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Abstract
We obtain limits for random iterations of the lamplighter group Z, : Z, which refer to the state of a lamp (light “on” or
“off”’), and the number of changes in a set of lamps.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Random walks and Markov chains on wreath products, and random wreath products have been studied by
several authors (e.g., Cartwright, 1988; Evans, 2001; Fill and Schoolfield, 2001; Lyons et al., 1996; Peres and
Revelle, 2004; Pittet and Saloff-Coste, 2002; Revelle, 2003; Schoolfield, 2002). Some examples of wreath
products appear under the name of lamplighter groups in the random walk literature. On the other hand,
random iterations of mappings, in particular random iterations of groups, have been investigated extensively
(e.g., Adahl et al., 2003; Diaconis and Freedman, 1999; Gorostiza, 1973a; Guivarc’h, 2000; Guivarc’h et al.,
1977; Hennion and Hervé, 2004; Rachev and Yukich, 1991; Wu and Woodroofe, 2000; and references
therein), but we have not found results related to random iterations of wreath products.

In this note we obtain two limits for some random iterations of the lamplighter group Z; : Z. The first result
says that if the lamplighter performs a random walk on Z, changing the state of the lamp at each visited site
with probability ¢>0, then in the long run the light at each site spends equal amounts of time on and off.
However, this is a straightforward consequence of elementary theory of Markov chains. A more interesting
result is obtained by extending the sum on Z, to Z* (but note that Z* : Z is not a group). In this way we have a
limit for the number of changes in a given set of lamps. This limit is the same for the number of visits of a
random walk to a given set of sites, where each visit is observed with probability ¢. These results are simple,
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but they suggest that problems of this type for more general classes of random iterations of wreath products
may be interesting.

2. Random iterations of wreath products

We refer to Pittet and Saloff-Coste (2002) for background on wreath products and a description of
lamplighter groups. Let K and H be finitely generated groups, and Ky the class of functions k : H — K with
bounded support. The wreath product K : H is the semidirect product K H = Ky > H with

(k, h) (k' 1) = (ki hl),  k,k' € Ky, hh € H,
where k1,k'(€) = k(€)k'(h~'¢), ¢ € H. Hence

(ki) o (ks ) = (B (O (BT 0) (Bt L 110, €€ HY, .. hy), 2.1)
and

(ks hy) - . . (k1 ) = WOk (B 0) ke (hy 1 6), € € HY, hyy .. ). (2.2)
If H and K are Abelian, (2.1) and (2.2) are given by

(kl,hl)...(k,,,hn)=<{2k< jz ),feH},Xn:h[), (2.3)

and

(Knshn) ... (k1 ) = ({Zk (5— Z h),fe H},ih,), (2.4)
i=1

i=j+1

where, obviously, Z’_lh =0forj=1and ) jr1hi =0 forj=n.

Let (k,, h,),n=1,2,... be a sequence of independent, identically distributed (i.i.d.) random elements of
K H. The problem is how (2.1) and (2.2) behave as n — oco. An analogous problem that has been studied is
random iterations of isometries of Euclidean space R? (represented by the group E(d) = R? > O(d), but in this
case the groups K and H are not finitely generated). The first component of (2.1) obeys a central limit theorem
(Adahl et al., 2003; Gorostiza, 1973a; Rachev and Yukich, 1991; and references therein). With the order (2.2)
there is also a central limit theorem, but the limit is different (Gorostiza, 1973b).

We consider here a simple type of random iterations of the lamplighter group Z,:Z. The lamplighter
performs a random walk on Z, changing the state of the lamp (light “on” or “off”’) at each visited site with
probability ¢>0. (In a more general model, the lamplighter can make changes at the same time on a finite set
of lamps related to its current position, according to some probability distribution.) Note that (2.3) and (2.4)
have the same distribution. We will work with (2.3).

3. Limits

Let S, = > % hi, n=1, Sy = 0, denote the random walk on Z which corresponds to the second component
in (2.3). S, represents the position of the lamplighter at the nth step. We assume that S, is recurrent and
satisfies the assumptions for the local central limit theorem (e.g., Breiman, 1968), with Eh = 0 and ERW = o2,
Limit theorems for S, are classical. In order to simplify calculations, we assume that k; and /; are independent

for each j, k;j(£) = 0 for all £#0, and

3.1)

i 1 with probability ¢,
©O=10 " with probability 1 — ¢,

0<g<l.
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We consider the first component in (2.3),
Yul) =Y kit —Si1), teZ (3.2)
j=1

Thus, at each visited site the lamplighter changes the state of the lamp with probability ¢ and leaves it as it is
with probability 1 — ¢, and then moves to another site. Y ,(£) represents the state of the lamp at ¢ after the first
n — 1 steps of the lamplighter.

