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Abstract We extend results on time-rescaled occupation time fluctuation limits of
the (d, α, β)-branching particle system (0 < α ≤ 2, 0 < β ≤ 1) with Poisson initial
condition. The earlier results in the homogeneous case (i.e., with Lebesgue initial
intensity measure) were obtained for dimensions d > α/β only, since the particle
system becomes locally extinct if d ≤ α/β. In this paper we show that by introducing
high density of the initial Poisson configuration, limits are obtained for all dimen-
sions, and they coincide with the previous ones if d > α/β. We also give high-density
limits for the systems with finite intensity measures (without high density no limits
exist in this case due to extinction); the results are different and harder to obtain
due to the non-invariance of the measure for the particle motion. In both cases, i.e.,
Lebesgue and finite intensity measures, for low dimensions [d < α(1 + β)/β and d <

α(2 + β)/(1 + β), respectively] the limits are determined by non-Lévy self-similar
stable processes. For the corresponding high dimensions the limits are qualitatively
different: S ′

(R
d
)-valued Lévy processes in the Lebesgue case, stable processes

constant in time on (0,∞) in the finite measure case. For high dimensions, the laws of
all limit processes are expressed in terms of Riesz potentials. If β = 1, the limits are
Gaussian. Limits are also given for particle systems without branching, which yields
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in particular weighted fractional Brownian motions in low dimensions. The results
are obtained in the setup of weak convergence of S ′(Rd)

-valued processes.

Keywords Self-similar stable process · Long-range dependence ·
Branching particle system · Occupation time · Functional limit theorem ·
S ′(Rd)

-valued process
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1 Introduction

In order to explain the motivations for this paper, we refer briefly to previous results
on occupation times of the (d, α, β)-branching particle system, which has been widely
studied, and is described as follows. At time t = 0 particles are distributed in R

d

according to a Poisson random measure, and then they evolve moving and branching
independently of each other. The motion is given by the symmetric α-stable Lévy
process, 0 < α ≤ 2 (called standard α-stable process), the lifetime is exponentially
distributed with parameter V, and the branching law has generating function

s + 1

(1 + β)
(1 − s)1+β, 0 < s < 1, (1.1)

where 0 < β ≤ 1. This law is critical and belongs to the domain of attraction of a
stable law with exponent 1 + β. The case β = 1 corresponds to binary branching (0
or 2 particles). This is the simplest in a class of branching particle systems that yield
essentially the same results. We also consider the system without branching (V = 0).

If the initial particle configuration is given by a homogeneous Poisson random
measure, i.e., whose intensity is the Lebesgue measure λ, then the system without
branching is in equilibrium, the branching system converges towards a non-trivial
equilibrium state as time tends to infinity for d > α/β, and it becomes locally extinct
in probability for d ≤ α/β [18].

Let (Nt)t≥0 denote the empirical measure process of the system (with or without
branching), i.e., Nt(A) is the number of particles in the set A ⊂ R

d
at time t. The

rescaled occupation time fluctuation process with accelerated time is defined by

XT(t) = 1

FT

∫ Tt

0
(Ns − ENs)ds, t ≥ 0, (1.2)

where FT is a suitable norming for convergence as T → ∞. Note that if λ is the
intensity of the initial Poisson configuration, then ENt = λ for all t due to the
invariance of λ for the standard α-stable process and the criticality of the branching
(or no branching).

With homogeneous Poisson initial condition, functional limit theorems for the
process XT in the branching case were obtained in [5, 6] for β = 1, where the
limit processes are Gaussian, and in [7, 8] for β < 1, with (1 + β)-stable limit
processes. The limits are dimension-dependent, their main qualitative properties
being that for the intermediate dimensions, α/β < d < α(1 + β)/β, the process has
long-range dependence, while for the critical and high dimensions, d = α(1 + β)/β

and d > α(1 + β)/β, respectively, the processes have independent increments. For



Self-similar stable processes and particle systems 73

high dimensions the limits are S ′(Rd)
-valued

(
S ′(Rd)

is the space of tempered

distributions, the dual of S
(
R

d)
, the space of smooth rapidly decreasing functions

)
,

and their laws are expressed in terms of Riesz potentials. There is a functional
ergodic theorem for d = α/β [25]. For intermediate dimensions the limit has the form
X = Kλξ , where K is a constant, and (ξt)t≥0 is a real non-Lévy self-similar (1 + β)-
stable process, which for β = 1 is a sub-fractional Brownian motion, whose properties
are described in [4].

Other papers related to occupation times of branching particle systems and su-
perprocesses are [2, 12, 14–17, 19–23, 26]. Birkner and Zähle [2] consider occupation
time limits for branching random walks on d-dimensional lattices.

The first motivation for this paper comes from the fact that in the homogeneous
case with β = 1 and d < α, the covariance of the process XT has a non-trivial limit
as T → ∞, which corresponds to a process X of the same form as above, with a
different Gaussian process instead of sub-fractional Brownian motion, but X is not
the limit of XT because, as recalled above, the particle system becomes locally extinct
if d < α. Therefore the question arises if it is possible to give a probabilistic meaning
(related with the particle system) to the process X, by taking a different type of
limit. Our objective is to show that this can be achieved by letting the density of the
initial Poisson configuration tend to infinity in a suitable way as T → ∞. We will
prove a limit theorem for the process XT for low dimensions, d < α(1 + β)/β (which
includes the old intermediate dimensions), and obtain results for the critical and high
dimensions as well, by taking an initial Poisson configuration with intensity measure
HTλ, where HT → ∞ as T → ∞ (and new normings FT). It turns out that the limits
coincide with the known ones in the cases where the latter exist, i.e., for d > α/β,
and they are new processes for d ≤ α/β, which are also of the form X = Kλξ . For
β < 1 and d < α/β, ξ is an extension of a non-Lévy (1 + β)-stable process obtained
in [7] for intermediate dimensions (the process in [7] has the interesting property
that it has two different long-range dependence regimes). For β = 1 and d < α, ξ is a
negative sub-fractional Brownian motion, which is a real centered Gaussian process
with covariance

Eξsξt = 1

2
[(s + t)h + |s − t|h] − sh − th, s, t ≥ 0, (1.3)

where h = 3 − d/α. For β = 1 and d = α, ξ is a centered Gaussian process with
covariance

Eξsξt = 1

2

[
(s + t)2 log(s + t) + (s − t)2 log |s − t|] − s2 log s − t2 log t, s, t ≥ 0.

