∗(f) as t → ∞, by Theorem 2.1, it follows that

|μ∗(f)− E[f(Xm)]| ≤ Cβm; via (6.1) and (6.2) this leads to∣∣∣∣Wn − Sn√
n

∣∣∣∣ =
∣∣∣∣
∑n

t=1(E[f(Xt)]− μ∗(f))√
n

∣∣∣∣ ≤ C
∑n

t=1 βt

√
n

≤ C√
n(1− β)

,

and the conclusion follows.

The main result of the section can now be stated as follows.

Theorem 6.1. Let Sn be as in (6.2). Then

sup
n

1

n2
E

[
S4n

]
=:B4 < ∞.

The proof of this result relies on the following two lemmas.

Lemma 6.2.

(i) For each t > m > 0

|E[ZtZm]| ≤ 4C‖f‖βt−m.

(ii) supn
1
nE

[
S2n

]
=: B2 < ∞.

Proof. (i) Let the positive integers t and m be such that t > m, and write

Zt = Zt, t−m+(Zt−Zt, t−m), so that E[ZtZm] = E[Zt, t−mZm]+E[(Zt−Zt, t−m)Zm].

Notice now that Zt, t−m depends on the matrices Mt, . . . , Mm+1, so that it is inde-

pendent of Zm which is a function of M1, . . . , Mm; see (3.8)–(3.11), (6.5) and (6.6).

Therefore, E[Zt, t−mZm] = 0, by (6.7). Finally, (6.7) and (6.11) together imply that

E[(Zt −Zt, t−m)Zm] ≤ 4C‖f‖βt−m, and the conclusion follows from this inequality

and the two equations displayed above.

(ii) Notice that E[S2n] =
∑n

t=1 E[Z2t ]+2
∑

t>m E[ZtZm]; since E[Z2t ] ≤ 4‖f‖2,
by (6.7), via part (i) it follows that

E[S2n] ≤
n∑
t=1

4‖f‖2 + 2
∑

n≥t>m≥1

4C‖f‖βt−m

= 4n‖f‖2 + 8C‖f‖
n−1∑
d=1

∑
(t,m): t−m=d, n≥t, m≥1

βd

= 4n‖f‖2 + 8C‖f‖
n−1∑
d=1

βd(n− d) ≤ 4n‖f‖2 + 8C‖f‖n
n−1∑
d=1

βd

so that E[S2n] ≤ n[4‖f‖2 + 8C‖f‖/(1− β)] and the conclusion follows.

The following simple property will be useful.
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Lemma 6.3. Let ε > 0 be arbitrary. For each a, b ∈ R, the following inequal-

ities hold:

(1− ε)a2 +
(
1− 1

ε

)
b2 ≤ (a + b)2 ≤ (1 + ε)a2 +

(
1 +

1

ε

)
b2 (6.12)

and

(a + b)4 ≤ (1 + ε)2a4 +
(
1 +

1

ε

)2
b4 (6.13)

Proof. Using that 2|ab| ≤ a2 + b2 always holds, it follows that

2|ab| = 2
∣∣∣(a√ε)

b√
ε

∣∣∣ ≤ a2ε +
b2

ε

and (6.12) follows combining this with a2 + b2 − 2|ab| ≤ (a + b)2 ≤ a2 + b2 + 2|ab|.
Notice now that the right inequality in (6.12) leads to

(a + b)4 ≤
[
(1 + ε)a2 +

(
1 +

1

ε

)
b2
]2

and (6.13) follows applying the right inequality in (6.12) with a and b replaced by

(1 + ε)a2 and (1 + 1/ε)b2, respectively.

Proof of Theorem 6.1. Given an arbitrary integer n ≥ 2, let
[n

2

]
be the

integral part of n/2, write n as

n = m + m1, m =
[n

2

]
, m1 = n−

[n

2

]
, (6.14)

and observe that

Sn = Sm +

m1∑
r=1

Zm+r = Sm + S̃m1
+ D, (6.15)

where

S̃m1
: =

m1∑
r=1

Zm+r, r, D: =

m1∑
r=1

[Zm+r − Zm+r, r].

