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Abstract

We obtain limits for random iterations of the lamplighter group Z2 o Z, which refer to the state of a lamp (light ‘‘on’’ or

‘‘off’’), and the number of changes in a set of lamps.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Random walks and Markov chains on wreath products, and random wreath products have been studied by
several authors (e.g., Cartwright, 1988; Evans, 2001; Fill and Schoolfield, 2001; Lyons et al., 1996; Peres and
Revelle, 2004; Pittet and Saloff-Coste, 2002; Revelle, 2003; Schoolfield, 2002). Some examples of wreath
products appear under the name of lamplighter groups in the random walk literature. On the other hand,
random iterations of mappings, in particular random iterations of groups, have been investigated extensively
(e.g., Ådahl et al., 2003; Diaconis and Freedman, 1999; Gorostiza, 1973a; Guivarc’h, 2000; Guivarc’h et al.,
1977; Hennion and Hervé, 2004; Rachev and Yukich, 1991; Wu and Woodroofe, 2000; and references
therein), but we have not found results related to random iterations of wreath products.

In this note we obtain two limits for some random iterations of the lamplighter group Z2 o Z. The first result
says that if the lamplighter performs a random walk on Z, changing the state of the lamp at each visited site
with probability q40, then in the long run the light at each site spends equal amounts of time on and off.
However, this is a straightforward consequence of elementary theory of Markov chains. A more interesting
result is obtained by extending the sum on Z2 to Zþ (but note that Zþ o Z is not a group). In this way we have a
limit for the number of changes in a given set of lamps. This limit is the same for the number of visits of a
random walk to a given set of sites, where each visit is observed with probability q. These results are simple,
e front matter r 2007 Elsevier B.V. All rights reserved.
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but they suggest that problems of this type for more general classes of random iterations of wreath products
may be interesting.
2. Random iterations of wreath products

We refer to Pittet and Saloff-Coste (2002) for background on wreath products and a description of
lamplighter groups. Let K and H be finitely generated groups, and KH the class of functions k : H ! K with
bounded support. The wreath product K oH is the semidirect product K oH ¼ KHsH with

ðk; hÞðk0; h0Þ ¼ ðkthk0; hh0Þ; k; k0 2 KH ; h; h0 2 H,

where kthk0ð‘Þ ¼ kð‘Þk0ðh�1‘Þ, ‘ 2 H. Hence

ðk1; h1Þ . . . ðkn; hnÞ ¼ ðfk1ð‘Þk2ðh
�1
1 ‘Þ . . . knðh

�1
n�1 . . . h

�1
1 ‘Þ; ‘ 2 Hg; h1 . . . hnÞ, (2.1)

and

ðkn; hnÞ . . . ðk1; h1Þ ¼ ðfknð‘Þkn�1ðh
�1
n ‘Þ . . . k1ðh

�1
2 . . . h�1n ‘Þ; ‘ 2 Hg; hn . . . h1Þ. (2.2)

If H and K are Abelian, (2.1) and (2.2) are given by

ðk1; h1Þ . . . ðkn; hnÞ ¼
Xn

j¼1

kj ‘ �
Xj�1
i¼1

hi

 !
; ‘ 2 H

( )
;
Xn

i¼1

hi

 !
, (2.3)

and

ðkn; hnÞ . . . ðk1; h1Þ ¼
Xn

j¼1

kj ‘ �
Xn

i¼jþ1

hi

 !
; ‘ 2 H

( )
;
Xn

i¼1

hi

 !
, (2.4)

where, obviously,
Pj�1

i¼1hi ¼ 0 for j ¼ 1 and
Pn

i¼jþ1hi ¼ 0 for j ¼ n.
Let ðkn; hnÞ; n ¼ 1; 2; . . . be a sequence of independent, identically distributed (i.i.d.) random elements of

K oH. The problem is how (2.1) and (2.2) behave as n!1. An analogous problem that has been studied is
random iterations of isometries of Euclidean space Rd (represented by the group EðdÞ ¼ RdsOðdÞ, but in this
case the groups K and H are not finitely generated). The first component of (2.1) obeys a central limit theorem
(Ådahl et al., 2003; Gorostiza, 1973a; Rachev and Yukich, 1991; and references therein). With the order (2.2)
there is also a central limit theorem, but the limit is different (Gorostiza, 1973b).