(1.4)
Some properties of these processes are studied in [10], independently of their origin
in particle systems.

Thus, the high-density limits extend the ranges of the parameters of the branching
particle system for convergence of XT obtained in [5–8] without high density, so that
all cases are now covered, including dimensions d below and at the extinction border
α/β .

For completeness, we will also include high-density limits for the system without
branching, but there are no novelties in the sense that the limits coincide with those
for the homogeneous Poisson case without high density.
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The second motivation is the question of what happens with the occupation times
of the particle systems if the initial Poisson configuration has finite intensity measure.
In this case the branching system becomes extinct a.s., while the non-branching
system becomes locally extinct a.s. if d > α, and if d ≤ α, then (1/FT)

∫ T
0 E〈Ns, ϕ〉ds

converges to a finite limit for any ϕ ∈ S
(
R

d)
and (1/FT)

∫ Tt
0 Nsds has a non-trivial

limit in law (see [9], the latter result is akin to the Darling–Kac occupation time
theorem [13]). For these reasons it does not make sense to study asymptotic occupa-
tion time fluctuations. We will show that high density of the initial Poisson condition
can be used to compensate extinction and obtain non-trivial limits for XT . We will
consider an initial Poisson configuration with intensity measure HTμ, where μ is a
finite measure and HT → ∞ as T → ∞. This yields results for the occupation time
fluctuations of the branching and the non-branching systems, with new types of limits.
These results are different, and significantly more difficult to obtain than the previous
ones, because the Poisson intensity measure is not invariant for the standard α-stable
process (if the intensity measure is μ, then ENt = μTt, where Tt is the semigroup of
the standard α-stable process).

For the branching system with finite measure μ, the low, critical and high di-
mensions are d < α(2 + β)/(1 + β), d = α(2 + β)/(1 + β), and d > α(2 + β)/(1 + β),
respectively. In the first two cases the limit processes are of the form Kλξ . For low
dimensions, ξ is a non-Lévy (1 + β)-stable process, which is different from the one
obtained in the homogeneous case. For the critical dimension, ξ is a process constant
in time on (0,∞), given by a (1 + β)-stable random variable. In these two cases the
measure μ figures only through its total mass, which appears as a constant. For the
high dimensions the limit is a process constant in time on (0,∞), given by an S ′(Rd)

-
valued (1 + β)-stable random variable whose law is expressed by means of a Riesz
potential. In this case μ has a non-trivial effect on the spatial distribution of the
limit process. So, in addition to the critical borders being different for Lebesgue and
finite measures, the limit processes are qualitatively different for the two cases in the
corresponding critical and high dimensions.

For the non-branching system, the low, critical and high dimensions for the high-
density limits with finite measure are d < α, d = α and d > α, respectively. For d < α

the limit has the form Kλρ, where ρ is a special case of a weighted fractional Brownian
motion studied in [10], i.e., centered Gaussian with covariance

Eρsρt =
∫ s∧t

0
u−d/α[(t − u)1−d/α + (s − u)1−d/α]du, s, t ≥ 0. (1.5)

For d = α and d > α, the limits are constant in time on (0,∞), analogously to the
branching case in the corresponding critical and high dimensions. They are Gaussian
with covariances expressed by means of Riesz potentials.

The proofs in this paper are analogous to those in [5–9], but there are new
complexities that require a more comprehensive approach. We will explain the
general scheme at the beginning of the proofs, but we stress that its implementation
in specific cases is not at all straightforward, and it becomes quite cumbersome
technically in the case of finite measure. We will refer often to our previous papers
(specially [7]) for some technical points, in order to shorten the length of this article,
and the main parts of the proofs given here are devoted to arguments that involve
something new. The general setting is weak convergence of S ′(Rd)

-valued processes,
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which covers the cases where the limit process is measure-valued and those where it
is “truly” S ′(Rd)

-valued.

We will use the following notions of weak convergence of S ′(Rd)
-valued processes

(recall that S
(
R

d)
denotes the space of smooth rapidly decreasing functions, S ′(Rd)

,

the dual of S
(
R

d)
, is the space of tempered distributions, and 〈·, ·〉 stands for duality

pairing):

⇒C is the convergence in law in C
([0, τ ],S ′(Rd))

for each τ > 0;

⇒C,ε is the convergence in law in C
([ε, τ ],S ′(Rd))

for each 0 < ε < τ ;
⇒ f is the convergence of finite-dimensional distributions;
⇒i is the convergence in the integral sense, i.e., XT ⇒i X as T → ∞ if, for any

τ > 0, the S ′(Rd+1)
-random variables X̃T converge in law to X̃, where X̃

(and, analogously, X̃T) is defined by

〈X̃,
〉 =
∫ τ

0
〈X(t), 
(·, t)〉dt, 
 ∈ S

(
R

d+1
)

. (1.6)

We denote generic constants by C, C1, C2, . . . , with possible dependencies in
parenthesis.

2 Results

Before stating the results we introduce two (1 + β)-stable processes which appear in
the theorems below (0 < β ≤ 1 is fixed).

Let M be the independently scattered (1 + β)-stable measure on R
d+1

with
control measure λd+1 (Lebesgue measure) and skewness intensity 1, i.e., for each
A ∈ B(R

d+1
) such that 0 < λd+1(A) < ∞, M(A) is a (1 + β)-stable random variable

with characteristic function

exp
{
−λd+1(A)|z|1+β

(
1 − i(sgnz) tan

π

2
(1 + β)

)}
, z ∈ R,

the values of M are independent on disjoint sets, and M is σ -additive a.s. (see [24],
Definition 3.3.1).