Notice now that Lemma 3.3, (6.5), (6.6) and (6.8) together imply that

(a) Sm and S̃m1
are independent, and

(b) Sm1
and S̃m1

have the same distribution.

Moreover, (6.11) yields

(c) |D| ≤∑m1

r=1 2Cβr ≤ 2C/(1− β) =: C̃.

Next, let ε > 0 be arbitrary and notice that (6.13) and (6.15) yield that

S4n ≤ (1 + ε)2(Sm + S̃m1
)4 + (1 + ε−1)2D4,
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and expanding (Sm+ S̃m1
)4 and using that E[Sn] = E[Sm1

] = 0, facts (a)–(c) above

lead to

E[S4n] ≤ (1 + ε)2
(
E[S4m] + E[S4m1

] + 6E[S2m]E[S2m1
]
)
+ (1 + ε−1)2C̃4

≤ (1 + ε)2
(
E[S4m] + E[S4m1

] + 6mm1B
2
2

)
+ (1 + ε−1)2C̃4

≤ (1 + ε)2
(
E[S4m] + E[S4m1

] + 3n2B2
2/2

)
+ (1 + ε−1)2C̃4

where B2 is as in Lemma 6.2(ii) and the inequality mm1 ≤ n2/4 was used in the

last step; see (6.14). It follows that

E[S4n]

n2
≤ (1 + ε)2

(
m2

n2
E[S4m]

m2
+

m2
1

n2
E[S4m1

]

m2
1

)
+ R(ε) (6.16)

where R(ε): = (1 + ε−1)2C̃4 + 3(1 + ε)2B2
2/2. Now set

Mk: = sup
n≤2k

E[S4n]

n2
, k = 0, 1, 2, . . . . (6.17)

Let k > 0 be fixed. When n = 2, 3, . . . , 2k, the positive integers m and m1 in (6.14)

do not exceed 2k−1, so that (6.16) implies that

E[S4n]

n2
≤ (1 + ε)2

(
m2

n2
Mk−1 +

m2
1

n2
Mk−1

)
+ R(ε)

= (1 + ε)2
(
1− 2mm1

(m + m1)2

)
Mk−1 + R(ε), n = 2, 3, . . . 2k.

Also, from (6.14) it is not difficult to see that 2mm1 ≥ n2/2 − 1/2, and then

(1−2mm1/n2) ≤ 1/2+1/2n2 ≤ 5/8 for n ≥ 2, so that E[S4n]/n2 ≤ 5(1+ε)2Mk−1/8+

R(ε) in this case. It follows that

E[S4n]

n2
≤ 5(1 + ε)2

8
Mk−1 + R(ε) + E[S41 ], n = 1, 2, . . . , 2k,

and then

Mk ≤ 5(1 + ε)2

8
Mk−1 + R(ε) + E[S41 ] ≤

5(1 + ε)2

8
Mk + R(ε) + E[S41 ].

Selecting ε > 0 such that r(ε): = 5(1 + ε)2/8 < 1, this yields that

Mk ≤ (R(ε) + |E[S41 ])/(1− r(ε)) < ∞;

since this holds for every positive integer k, the conclusion follows from (6.17).

7. Variance convergence

As a consequence of Theorem 6.1 (or Lemma 6.2(ii)), the variance of Sn/
√

n

stays bounded as n increases. The objective of this section is to establish the second

basic result that will be used in the proof of Theorem 2.3, namely, that the second

moments of the variables Sn/
√

n form a convergent sequence.
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Theorem 7.1.

(i) lim
n→∞

E[S2n]

n
=: v exists.

Moreover,

(ii) v does not depend on the initial state X0 = x.

The proof of this theorem uses the following two lemmas. The first one is an

extension of Lemma 6.2(ii).

Lemma 7.1. sup
n,m: n>m>0

E[(Sn − Sm)2]

n−m
=: B′2 < ∞.