We consider here a simple type of random iterations of the lamplighter group Z2 o Z. The lamplighter
performs a random walk on Z, changing the state of the lamp (light ‘‘on’’ or ‘‘off’’) at each visited site with
probability q40. (In a more general model, the lamplighter can make changes at the same time on a finite set
of lamps related to its current position, according to some probability distribution.) Note that (2.3) and (2.4)
have the same distribution. We will work with (2.3).
3. Limits

Let Sn ¼
Pn

i¼1hi; nX1; S0 ¼ 0, denote the random walk on Z which corresponds to the second component
in (2.3). Sn represents the position of the lamplighter at the nth step. We assume that Sn is recurrent and
satisfies the assumptions for the local central limit theorem (e.g., Breiman, 1968), with Eh ¼ 0 and Eh2

¼ s2.
Limit theorems for Sn are classical. In order to simplify calculations, we assume that kj and hj are independent
for each j, kjð‘Þ ¼ 0 for all ‘a0, and

kjð0Þ ¼
1 with probability q;

0 with probability 1� q;

(
(3.1)

0oqp1.
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We consider the first component in (2.3),

Y nð‘Þ ¼
Xn

j¼1

kjð‘ � Sj�1Þ; ‘ 2 Z. (3.2)

Thus, at each visited site the lamplighter changes the state of the lamp with probability q and leaves it as it is
with probability 1� q, and then moves to another site. Y nð‘Þ represents the state of the lamp at ‘ after the first
n� 1 steps of the lamplighter.

Proposition 1. For each ‘ 2 Z and any q40,

lim
n!1

P½Y nð‘Þ ¼ 0� ¼ lim
n!1

P½Y nð‘Þ ¼ 1� ¼
1

2
. (3.3)

Proof. Fix ‘ and k1ð‘Þ ¼ a. Let

Nnð‘Þ ¼ #f j; 0pjpn� 1 : Sj ¼ ‘g.

Then, from (3.2) we have (shifting the summation index to simplify notation, by the i.i.d. assumption)

P½Y nð‘Þ ¼ 0� ¼ P aþ
Xn�1
j¼1

kjþ1ð‘ � SjÞ ¼ 0

" #

¼
Xn�1
r¼0

P aþ
Xn�1
j¼1

kjþ1ð‘ � SjÞ ¼ 0

" �����Nnð‘Þ ¼ r

#
P½Nnð‘Þ ¼ r�

¼
Xn�1
r¼0

P aþ
Xr

j¼1

kjð‘Þ ¼ 0

" #
P½Nnð‘Þ ¼ r�.

By (3.1), ð
Pr

j¼1kjð‘ÞÞr¼1;2;... is a Markov chain on f0; 1g with transition probabilities Pð0! 1Þ ¼ Pð1! 0Þ ¼ q.
Hence, by elementary theory (convergence to the stationary distribution), for any a we have

lim
r!1

P aþ
Xr

j¼1

kjð‘Þ ¼ 0

" #
¼

1

2
.

On the other hand, by recurrence of Sj, for any r,

lim
n!1

P½Nnð‘Þ ¼ r� ¼ 0.

Then (3.3) follows easily. &

This result means that in the long run the light at each site has equal probabilities of being on or off,
independently of q.

For the second limit we regard Y n as a random measure on Z:

Y nðIÞ ¼
X
‘2I

Xn

j¼1

kjð‘ � Sj�1Þ ¼
Xn

j¼1

X
‘2I

kjð‘ � Sj�1Þ ¼
Xn

j¼1

kjðI � Sj�1Þ, (3.4)

where I is a bounded set in Z, and the sum of values of the kj is now on Zþ. Hence Y nðIÞ represents the number
of times the lamplighter changes states of any lamps in I in the first n� 1 steps. Y nðIÞ is also a randomly
observed occupation time of I by the first n� 1 steps of the random walk Sj, where each visit to I is registered
with probability q and not registered with probability 1� q. If q ¼ 1, Y nðIÞ is an ordinary occupation time,
and the result coincides with the known one for that case (Breiman, 1968). Intuitively, Y nðIÞ is expected to
behave asymptotically like the occupation time of I by the random walk Sj, multiplied by q, and this is
confirmed by the result.
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Proposition 2. For any bounded set I of Z any q40,

1ffiffiffi
n
p Y nðIÞ )

qjI j

s
ffiffiffi
2
p X as n!1, (3.5)

where the random variable X has the truncated normal distribution with density function

f ðxÞ ¼
1ffiffiffi
p
p e�x2=4; xX0.

() denotes convergence in distribution and jI j is the cardinality of I).