Let pt(x) denote the transition density of the standard α-stable process in R
d
.

We define the following processes:

ξt =
∫

R
d+1

(
11[0,t](r)

∫ t

r
pu−r(x)du

)
M(drdx), t ≥ 0, (2.1)

ζt =
∫

R
d+1

(
11[0,t](r)p1/(1+β)

r (x)

∫ t

r
pu−r(x)du

)
M(drdx), t ≥ 0, (2.2)

where the integral with respect to M is understood in the sense of [24] (3.2–3.4).

Proposition 2.1 The process ξ is well defined if d < α(1 + β)/β, and the process ζ is
well defined if d < α(2 + β)/(1 + β).
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The process ξ is an extension of the one studied in [6].
We denote by Tt the semigroup of the standard α-stable process, i.e., Ttϕ = pt ∗ ϕ.

For d > α, we denote by G the potential operator

Gϕ(x) =
∫ ∞

0
Ttϕ(x)dt = Cα,d

∫

R
d

ϕ(y)

|x − y|d−α
dy, (2.3)

where

Cα,d = �( d−α
2 )

2απd/2�(α
2 )

. (2.4)

We start with the high-density branching system described in the Introduction,
where the intensity measure of the initial Poisson configuration is HTλ.

Theorem 2.2 Consider the (d, α, β)-branching particle system with branching mecha-
nism (1.1) and initial intensity HTλ, HT → ∞. Let XT be defined by Eq. 1.2.

(a) Assume

d <
α(1 + β)

β
. (2.5)

Let HT be such that

lim
T→∞

H−β

T T1−dβ/α = 0, (2.6)

and

F1+β

T = HT T2+β−dβ/α. (2.7)

Then XT ⇒C Kλξ as T → ∞, where ξ is defined by Eq. 2.1 and

K =
(

− V
1 + β

cos
π

2
(1 + β)

)1/(1+β)

. (2.8)

(b) Assume d = α(1 + β)/β and F1+β

T = HT T log T. Then XT ⇒i K1λη and
XT ⇒ f K1λη as T → ∞, where η is a real (1 + β)-stable process with stationary
independent increments whose distribution is determined by

Eexp{izηt} = exp
{
−t|z|1+β

(
1 − i(sgnz) tan

π

2
(1 + β)

)}
, z ∈ R, t ≥ 0,

(2.9)
and

K1 =
(

−V
∫

R
d

(∫ 1

0
pr(x)dr

)β

p1(x)dx cos
π

2
(1 + β)

)1/(1+β)

.

Moreover, if β = 1, the convergence holds in the sense ⇒C.
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(c) Assume d > α(1 + β)/β and F1+β

T = HT T.

(1) If 0 < β < 1, then XT ⇒i X and XT ⇒ f X as T → ∞, where X is an S ′(Rd
)-

valued (1 + β)-stable process with stationary independent increments whose
distribution is determined by

Eexp{i〈X(t), ϕ〉}

= exp
{
−K1+β t

∫

R
d
|Gϕ(x)|1+β

(
1 − i(sgnGϕ(x)) tan

π

2
(1 + β)

)
dx

}
,

ϕ ∈ S(R
d
), t ≥ 0,

K is given by Eq. 2.8 and G by Eq. 2.3.
(2) If β = 1, then XT ⇒C W as T → ∞, where W is an S ′(Rd

)-valued Wiener
process with covariance

E(〈W(s), ϕ1〉〈W(t), ϕ2〉) = (s ∧ t)
∫

R
d

[
V(Gϕ1(x))(Gϕ2(x)) + 2ϕ1(x)Gϕ2(x)

]
dx,

ϕ1, ϕ2 ∈ S(R
d
), s, t ≥ 0.

Remark 2.3

(a) For d > α/β, the limits in Theorem 2.2 are exactly the same as in the model
without high density [5–8]. Thus, if the limits without high density exist, then
increasing the initial density of particles does not change the results.

(b) Observe that assumption 2.6 is a restriction only if d < α/β.
(c) If d ≤ α/β, then the limit processes are extensions of those studied before [5–8]

in the sense that the ranges of the parameters are increased.
In [7] we discussed some basic properties of ξ defined by Eq. 2.1 for α/β < d <

α(1 + β)/β. It turns out that ξ has the same properties also for the full ranges
of parameters. We collect them in the following proposition.

Proposition 2.4 Assume Eq. 2.5.

(a) ξ is (1 + β)-stable, totally skewed to the right if β < 1.
(b) ξ is self-similar with index b = (2 + β − dβ/α)/(1 + β), i.e.,

(ξat1 , . . . , ξatk)
d= ab (ξt1 , . . . , ξtk), a > 0.

(c) ξ has continuous paths.
(d) ξ has the long-range dependence property with dependence exponent

κ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d
α

if either α = 2, or α < 2 and β >
d

d + α
,

d
α

(
1 + β − d

d + α

)
if α < 2 and β ≤ d

d + α
.

(2.10)

All these properties are obtained the same way as in [7]. Property (a) follows
from the definition, (b) and (c) are consequences of Theorem 2.2, and (d) can be
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obtained exactly as in Theorem 2.7 in [7]. Recall that the dependence exponent of ξ is
defined by

κ = inf
z1z2∈R

inf
0≤u<v<s<t

sup{γ > 0 : DT(z1, z2; u, v, s, t) = o(T−γ ) as T → ∞},
(2.11)

where

DT(z1, z2; u, v, s, t)

=| log Eei(z1(ξv−ξu)+z2(ξT+t−ξT+s)−log Eeiz1(ξv−ξu)−log Eeiz2(ξT+t−ξT+s)|, (2.12)

see Definition 2.5 in [7].
The process ξ can be described more explicitly in the case β = 1.