Proof. Let m be a fixed positive integer, and select n > m. Observe that

Sn − Sm =

n−m∑
t=1

Zm+t = S′n−m + D (7.1)

where

S′n−m =

n−m∑
t=1

Zm+t,t, D =

n−m∑
t=1

[Zm+t − Zm+t,t].

By (6.11), |Zm+t − Zm+t,t| ≤ 2Cβt, so that |D| ≤ 2C/(1 − β) = C̃, whereas

via Lemma 3.3(i) and (6.5)–(6.8), it follows that S′n−m and Sn−m have the same

distribution, so that E[S′2n−m] = E[S2n−m]. Thus, using Lemma 6.3 with ε = 1, (7.1)

leads to

E[(Sn − Sm)2] ≤ 2E[(S′n−m)2] + 2E[D2] ≤ 2E[S2n−m] + 2C̃2.

Observing that E[S2n−m] ≤ (n − m)B2, by Lemma 6.2(ii), it follows that E[(Sn −
Sm)2] ≤ 2(n−m)B2 + 2C̃2, so that E[(Sn − Sm)2]/(n−m) ≤ 2B2 + 2C̃2, and the

conclusion follows, since the positive integers n and m with n > m are arbitrary in

this argument.

Lemma 7.2. Let ε > 0 be arbitrary. For positive integers n and m,

∣∣E[S2nm]−mE[S2n]
∣∣ ≤ εnmB′′2 + mC̃2

(
1 +

1

ε

)
+ 2m

√
nC̃

√
B′′2 (7.2)

where

B′′2 = max{B2, B′2}
and B2 and B′2 are as in Lemmas 6.2(ii) and 7.1, respectively, and, as before, C̃ =

2C/(1− β).
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Proof. Set S0: = 0, write Snm =
∑nm

t=0 Zt as

Snm =

m∑
j=1

S̃j , where S̃j =

n∑
i=1

Z(j−1)n+i = Sjn − S(j−1)n, j = 1, 2, . . . , m,

(7.3)

and notice that

E[S2nm] =

m∑
j=1

E[S̃2j ] + 2
∑

m≥t>r≥1

E[S̃tS̃r], (7.4)

and

E[S̃2j ] ≤ nB′′2 , (7.5)

by Lemmas 6.2(ii) and 7.1 and the definition of B′′2 . Next, observe that

m∑
t=r+1

E[S̃tS̃r] = E
[( m∑

t=r+1

S̃t

)
S̃r

]
= E

[( nm−nr∑
j=1

Znr+j

)
S̃r

]

= E
[( nm−nr∑

j=1

Znr+j, j

)
S̃r

]
+ E[DS̃r]

where D =
∑nm−nr

j=1 [Znr+j − Znr+j, j ]; by (6.11), |D| ≤ 2C/(1− β) = C̃, and (7.5)

yields

|E[DS̃r]| ≤ C̃E[|S̃r|] ≤ C̃E[S̃2r ]
1/2 ≤ C̃

√
nB′′2 .

On the other hand,
∑nm−nr

j=1 Znr+j,j is a function of the matrices Mt with t ≥ nr+1,

whereas S̃r depends on the matrices Mt with t ≤ nr, Thus, Assumption 2.1 and

(6.7) yield that

E
[( nm−nr∑

j=1

Znr+j, j

)
S̃r

]
= 0.

The last three displays together imply that

∣∣∣ m∑
t=r+1

E[S̃tS̃r]
∣∣∣ ≤ C̃

√
nB′′2 ,

so that

∣∣∣ ∑
m≥t>r≥1

E[S̃tS̃r]
∣∣∣ = ∣∣∣m−1∑

r=1

m∑
t=r+1

E[S̃tS̃r]
∣∣∣ ≤ m−1∑

r=1

∣∣∣ m∑
t=r+1

E[S̃tS̃r]
∣∣∣ ≤ m−1∑

r=1

C̃
√

nB′′2 ,

and then ∣∣∣ ∑
m≥t>r≥1

E[S̃tS̃r]
∣∣∣ ≤ m

√
nC̃

√
B′′2 . (7.6)
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Now define

Ŝj =

n∑
i=1

Z(j−1)n+i,i, j = 1, 2, . . . , m,

and notice the following properties (a), (b):

(a) From (3.10), (3.11) and (6.6), it follows that Ŝ1 = F (M1, . . . , Mn) for

a certain function F , and, moreover, this function F also satisfies that Ŝj =

F (M(j−1)n+1, . . . , Mnj), j = 2, . . . , m. Thus, Ŝ1, . . . , Ŝm are iid, by Assumption

2.1. Also, via (3.12) and (6.6), it follows that Ŝ1 = Sn, and then all the Ŝj have the

same distribution as Sn.