Proposition 1. For each ¢ € 7 and any ¢>0,

lim P[Y,(0) = 0] = lim P[Y,(0)=1]= % (3.3)

n— o0
Proof. Fix ¢ and k;(¢) = a. Let
N, (6) =#{j,0<j<n—1:S; =(}.

Then, from (3.2) we have (shifting the summation index to simplify notation, by the i.i.d. assumption)

PlY,(H)=0]=P

n—1
at+ > ki —S)= 0]
J=1

n—1

Pla+> ki1(£—S;) = O0|Ny(€) = r| P[N,(€) = r]

n—1

Il
1]

j=1
’

a+y ki6)=0
j=1

1
P

3
|

P[N,(£) = 7.

Il
=

7

By (3.1), (Z;=1kj(5))r=1,z,... is a Markov chain on {0, 1} with transition probabilities P(0 — 1) = P(1 — 0) = q.
Hence, by elementary theory (convergence to the stationary distribution), for any a we have

1

JNim Pla+ R

r

ki(£) = o] -

Jj=1
On the other hand, by recurrence of §;, for any r,

lim P[N,(¢) =r] =0.
n— o0
Then (3.3) follows easily. [

This result means that in the long run the light at each site has equal probabilities of being on or off,
independently of ¢.
For the second limit we regard Y, as a random measure on Z:

n n

YuD)=> > kit =Si)=>> kit —S;-1)=Y kI —S;1), (3.4)
T =

tel j= j=1 tel

where [ is a bounded set in Z, and the sum of values of the k; is now on Z*. Hence Y ,(I) represents the number
of times the lamplighter changes states of any lamps in 7 in the first n — 1 steps. Y,(/) is also a randomly
observed occupation time of 1 by the first n — 1 steps of the random walk S;, where each visit to [ is registered
with probability ¢ and not registered with probability 1 — ¢. If ¢ = 1, Y,(I) is an ordinary occupation time,
and the result coincides with the known one for that case (Breiman, 1968). Intuitively, Y,(I) is expected to
behave asymptotically like the occupation time of I by the random walk S;, multiplied by ¢, and this is
confirmed by the result.
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Proposition 2. For any bounded set I of Z any ¢>0,

J_Y(I):%X as n— oo, (3.5

where the random variable X has the truncated normal distribution with density function

|
f(x)=——e /% x>0.

(= denotes convergence in distribution and |I| is the cardinality of I).

Proof. We compute the Laplace transform of Y,(I)//n from (3.4) using the i.i.d. assumption:

Eexp{—ulf Y (1)} = A,()Bo(),

where

n—1
An(u) = Eexp{—ujgkla)}, By(u) = Eexp{—ujﬁ;k,+l(1 - S_,-)}

(the summation index has been shifted by the i.i.d. assumption as above). We have
1, 0¢l1,
An(u) = {e“/ﬁq+ l—gq, 0el.

Let
N,(I)=#{j,0<j<n—1:85; €1},

then

Bn(u) =

;Mi
s

P[Nn(l)zr]

1 n—1
CXP{—Mﬁ;k;+1(I - S_/)HN;:(I) =r

1 r
(Eexp{—u\}#q(O)}) P[N(I) = 1]

( ”/“/—q—l-l—q) PIN () = 1]

n

M‘ i~

0
1

n—

= Z( ) ‘”"”(1 q) (1= g/ PIN,(D) = r].

r= 0

Next we compute the mth moment of Y, (I)//n:

1 " m d"
E(jﬁ Yn(l)) =(=D dum An(u)By(u)

u=0
m m d m—j
=) G| g B (3.6)
=0 u=0 u=0
L j=0,
J i I
S| =4 IR
dw/ u=0 (_l)j .
~—2q, j>0,0€el,
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( l)m j n k )
n(m—/)/Z ZZ( > (1 iq> (1 - q) P[Nn(l) = }"] (37)

r=0 k=l

m—j

" /Bn(u)

We will use the occupation time theorem for N, (/):

ml (m + 1)
. N.(O\" 2|1
lim E(A) = (f| |> 2 (3.8)
n—00 ﬁ o ﬁ

(see Breiman, 1968, note that 2" I'((m + 1)/2)//m = m!/T'(1 4 m/2)).