Proposition 2.5 If β = 1 and d < 2α, then ξ is a centered Gaussian process with
covariance

Eξsξt

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

p1(0)

(1− d
α
)(2 − d

α
)(3− d

α
)

(
1

2
[(s+t)3−d/α+|s−t|3−d/α]−s3−d/α−t3−d/α

)
if d �= α, (2.13)

p1(0)

2

(
1

2
[(s+t)2 log(s+t)+(s−t)2 log |s−t|]−s2 log s−t2 log t

)
if d = α, (2.14)

s, t ≥ 0.

The Gaussian process ξ with covariance (2.13) is (up to a multiplicative constant)
a sub-fractional Brownian motion if α < d < 2α, and a negative sub-fractional
Brownian motion if d < α. These processes are studied in [4] and [10], respectively.
The latter paper also contains a proof of the non-semimartingale property of the
process with covariance (2.14).

Next we consider the system without branching. In this case it is known that if
the initial intensity measure is λ, then the limit of XT exists for all dimensions [5, 6].
The observation in Remark 2.3 (a) also applies here, i.e., introducing high density of
the initial configuration does not have any effect on the results. For completeness we
give the corresponding theorem.

Theorem 2.6 Let XT be defined by Eq. 1.2 for a system without branching with initial
intensity HTλ, HT → ∞.

(a) If d < α and FT = H1/2
T T1−d/2α , then XT⇒C Kλϑ as T → ∞, where ϑ is a

fractional Brownian motion with Hurst parameter 1 − d/2α, i.e., a centered
Gaussian process with covariance

Eϑsϑt = 1

2
(s2−d/α + t2−d/α − |s − t|2−d/α), s, t ≥ 0,

and

K =
(

2�(d/α)

πα(2 − d/α)(1 − d/α)

)1/2

.
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(b) If d=α and FT =(HT T log T)1/2, then XT⇒C K1λϑ(1) as T →∞, where ϑ(1)

is a standard Brownian motion and

K1 = (2d−2πd/2d�(d/2))−1/2.

(c) If d > α and FT =(HT T)1/2, then XT ⇒C W(0) as T →∞, where W(0) is an
S ′(Rd)

-valued Wiener process with covariance

E(〈W(0)(s), ϕ1〉〈W(0)(t), ϕ2〉) = (s ∧ t)2
∫

R
d
ϕ1(x)Gϕ2(x)dx, s, t ≥ 0,

where G is given by (2.3).

An analysis of the proofs of Theorems 2.1 in [5] and [6] shows that the same
argument can be employed in the present case, therefore we omit the proof of
Theorem 2.6.

We now pass to the branching system with finite initial intensity measure.

Theorem 2.7 Consider the (d, α, β)-branching particle system with initial Poisson
intensity HTμ, where μ is a finite measure and HT → ∞. Let XT be defined by
Eq. 1.2.

(a) Assume

d <
α(2 + β)

1 + β
. (2.15)

Let HT be such that

lim
T→∞

H−β

T T = 0, (2.16)

and

F1+β

T = HT T2+β−(d/α)(1+β). (2.17)

Then XT ⇒C Kλζ as T → ∞, where ζ is defined by Eq. 2.2 and

K =
(

− V
1 + β

μ
(
R

d
)

cos
π

2
(1 + β)

)1/(1+β)

.

(b) Assume

d = α(2 + β)

(1 + β)
, (2.18)

let HT satisfy Eq. 2.16, and

F1+β

T = HT log T. (2.19)

Then XT ⇒C,ε K1λη1 as T → ∞, where η1 is a (1 + β)-stable random variable,
totally skewed to the right (see Eq. 2.9), and

K1 = Cα,d

(
− V

1 + β
μ

(
R

d
) ∫

R
d

p1(y)

|y|(d−α)(1+β)
dy cos

π

2
(1 + β)

)1/(1+β)

,

where Cα,d is given by Eq. 2.4.
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(c) Assume

d >
α(2 + β)

(1 + β)
, (2.20)

let HT satisfy Eq. 2.16 and

F1+β

T = HT . (2.21)

(1) If 0 < β < 1, then XT ⇒C,ε X as T → ∞, where X is an S ′(Rd
)-valued

random variable with characteristic function

Eei〈X,ϕ〉 = exp

{
− V

1 + β

∫

R
d
|Gϕ(x)|1+β

[
1 − i(sgnGϕ(x)) tan

π

2
(1 + β)

]
Gμ(dx) cos

π

2
(1 + β)

}
, (2.22)

where G is given by (2.3).
(2) If β = 1, then XT ⇒C,ε X as T → ∞, where X is a centered S ′(Rd)

-valued
Gaussian random variable with covariance

E(〈X, ϕ1〉〈X, ϕ〉) = 2
∫

R
d

[
ϕ1(x)Gϕ2(x) + V

2
(Gϕ1(x))(Gϕ2(x))

]
Gμ(dx).

(2.23)

Remark 2.8

(a) In parts (a) and (b) of Theorem 2.7 the dependence of the limit processes
on μ is quite weak; μ(R

d
) appears only in constants. On the other hand, for

high dimensions [part (c)] μ has a non-trivial effect on the spatial structure of
the limit.

(b) The limit processes in parts (a) of Theorems 2.2 and 2.7 are similar, while parts
(b) and (c) of these theorems (the time structures of the limits) are substantially
different. Note also that for β < 1 in the present case the convergence is
stronger (⇒C,ε instead of ⇒i and ⇒ f ). On the other hand, it is clear that one
cannot expect to have convergence on the whole interval [0, 1], since the limit
process is discontinuous at 0.

(c) For large dimensions [part (c)], analogously to the case of the Lebesgue
measure, the limit for β = 1 is not obtained from Eq. 2.22 by putting β = 1.
An additional term appears in the covariance, related to the system without
branching, due to slower growth of FT (see Eq. 2.26 below).
In the next proposition we collect properties of the process ζ in Theorem 2.7 (a).

Proposition 2.9 Assume Eq. 2.15 and let ζ be defined by Eq. 2.2.