(b) Dj = S̃j−Ŝj =
∑n

i=1[Z(j−1)n+i−Z(j−1)n+i, i] satisfies |Dj | ≤ 2C/(1−β) =

C̃, by (6.11). Now let ε > 0 be arbitrary and notice that, since S̃j = Ŝj+Dj , Lemma

6.3 implies (
1− 1

ε

)
C̃2 + (1− ε)Ŝ2j ≤ S̃2j ≤

(
1 +

1

ε

)
C̃2 + (1 + ε)Ŝ2j .

Taking the expectation and using property (a) above, it follows that

(
1− 1

ε

)
C̃2 + (1− ε)E[S2n] ≤ E[S̃2j ] ≤

(
1 +

1

ε

)
C̃2 + (1 + ε)E[S2n].

Therefore,

m
(
1− 1

ε

)
C̃2 + (1− ε)mE[S2n] ≤

m∑
j=1

E[S̃2j ] ≤ m
(
1 +

1

ε

)
C̃2 + m(1 + ε)E[S2n],

and then

∣∣∣ m∑
j=1

E[S̃2j ]−mE[S2n]
∣∣∣ ≤ εmE[S2n] + m

(
1 +

1

ε

)
C̃2

≤ εmnB2 + m
(
1 +

1

ε

)
C̃2 ≤ εmnB′′2 + m

(
1 +

1

ε

)
C̃2,

where Lemma 6.2(ii) was used to set the second inequality. Combining this with

(7.6) and (7.4), inequality (7.2) follows.

Proof of Theorem 7.1. (i) Let ε > 0 be arbitrary but fixed. In (7.2)

interchange the roles of n and m to obtain

∣∣E[S2nm]− nE[S2m]
∣∣ ≤ εnmB′′2 + nC̃2

(
1 +

1

ε

)
+ 2n

√
mC̃

√
B′′2

which together with (7.2) yields that for every n, m ∈ N
∣∣mE[S2n]− nE[S2m]

∣∣ ≤ ε2nmB′′2 + (n + m)C̃2
(
1 +

1

ε

)
+ 2(n

√
m + m

√
n)C̃

√
B′′2
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so that

∣∣∣∣E[S2n]

n
− E[S2m]

m

∣∣∣∣ ≤ 2εB′′2 +
( 1

m
+

1

n

)
C̃2

(
1 +

1

ε

)
+ 2

( 1√
m

+
1√
n

)
C̃
√

B′′2 .

Consequently,

lim sup
n→∞, m→∞

∣∣∣∣E[S2n]

n
− E[S2m]

m

∣∣∣∣ ≤ 2εB′′2 ;

since ε > 0 is arbitrary, this yields that

lim sup
n→∞, m→∞

∣∣∣∣E[S2n]

n
− E[S2m]

m

∣∣∣∣ = 0,

i.e., {E[S2n]/n} is a Cauchy sequence, and part (i) follows.