Proof. We compute the Laplace transform of Y nðIÞ=
ffiffiffi
n
p

from (3.4) using the i.i.d. assumption:

E exp �u
1ffiffiffi
n
p Y nðIÞ

� �
¼ AnðuÞBnðuÞ,

where

AnðuÞ ¼ E exp �u
1ffiffiffi
n
p k1ðIÞ

� �
; BnðuÞ ¼ E exp �u

1ffiffiffi
n
p
Xn�1
j¼1

kjþ1ðI � SjÞ

( )

(the summation index has been shifted by the i.i.d. assumption as above). We have

AnðuÞ ¼
1; 0eI ;

e�u=
ffiffi
n
p

qþ 1� q; 0 2 I :

(

Let

NnðIÞ ¼ #fj; 0pjpn� 1 : Sj 2 Ig,

then

BnðuÞ ¼
Xn�1
r¼0

E exp �u
1ffiffiffi
n
p
Xn�1
j¼1

kjþ1ðI � SjÞ

( )" �����NnðIÞ ¼ r

#
P½NnðIÞ ¼ r�

¼
Xn�1
r¼0

E exp �u
1ffiffiffi
n
p k1ð0Þ

� �� �r

P½NnðIÞ ¼ r�

¼
Xn�1
r¼0

e�u=
ffiffi
n
p

qþ 1� q
� 	r

P½NnðIÞ ¼ r�

¼
Xn�1
r¼0

Xr

k¼0

r

k

 !
e�uk=

ffiffi
n
p q

1� q

� �k

ð1� qÞrP½NnðIÞ ¼ r�.

Next we compute the mth moment of Y nðIÞ=
ffiffiffi
n
p

:

E
1ffiffiffi
n
p Y nðIÞ

� �m

¼ ð�1Þm
dm

dum
AnðuÞBnðuÞ

����
u¼0

¼ ð�1Þm
Xm

j¼0

m

j

 !
d j

du j
AnðuÞ

�����
u¼0

dm�j

dum�j
BnðuÞ

������
u¼0

, ð3:6Þ

d j

du j
AnðuÞ

����
u¼0

¼

1; j ¼ 0;

0; j40; 0eI ;

ð�1Þ j

n j=2
q; j40; 0 2 I ;

8>>><
>>>:
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dm�j

dum�j
BnðuÞ

����
u¼0

¼
ð�1Þm�j

nðm�jÞ=2

Xn�1
r¼0

Xr

k¼0

r

k

� �
km�j q

1� q

� �k

ð1� qÞrP½NnðIÞ ¼ r�. (3.7)

We will use the occupation time theorem for NnðIÞ:

lim
n!1

E
NnðIÞffiffiffi

n
p

� �m

¼

ffiffiffi
2
p
jI j

s

 !m G
mþ 1

2

� �
ffiffiffi
p
p (3.8)

(see Breiman, 1968, note that 2mGððmþ 1Þ=2Þ=
ffiffiffi
p
p
¼ m!=Gð1þm=2Þ).

The sum
Pr

k¼0ð
r
k
Þkm�j

ðq=ð1� qÞÞk in (3.7) can be written as a sum of terms, each containing a power
of r, and only the term with the highest power of r, which is rm�j, obeys (3.8) and will contribute to the limit.
In order to verify this assertion we need the following combinatorial result.

Consider the sum

Xr

k¼0

r

k

� �
kspk, (3.9)

where s is an integerX1 and p40. Using the formula

Xr

k¼0

r

k

� �
kspk ¼ rp

Xs�1
i¼0

s� 1

i

� �Xr�1
k¼0

r� 1

k

� �
kipk,

it can be shown by induction that the dominating term in (3.9), i.e., the one containing the highest power
of r, is

rspsð1þ pÞr�s.

Using this with s ¼ m� jX1 and p ¼ q=ð1� qÞ in (3.7), we see that the dominating term there is

ð�1Þm�jqm�j

nðm�jÞ=2

Xn�1
r¼0

rm�jP½NnðIÞ ¼ r� ¼ ð�1Þm�jqm�jE
NnðIÞffiffiffi

n
p

� �m�j

.

Hence the dominating term in (3.6) is

qmE
NnðIÞffiffiffi

n
p

� �m

; 0eI ,

qmE
NnðIÞffiffiffi

n
p

� �m

þ
Xm

j¼1

m

j

 !
qm�jþ1 1

nj=2
E

NnðIÞffiffiffi
n
p

� �m�j

; 0 2 I .

Therefore, by (3.8),

lim
n!1

E
1ffiffiffi
n
p Y nðIÞ

� �m

¼
q
ffiffiffi
2
p
jI j

s

 !m G
mþ 1

2

� �
ffiffiffi
p
p (3.10)

for each m ¼ 1; 2; . . . :
The numbers on the right-hand side of (3.10) are the mth moments of the random variable on the right-hand

side of (3.5), so (3.5) is proved by the method of moments. &
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