(a) ζ is (1 + β)-stable, totally skewed to the right if β < 1.
(b) ζ is self-similar with index (2 + β)/(1 + β) − d/α.
(c) ζ has continuous paths.
(d) ζ has long-range dependence exponent d/α.
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The long-range dependence exponent of ζ does not depend on β, whereas the
process ξ has two long-range dependence regimes, one depending on β (cf. Eq. 2.10).

We remark that the covariance of the Gaussian process ζ in the case β = 1 does
not have a simple form (in contrast with ξ , see Proposition 5.2).

Finally, we turn to the non-branching high-density system with finite initial
intensity measure.

Theorem 2.10 Let XT be defined by Eq. 1.2 for a system without branching with initial
Poisson intensity HTμ, where μ is a finite measure and HT → ∞.

(a) If d < α and

FT = H1/2
T T1−d/α, (2.24)

then XT ⇒C (2μ(R
d
)/(1 − d/α))1/2 p1(0)λρ as T → ∞, where ρ is a centered

Gaussian process with covariance

Eρsρt =
∫ t∧s

0
u−d/α[(t − u)1−d/α + (s − u)1−d/α]du, s, t ≥ 0. (2.25)

(b) If d = α and FT = H1/2
T log T, then XT ⇒C,ε

(
2μ

(
R

d))1/2
p1(0)γ as T → ∞,

where γ is a standard Gaussian random variable.
(c) If d > α and FT = H1/2

T , then XT ⇒C,ε X as T → ∞, where X is a centered

S ′(Rd)
-valued Gaussian random variable with covariance

E(〈X, ϕ1〉〈X, ϕ2〉) = 2
∫

R
d
ϕ1(x)Gϕ2(x)Gμ(dx), (2.26)

with G given by (2.3).

Remark 2.11

(a) As in the branching case (Theorem 2.6), there is a substantial difference in the
time structures of the limits for d ≥ α.

(b) The process ζ with covariance (2.25) belongs to a class of weighted fractional
Brownian motions which is discussed in [10], in particular its long-range depen-
dence is studied.

3 Proofs

Proof of Proposition 2.1 It is known that existence of the processes ξ and ζ defined
by Eqs. 2.1 and 2.2 is equivalent to

∫

R
d

∫ t

0

(∫ t

r
pu−r(x)dr

)1+β

drdx < ∞, t ≥ 0, (3.1)

and
∫

R
d

∫ t

0
pr(x)

(∫ t

r
pu−r(x)du

)1+β

drdx < ∞, t ≥ 0, (3.2)
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respectively (see [24]). On the other hand, from Lemma A.1 in [17] it follows that
∫

R
d

(∫ t

0
pu(x)du

)1+β

dx < ∞, t ≥ 0 if d <
α(1 + β)

β
, (3.3)

and
∫

R
d

(∫ t

0
pu(x)du

)2+β

dx < ∞, t ≥ 0 if d <
α(2 + β)

1 + β
. (3.4)

Equation 3.1 is an immediate consequence of Eq. 3.3, and Eq. 3.2 follows from the
Hölder inequality and Eq. 3.4. ��

3.1 General Scheme

We present a general scheme which will be employed in the convergence proofs. We
consider a general (d, α, β)-branching system, initially Poisson with intensity measure
νT . Without loss of generality we take the time interval [0, 1], i.e., τ = 1 (see the end
of Section 1). Let XT be defined by Eq. 1.2.

Analogously as in [7] (Theorem 2.2) and [8] (Theorem 2.1), we prove that

lim
T→∞

Ee−〈X̃T ,
〉 = Ee−〈X̃,
〉, (3.5)

where X is the corresponding limit process, 
 ∈ S(R
d+1

), 
 ≥ 0, and X̃T and X̃ are
defined by Eq. 1.6. As explained in [7], due to the special form of the limit (either
Gaussian or (1 + β)-stable totally skewed to the right), Eq. 3.5 implies XT ⇒i X.
To prove convergence ⇒C (or ⇒C,ε), according to the space-time approach [3], it
suffices to show additionally that the family {〈XT , ϕ〉}T≥0 is tight in C([0, 1],R) [or
C([ε, 1],R)].

For simplicity we consider 
 of the form


(x, t) = ϕ ⊗ ψ(x, t) = ϕ(x)ψ(t), ϕ ∈ S(R
d
), ψ ∈ S(R), ϕ, ψ ≥ 0.

It will be clear from the proofs that for general 
 the argument is analogous.
Denote

ϕT = 1

FT
ϕ, χ(t) =

∫ 1

t
ψ(s)ds, χT(t) = χ

(
t
T

)
. (3.6)

Let

vT(x, t) = 1 − E exp

{
−

∫ t

0
〈Nx

r , ϕT〉χT(T − t + r)dr
}
, 0 ≤ t ≤ T, (3.7)

where Nx is the empirical process of the branching system started from a single
particle at x. It is known that vT satisfies the equation

vT(x, t) =
∫ t

0
Tt−u

[
ϕTχT(T − u)(1 − vT(·, u)) − V

1 + β
v

1+β

T (·, u)

]
(x)du, 0 ≤ t ≤ T,

(3.8)
(see [7], Eq. 3.3). From Eqs. 3.7 and 3.8 we obtain immediately

0 ≤ vT ≤ 1, (3.9)
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and

vT(x, t) ≤
∫ t

0
Tt−uϕT(x)χT(T − u)du. (3.10)

By Eq. 1.2, the Poisson property, Eq. 3.7 and E〈Nx
t , ϕ〉 = Ttϕ(x), we have

Ee−〈X̃T ,ϕ⊗ψ〉 = exp

{
−

∫

R
d
vT(x, T)νT(dx) +

∫

R
d

∫ T

0
TuϕT(x)χT(u)duνT(dx)

}
.