(ii) Let y ∈ Pk be arbitrary but fixed, and let {X ′
n} be the process in Defi-

nition 2.1 corresponding to the initial state X0 = y. By part (i) applied to {X ′
n},

limn→∞E[S′2n ]/n = v′ exists and is finite, where S′n is given by (6.2) with X ′
n instead

of Xn, and the conclusion asserts that v = v′. To prove this equality, notice that

Lemma 3.4(ii) and (6.4) together yield that |f(Xn)− f(X ′
n)| ≤ LKβn for n ≥ 2N

so that |E[f(Xn)]− E[f(X ′
n)]| ≤ LKβn in this case. It follows that for n ≥ 2N ,

|Sn − S′n| =
∣∣∣ n∑
t=1

{(f(Xn)− E[f(Xn)])− (f(X ′
n)− E[f(Xn)])

′}
∣∣∣

≤
2N∑
t=1

4‖f‖+
n∑

n=2N+1

2KLβn ≤ 8N‖f‖+ 2KL/(1− β) = D̃

and then |Sn| ≤ |S′n| + D̃. From this point, an application of Lemma 6.3(i) yields

that, for each ε > 0,

S2n ≤ (1 + ε)S′2n + (1 + ε−1)D̃2, n ≥ 2N,

and it follows that

v = lim
n→∞

1

n
E[S2n] ≤ (1 + ε) lim

n→∞

1

n
E[S′2n ] = (1 + ε)v′.

Since ε > 0 is arbitrary, this yields that v ≤ v′. Via a similar argument it follows

that v′ ≤ v, and then v = v′, completing the proof.
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8. Weak limits and uniform differentiability

In this section Theorems 6.1 and 7.1 are used to study the set of weak limits

of the distributions of the normalized averages Sn/
√

n. Before going any further, it

is convenient to introduce the following notation.

Definition 8.1.

(i) For each n ∈ N, let νn ∈ P(R) be the distribution of Sn/
√

n, that is,

νn(A) = P [Sn/
√

n ∈ A], A ∈ B(R).
(ii) The classW consists of all measures ν ∈ P(R) such that, for some subsequence

{νnr
},

νnr

w−→ ν as r →∞. (8.1)

Notice that, by Markov’s inequality and Lemma 6.2(ii),

νn([−a, a]c) ≤ 1

a2n
E[S2n] ≤

B2
a2

, a > 0,

so that the family {νn} is tight, and then the class W is nonempty, by Prohorov’s

theorem. Before stating the main result of this section, it is convenient to establish

the following properties of the family W.

Lemma 8.1. For each ν ∈ W, the following assertions hold (see Theorems

6.1 and 7.1):

(i)
∫

R
x4 ν(dx) ≤ B4 and

∫
R
|x|3 ν(dx) ≤ (B4)

3/4;

(ii)
∫

R
x ν(dx) = 0 and

∫
R

x2 ν(dx) = v.

Proof. Let ν ∈ W be arbitrary but fixed, and let {am} be a sequence of

positive numbers diverging to ∞ and satisfying ν({−am}) = ν({am}) = 0 for every

m. Also, let the subsequence {νnk
} be such that (8.1) holds, and notice that for

positive integers m and i

lim
k→∞

∫ am

−am

xi νnk
(dx) =

∫ am

−am

xi ν(dx). (8.2)

(i) Since B4 ≥
∫

R
x4 νnk

(dx) ≥ ∫ am
−am

x4 νnk
(dx), by Theorem 6.1, the above

displayed relation with i = 4 yields that
∫ am
−am

x4 ν(dx) ≤ B4, so that letting m go

to ∞, the monotone convergence theorem implies that
∫

R
x4 ν(dx) ≤ B4. From this

point, Hölder’s inequality leads to
∫

R
|x|3 ν(dx) ≤ (∫

R
|x|4 ν(dx)

)3/4 ≤ B
3/4
4 .

(ii) Via Theorem 6.1 and part (i), it follows that for every integers i, m, k > 0

with i ≤ 4,∫
[−am, am]c

|x|i νnk
(dx) ≤ 1

a4−im

∫
[−am, am]c

x4 νnk
(dx) ≤ B4

a4−im
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and ∫
[−am, am]c

|x|i ν(dx) ≤ 1

a4−im

∫
[−am, am]c

x4 ν(dx) ≤ B4

a4−im

,

so that∣∣∣∣
∫

R

xi νnk
(dx)−

∫
R

xi ν(dx)

∣∣∣∣ ≤
∣∣∣∣
∫ am

−am

xi νnk
(dx)−

∫ am

−am

xi ν(dx)

∣∣∣∣+ 2B4

a4−im

.