The sum > (DK™ (q/(1 — ¢)* in (3.7) can be written as a sum of terms, each containing a power
of r, and only the term with the highest power of r, which is 7"/, obeys (3.8) and will contribute to the limit.
In order to verify this assertion we need the following combinatorial result.

Consider the sum

Z(;)H K (3.9)

k=0

where s is an integer > 1 and p>0. Using the formula
Z kxpk_rpz s—1 Z r—1 kipk
k=0 rr AN

it can be shown by induction that the dominating term in (3.9), i.e., the one containing the highest power
of r, is

rSpS(l _’_p)V*S'
Using this with s =m —j>1 and p = ¢/(1 — ¢) in (3.7), we see that the dominating term there is

(_l)mqumfj" 1 e . ] e ”(1) m—j
WZ PIN,(I) = 1= (=1) E(=7) -
r=
Hence the dominating term in (3.6) is

o (Na(D\"
1 E< ﬁ) - 08

N, ( 1) m m m » 1 N, ( I) m—j
"E g —E 0Oel
1 (ﬁz’) +;<1>q Wi (ﬁ S

Therefore, by (3.8),

mF(m+ 1)
lim E(— Y (1)) - (‘“f'”) 2 (3.10)

n—0o0 \/—‘ \/}E

foreachm=1,2,....
The numbers on the right-hand side of (3.10) are the mth moments of the random variable on the right-hand
side of (3.5), so (3.5) is proved by the method of moments. [

Acknowledgment

We thank the referee for comments which required explanations.



26 L.G. Gorostiza, M. Takane | Statistics & Probability Letters 78 (2008) 21-26

References

Adahl, M., Melbourne, 1., Nicol, M., 2003. Random iteration of Euclidean isometries. Nonlinearity 16, 977-987.

Breiman, L., 1968. Probability. Addison-Wesley, Reading, MA.

Cartwright, D.I., 1988. Random walks on direct sums of discrete groups. J. Theoret. Probab. 1, 341-356.

Diaconis, P., Freedman, D., 1999. Iterated random functions. SIAM Rev. 41, 45-76.

Evans, S.N., 2001. Eigenvalues of random wreath products. Electron. J. Probab. 7 (paper 7), 15.

Fill, J.A., Schoolfield, C.H., 2001. Mixing times for Markov chains on wreath products and related homogeneous spaces. Electron. J.
Probab. 6 (paper 11), 22.

Gorostiza, L., 1973a. The central limit theorem for random motions of d-dimensional Euclidean space. Ann. Probab. 1, 603-612.

Gorostiza, L., 1973b. An invariance principle for a class of d-dimensional polygonal random functions. Trans. Amer. Math. Soc. 177,
413-445.

Guivarc’h, Y., 2000. Marches aléatoires sur les groupes. In: Pier, J.-P. (Ed.), Development of Mathematics 1950-2000. Birhduser, Basel,
pp. 577-608.

Guivarc’h, Y., Keane, M., Roynette, B., 1977. Marches Aléatories sur les Groupes de Lie. Lecture Notes in Mathematics, vol. 624.
Springer, Berlin.

Hennion, H., Hervé, L., 2004. Central limit theorems for iterated random Lipschitz mappings. Ann. Probab. 32, 1934-1984.

Lyons, R., Pemantle, R., Peres, Y., 1996. Random walks on the lamplighter group. Ann. Probab. 24, 1993-2006.

Peres, P., Revelle, D., 2004. Mixing times for random walks on finite lamplighter groups. Elect. J. Probab. 9 (paper 26), 825-845.

Pittet, C., Saloff-Coste, L., 2002. On random walks on wreath products. Ann. Probab. 30, 948-977.

Rachev, S.T., Yukich, J.E., 1991. Rate of convergence of a-stable random motions. J. Theor. Probab. 4, 333-354.

Revelle, D., 2003. Rate of escape of random walk on wreath products and related groups. Ann. Probab. 31, 1917-1934.

Schoolfield, C.H., 2002. Random walks on wreath products of groups. J. Theoret. Probab. 15, 667-693.

Wu, W.B., Woodroofe, M., 2000. A central limit theorem for iterated random functions. J. Appl. Probab. 37, 748-755.



	Some limits related to random iterations of a lamplighter group
	Introduction
	Random iterations of wreath products
	Limits
	Acknowledgment
	References