(3.11)
Hence, by Eq. 3.8,

Ee−〈X̃T ,ϕ⊗ψ〉 = exp
{

V
1 + β

I1(T) + I2(T) − V
1 + β

I3(T)

}
, (3.12)

where

I1(T)=
∫

R
d

∫ T

0
TT−s

[(∫ s

0
Ts−uϕTχT(T − u)du

)1+β]
(x)dsνT(dx), (3.13)

I2(T)=
∫

R
d

∫ T

0
TT−s(ϕTχT(T − s)vT(·, s))(x)dsνT(dx), (3.14)

I3(T)=
∫

R
d

∫ T

0
TT−s

[(∫ s

0
Ts−uϕTχT(T−u)du

)1+β

−v
1+β

T (·, s)
]
(x)dsνT(dx). (3.15)

In most of the cases (with the exception of large dimensions and β = 1, where I2 has
a nontrivial limit), we prove

lim
T→∞

e(V/(1+β))I1(T) = Ee−〈X̃,ϕ⊗ψ〉, (3.16)

lim
T→∞

I2(T) = 0, (3.17)

and

lim
T→∞

I3(T) = 0. (3.18)

Note that if νT = HTλ, then formulas (3.13–3.15) have simpler forms due to invari-
ance of λ for Tt. If νT is finite (hence not invariant under Tt), then the proofs are more
involved.

To prove Eq. 3.17 we will use the inequality

I2(T) ≤ C

F2
T

∫

R
d

∫ T

0

∫ T

0
Ts(ϕTuϕ)(x)dudsνT(dx), (3.19)

which is an easy consequence of Eqs. 3.6 and 3.10.
To obtain Eq. 3.18 we apply the elementary inequality

(a + b)1+β − a1+β ≤ b 1+β + (1 + β)a(1+β)/2b (1+β)/2, a, b ≥ 0, 0 < β ≤ 1,
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then by Eqs. 3.10 and 3.8 we obtain

0 ≤ I3(T) ≤
∫

R
d

∫ T

0
TT−s

(∫ s

0
Ts−u(ϕTχT (T − u)vT )du +

∫ s

0
Ts−uv

1+β

T (·, u)du
)1+β

(x)νT (dx)

+ (1 + β)

∫

R
d

∫ T

0
TT−s

[(∫ s

0
Ts−u(ϕTχ(T − u)vT (·, u)) +

∫ s

0
Ts−uv

1+β

T (·, u)du
)(1+β)/2

× v
(1+β)/2
T (·, s)

]
(x)νT (dx).

We apply the Schwarz inequality to the second term, then we use (a + b)1+β ≤
C(a1+β + b 1+β), a, b ≥ 0, in both terms, and finally, by Eq. 3.10, we arrive at

0 ≤ I3(T) ≤ C
(

J1(T) + J2(T) + (J1(T) + J2(T))1/2 I1(T)1/2

)
, (3.20)

where

J1(T) =
∫

R
d

∫ T

0
TT−s

[(∫ s

0
Ts−u

(
ϕT

∫ u

0
Tu−rϕTdr

)
du

)1+β]
(x)dsνT(dx)

≤ 1

F2+2β

T

∫

R
d

∫ T

0
Ts

[(∫ T

0
Tu

(
ϕ

∫ T

0
Trϕdr

)
du

)1+β]
(x)dsνT(dx), (3.21)

and

J2(T) =
∫

R
d

∫ T

0
TT−s

[(∫ s

0
Ts−u

(∫ u

0
Tu−rϕTdr

)1+β

du
)1+β]

(x)dsνT(dx)

≤ 1

F(1+β)(1+β)

T

∫

R
d

∫ T

0
Ts

[(∫ T

0
Tu

(∫ T

0
Trϕdr

)1+β

du
)1+β]

(x)dsνT(dx).

(3.22)

Given Eq. 3.16, in order to prove Eq. 3.18 it suffices to show that

lim
T→∞

J1(T) = 0 (3.23)

and

lim
T→∞

J2(T) = 0. (3.24)

Note that our method of proof of ⇒i convergence (based on Eqs. 3.8 and 3.11)
gives also convergence of finite-dimensional distributions (see, e.g., the proof of
Theorem 2.1 in [8]).

In the proofs of tightness of {〈XT , ϕ〉}T≥2 we follow the idea of [7] (proof of
Proposition 3.3). Fix 0≤ t1 ≤ t2 ≤1 (or ε≤ t1 ≤ t2 ≤1 in the proofs of⇒C,ε convergence),
and let ψ ∈S(R

d
) be such that the correspondingχ (see Eq. 3.6) satisfies

0 ≤ χ ≤ 11[t1,t2]. (3.25)

We now repeat the argument of the previous part with ϕ replaced by iθϕ, θ > 0. Let
vθ,T be the analogue of Eq. 3.7. Using the inequality

|1 − ez| ≤ 2|z| if |ez| ≤ 1, z ∈ C, (3.26)
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we have

|vθ,T(x, t)| ≤ 2θ

∫ t

0
〈Nx

s , ϕT〉χT(T − t + s)ds

= 2θ

∫ t

0
Tt−sϕT(x)χT(T − s)ds. (3.27)

The function vθ,T also satisfies Eq. 3.8 with iθϕ (we have not assumed ψ ≥ 0, but it is
not needed for Eq. 3.8 to hold). Hence by Eq. 3.11 we obtain

E exp{−iθ〈X̃T , ϕ ⊗ ψ〉} = exp{Aθ (T) + Bθ (T)}, (3.28)

where

Aθ (T) = iθ
∫

R
d

∫ T

0
TT−s

(
ϕTχT(T − s)vθ,T(·, s)

)
(x)dsνT(dx), (3.29)

Bθ (T) = V
1 + β

∫

R
d

∫ T

0
TT−s

(
v

1+β

θ,T (·, s)
)

(x)dsνT(dx). (3.30)

From Eqs. 3.28, again by Eq. 3.26, we have

0 ≤ 1 − ReE exp{−iθ〈X̃T , ϕ ⊗ ψ〉} ≤ 2(|Aθ (T)| + |Bθ (T)|), (3.31)

and this implies

P(|〈X̃T , ϕ ⊗ ψ〉| ≥ δ) ≤ Cδ

∫ 1/δ

0
(|Aθ (T)| + |Bθ (T)|)dθ, δ > 0, (3.32)