Taking the limit superior as k goes to ∞, (8.2) implies that

lim sup
k→∞

∣∣∣∣
∫

R

xi νnk
(dx)−

∫
R

xi ν(dx)

∣∣∣∣ ≤ 2B4

a4−im

;

since {am} diverges to ∞ this yields

lim
k→∞

∣∣∣∣
∫

R

xi νnk
(dx)−

∫
R

xi ν(dx)

∣∣∣∣ = 0, i = 1, 2,

and using that
∫

R
x νn(dx) = 0 for every n, by (6.3) and Definition 8.1(i), as well as

lim
n→∞

∫
R

x2 νn(dx) = v,

by Theorem 7.1, it follows that
∫

R
x ν(dx) = 0 and

∫
R

x2 ν(dx) = v.

For each ν ∈ P(R), let

ϕν(t) =

∫
eitx ν(dx), t ∈ R,

be the characteristic function of ν, so that ϕν(0) = 1 and the k-th derivative of

ϕν(t) equals
∫

R
ikxkeitx ν(dx) if the k-th moment of ν is finite. By Lemma 8.1,

ϕν
′(t) = 0 and ϕν

′′(t) = −v for each ν ∈ W so that L’Hospital’s rule implies that

lim
t→0

ϕν(t)− 1 + vt2/2

t2/2
= 0.

The main result of the section is the following theorem, stating that the above

convergence is uniform in ν ∈ W.

Theorem 8.1. For each t ∈ R \ {0}, set

Δ(t) := sup
ν∈W

∣∣∣ϕν(t)− 1

t2/2
+ v

∣∣∣. (8.3)

With this notation,

lim
t→0

Δ(t) = 0.
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Proof. First, take the second order Taylor expansion of cos y and sin y

around 0 to obtain

cos y = 1− y2

2
+

y3

6
sin y1

and

sin y = y − y3

6
cos y2

where y1 and y2 are points between 0 and y. Therefore,

eiy = 1 + iy − y2

2
+ y3R(y),

where R(y) = [sin y1/6 − i cos y2/6], and then |R(y)| ≤ 2/6 < 1. Thus eitx =

cos(tx)+ i sin(tx) = 1+ itx− t2x2/2+ t3x3R(tx), where |R(tx)| < 1, so that Lemma

8.1 implies

ϕν(t) =

∫
R

eitx ν(dx) = 1− vt2/2 + t3R̃ν(t), ν ∈ W, t ∈ R, (8.4)

where R̃ν(t) =
∫

R
x3R(tx) ν(dx) satisfies

|R̃ν(t)| ≤
∫

R

|x|3|R(tx)|ν(dx) ≤
∫

R

|x|3ν(dx) ≤ B
3/4
4 , ν ∈ W, t ∈ R, (8.5)

by Lemma 8.1(i). Since (8.4) yields

ϕν(t)− 1

t2/2
+ v = tR̃ν(t), t �= 0, ν ∈ W,

via (8.5) it follows that Δ(t) ≤ |t|B3/4
4 , so that Δ(t)→ 0 as t → 0.

9. Divisibility in the family of weak limits

This section is the last step before the proof of the central limit theorem. The

main objective is to show the following divisibility result in the family W: Given

m ∈ N, each ν ∈ W can be expressed as the distribution of the normalized sample

mean of m iid variables whose common distribution also belongs to W. The precise

result is now stated.

Theorem 9.1. Let ν ∈ W and the positive integer m be arbitrary but fixed.

Then there exists ρ ∈ W such that

ϕν(t) = ϕρ

( t√
m

)m
.
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Proof. Let {nk} be a sequence of positive integers such that nk → ∞ and

(8.1) holds so that
Snk√

nk

d−→ ν. (9.1)

Setting qk = [nk/m] and n′k = mqk, it follows that 0 ≤ nk − n′k ≤ m, |Snk
−

Sn′

k
| ≤ 2(nk − n′k)‖f‖ and n′k/nk → 1, so that, by Slutsky’s theorem, (9.1) yields

Sn′

k
/
√

n′k
d−→ ν. Therefore, without loss of generality, assume that

nk = mqk

and notice that

Snk
=

nk∑
t=1

Zt =

m∑
i=1

qk∑
j=1

Z(i−1)qk+j = Sqk +

m∑
i=2

qk∑
j=1

Z(i−1)qk+j .