(see e.g., [11], Proposition 8.29). The tightness will be proved if we show that

|Aθ (T)| ≤ C(ϕ, σ, h)θ2(th
2 − th

1 )1+σ , (3.33)

and

|Bθ (T)| ≤ C(ϕ, σ, h, V, β)θ1+β(th
2 − th

1 )1+σ , (3.34)

for some σ, h > 0. Indeed, Eqs. 3.32–3.34 imply, for 0 < σ < 1,

P(|〈X̃T , ϕ ⊗ ψ〉| ≥ σ) ≤ C1

δ2
(th

2 − th
1 )1+σ . (3.35)

We take ψ approximating δt2 − δt1 , and we see that the left-hand side of Eq. 3.35 can
be replaced by P(|〈XT(t2), ϕ〉 − 〈XT(t1), ϕ〉| ≥ σ). Hence tightness follows by a well-
known criterion [1]. (In the case of ⇒C,ε convergence we use additionally the fact
that, as observed above, 〈XT(ε), ϕ〉 converges in law).

In the proofs of Eqs. 3.33 and 3.34, we combine Eq. 3.27 with 3.29 or 3.30,
respectively, obtaining

|Aθ (T)| ≤ 2θ2 A(T), (3.36)

|Bθ (T)| ≤ 21+β V
1 + β

θ1+β I1(T), (3.37)
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where

A(T) = 1

F2
T

∫

R
d

∫ T

0

∫ s

0
TT−s(ϕTs−uϕ)(x)χ

(
1 − s

T

)
χ

(
1 − u

T

)
dudsνT(dx), (3.38)

and I1(T) is given by Eq. 3.13.
Hence we have reduced the proof of tightness to estimating A(T) and I1(T) by

C(th
2 − th

1 )1+σ .
A similar scheme is applied in the cases without branching. We also have Eq. 3.11

where vT satisfies Eq. 3.8 with V = 0. Then instead of Eq. 3.12 we have

Ee−〈X̃T ,ϕ⊗ψ〉 = eII1(T)−II2(T), (3.39)

where

II1(T) =
∫

R
d

∫ T

0

∫ s

0
TT−s(ϕTTs−uϕT)(x)χT(T − u)χT(T − s)dudsνT(dx), (3.40)

II2(T) =
∫

R
d

∫ T

0

∫ s

0
TT−s(ϕTTs−uϕTvT(·, u))(x)χT(T−u)χT(T−s)dudsνT(dx), (3.41)

and we show that

lim
T→∞

eII1(T) = Ee−〈X̃,ϕ⊗ψ〉, (3.42)

and

lim
T→∞

II2(T) = 0. (3.43)

Also, the proof of tightness uses the same method as before with Bθ (T) = 0 (see
Eq. 3.30).

This general scheme is applied in all the proofs (with νT = HTλ or νT = HTμ,μ

finite measure). However, as we have mentioned in the Introduction, its implemen-
tation in specific cases is not straightforward.

Proof of Theorem 2.2 We will prove only part (a) of this theorem, as the remaining
parts can be obtained the same way as in [6] and [8]. Also, since the proof of (a) is
similar to the proof of Theorem 2.2. in [7], we present only the main steps.

We follow the general scheme. Recall that in this case νT = HTλ. In order to show
Eq. 3.16 it suffices to prove

lim
T→∞

I1(T) =
∫

R
d

∫ 1

0

(∫

R
d

∫ 1

s
ϕ(y)ψ(r)

∫ r

s
pu−s(x)dudrdy

)1+β

dsdx, (3.44)

and this can be done the same way as Eq. 3.21 in [7]. Note that HT cancels out in
I1(T) (see Eq. 3.13), and in the proof of Eq. 3.21 in [7], α/β < d was not used, only
Eq. 3.1 was important.
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Next, we prove Eq. 3.17. By Eq. 2.7, after obvious substitutions Eq. 3.19 has
the form

I2(T) ≤ CH1−2/(1+β)

T T2(dβ/α−1)/(1+β)

∫

R
d

∫ 1

0
ϕ(x)TTuϕ(x)dudx

≤ C1T2(dβ/α−1)/(1+β)−1
∫

R
d

1 − e−T|x|α

|x|α |ϕ̂(x)|2dx, (3.45)

where we have used 1−2/(1+β)≤0, the Plancherel formula, and the fact that
T̂uϕ(x)=e−u|x|α ϕ̂(x) (̂ denotes Fourier transform, defined by ϕ̂(z)=∫

R
d eix·zϕ(x)dx,

z ∈ R
d
, where · is the scalar product in R

d
). Hence it is clear that Eq. 3.17 holds if

α/β < d < α(1 + β)/β and if d < α/β (we use (1 − e−T|x|α )/(T|x|α)≤C).
For d = α/β, we estimate the right-hand side of Eq. 3.45 by

C1T−1/2
∫

R
d

(
1 − e−T|x|α

T|x|α
)1/2 1

|x|α/2
|ϕ̂(x)|2dx,

which tends to 0 as T → ∞, since α ≤ d.
To prove Eq. 3.18 we show Eqs. 3.23 and 3.24. By Eq. 2.7, on the right-hand side of

Eq. 3.21 HT appears only as a factor HT/H2
T (which is bounded), and the remaining

term tends to 0 by the same argument as in [7] (see the proof of Eq. 3.33 therein,
where only Eq. 3.1 was used). Hence we obtain Eq. 3.23.

So far we have not used the assumption 2.6; it will be needed in the proof of
Eq. 3.24.

By Eq. 3.22, repeating the argument of [7] (see Eq. 3.35 therein and the estimates
following it), we obtain

J2(T) ≤ CH−β

T T1−dβ/α → 0,

by assumption Eq. 2.6. This completes the proof of Eq. 3.5 by 3.44 and 2.1.
In order to prove tightness, we show Eqs. 3.33 and 3.34 with h = 1 and

0 < σ <

(
1 + β − dβ

α

)
∧ β. (3.46)

Note that in Eq. 3.13 HT cancels out, and then the proof of Eq. 3.34 follows the lines
of the proof of Eq. 3.49 in [7]. The assumption σ < β is needed in order to have
(1 + β)/(1 + σ) > 1 (see Eq. 3.56 in [7]).