Next, define

S(i)qk =

qk∑
j=1

Z(i−1)qk+j, j , Di =

qk∑
j=1

[Z(i−1)qk+j − Z(i−1)qk+j, j ], i = 2, 3, . . . , m,

so that

Unk
:=

Snk√
nk

−
m∑
i=2

Di√
nk

=
1√
m

[
Sqk√

qk
+

m∑
i=2

S
(i)
qk√
qk

]
. (9.2)

Now observe the following facts:

(a) By Lemma 3.3, (6.5) and (6.6), Sqk , S
(2)
qk , . . . , S

(m)
qk are iid.

(b) By (6.11), |Di| ≤
∑qk

j=1 |Z(i−1)m+j−Z(i−1)m+j, j | ≤
∑qk

j=1 2Cβj ≤ 2C/(1−β)

P -a.s., so that
m∑
i=2

Di√
nk

→ 0 P -a.s.

Now let t ∈ R be arbitrary but fixed. Combining this latter convergence with (9.1)

and (9.2) it follows that Unk

d−→ ν as k →∞, so that, for each t ∈ R

E[eitUnk ]→ ϕν(t) as k →∞.

On the other hand, recalling that the distribution of Sqk/
√

qk is νqk , property (a)

above and (9.2) together imply that

E[eitUnk ] = ϕνqk

( t√
m

)m
.
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Selecting a subsequence if necessary, it can be assumed that νqk
w−→ ρ ∈ W as

k →∞, by Prohorov’s theorem, so that

ϕνqk

( t√
m

)
→ ϕρ

( t√
m

)
.

The last three displays together yield that

ϕν(t) = ϕρ

( t√
m

)m
, t ∈ R,

completing the proof.

10. Proof of the central limit theorem

In this section Theorem 2.3 is finally proved. The argument relies on the uni-

form differentiability and divisibility results in Theorems 8.1 and 9.1, respectively.

Proof of Theorem 2.3. (i) Using (6.3), this part follows directly from

Theorem 7.1.

(ii) It will be shown that each member of the family W in Definition 8.1

coincides with the distribution N (0, v), or equivalently, that if ν ∈ W, then

ϕν(t) = e−vt
2/2

for each t ∈ R; since this latter equality always holds for t = 0, it is sufficient to

verify the above equation for arbitrary but fixed t ∈ R \ {0} and ν ∈ W. Given a

positive integer m, use Theorem 9.1 to find a distribution ρm ∈ W such that

ϕν(t) = ϕρm

( t√
m

)m
, (10.1)

and define

am(t) :=
ϕρm (t/

√
m)− 1

t2/(2m)
,

so that 1 + am(t) t2

2m = ϕρm (t/
√

m) , and (10.1) yields

ϕν(t) =
(
1 + am(t)

t2

2m

)m
. (10.2)

Notice now that

|am(t) + v| =
∣∣∣ϕρm (t/

√
m)− 1

t2/(2m)
+ v

∣∣∣ ≤ Δ(t/
√

m),

(see (8.3)), and then limm→∞ |am(t) + v| = 0, by Theorem 8.1, i.e.,

lim
m→∞

am(t) = −v.

Combining this convergence with (10.2), it follows that

ϕν(t) = lim
m→∞

(
1 + am(t)

t2

2m

)m
= e−vt

2/2,

so that each ν ∈ W is the distribution N (0, v).
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partially observable controlled Markov chains with risk-sensitive average criterion,

Stochastics, 77 (2005), 537–568.

[6] A. CRISANTI, G. PALADIN and A. VULPIANI, Products of Random Matrices in Sta-

tistical Physics, Springer-Verlag, Berlin, 1993.
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