It remains to show Eq. 3.33. By Eq. 3.38 we have

A(T) = 1

(2π)d

HT

H2/(1+β)

T

T2

T2(2+β−dβ/α)/(1+β)

∫ 1

0
χ(s)

∫

R
d
|ϕ̂(x)|2

∫ 1

s
e−T(u−s)|x|α χ(u)dudxds

≤ 1

(2π)d
T−2(1−dβ/α)/(1+β)(t2 − t1)1+σ

∫

R
d
|ϕ̂(x)|2

(
1

1 + T|x|α
)1−σ

dx, (3.47)
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where in the last estimate we used
∫ 1

s
e−T(u−s)|x|α χ(u)du ≤

(∫ 1

s
e−T(u−s)|x|α dr

)1−σ (∫ 1

s
χ(u)du

)σ

≤
(

1

1 + T|x|α
)1−σ

(t2 − t1)σ (3.48)

for any 0 < σ ≤ 1. Hence Eq. 3.33 follows immediately if d ≤ α/β. For d > α/β (this
case was also treated in [7]) we write (1 + T|x|α)−(1−σ) ≤ Tσ−1|x|α(σ−1), we use α < d
and Eq. 2.5, and we see that for σ satisfying Eq. 3.46 the estimate 3.33 holds since the
term involving T tends to 0. ��

Proof of Proposition 2.5 From Eq. 2.1, for β = 1 we have

Eξsξt =
∫ s∧t

0

∫

R
d

∫ s

r

∫ t

r
pu−r(x)pu′−r(x)du′dudxdr

= p1(0)

∫ s∧t

0

∫ s

r

∫ t

r
(u + u′ − 2r)−d/αdu′dudr, (3.49)

by the Chapman–Kolmogorov identity and the self-similarity of the standard α-stable
process. Hence Eqs. 2.13 and 2.15 follow by calculus. ��

Proof of Theorem 2.7 Proof of part (a). According to the general scheme, we show
Eq. 3.16, which amounts to proving

lim
T→∞

I1(T) = μ(R
d
)

∫ 1

0

∫

R
d

ps(y)

(∫ 1

s
pu−s(y)χ(u)du

)1+β

dyds
(∫

R
d
ϕ(z)dz

)1+β

.

(3.50)

In Eq. 3.13 with νT = HTμ we substitute u′ = (T − u)/T, s′ = (T − s)/T, we use
the self-similarity of the α-stable density,

pst(x) = t−d/α ps(xt−1/α), (3.51)

and by Eqs. 2.17 and 3.6 we obtain

I1(T) = T−d/α

∫

R
d

∫ 1

0

∫

R
d

ps((x − y)T−1/α)

×
(∫ 1

s

∫

R
d

pu−s((y − z)T−1/α)ϕ(z)χ(u)dzdu
)1+β

dydsμ(dx)

=
∫

R
d

∫ 1

0

∫

R
d

ps(xT−1/α − y)

(∫ 1

s

∫

R
d

pu−s(y − z)ϕ̃T(z)χ(u)dzdu
)1+β

dydsμ(dx), (3.52)

where

ϕ̃T(z) = Td/αϕ(zT1/α). (3.53)
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We denote

hs(y) =
∫ 1

s
pu−s(y)χ(u)du, (3.54)

and we write

I1(T) = I′
1(T) + I′′

1 (T), (3.55)

where

I′
1(T)=

∫

R
d

∫ 1

0
ps ∗ h1+β

s (xT−1/α)dsμ(dx)

(∫

R
d
ϕ(z)dz

)1+β

, (3.56)

I′′
1 (T)=

∫

R
d

∫ 1

0

∫

R
d

ps(xT−1/α−y)

[
(hs ∗ ϕ̃T(y))1+β

−
(

hs(y)

∫

R
d
ϕ(z)dz

)
1+β

]
dydxμ(dx).(3.57)

By Eq. 3.4, it is not difficult to see that I′
1(T) converges to the right-hand side of

Eq. 3.50. Therefore, to obtain Eq. 3.50 it suffices to show that limT→∞ I′′
1 (T) = 0. Fix

any δ satisfying

d
α

− 1

1 + β
< δ < 1, (3.58)

(such δ exists by Eq. 2.15). We estimate Eq. 3.57 applying the Hölder inequality to
the integrals with respect to the measure dys−δdsμ(dx), obtaining

|I′′
1 (T)| ≤

(∫

R
d

∫ 1

0
s−δ

∫

R
d

(
sδ ps(xT−1/α − y)

)2+β
dydsμ(dx)

)1/(2+β)

×
(∫

R
d

∫ 1

0
s−δ

∫

R
d

∣∣
∣∣(hs ∗ ϕ̃T(y))1+β

−
(

hs(y)

∫

R
d
ϕ(z)dz

)1+β ∣
∣∣∣

(2+β)/(1+β)

dydsμ(dx)

)(1+β)/(2+β)

. (3.59)

The first factor does not depend on T and is finite by Eqs. 3.51, 3.58 and finiteness
of μ.

By Eq. 3.4 and the form of ϕ̃T (see Eq. 3.53) (hs ∗ ϕ̃T)1+β converges to
(hs

∫
R

ϕ(z)dz)1+β in L(2+β)/(1+β)(R
d
) for any s ∈ [0, 1]. Moreover, hs(y) ≤ ∫ 1

0 pu(y)du
(see Eq. 3.54), hence it is not hard to see that the dominated convergence theorem
can be applied to show that the right-hand side of Eq. 3.59 tends to 0 as T → ∞. So
Eq. 3.50 is proved, and therefore so is Eq. 3.16.

To show Eq. 3.17 we make obvious substitutions in the right-hand side of Eq. 3.19
and use self-similarity, obtaining

I2(T) ≤ C
HT T2−2d/α

F2
T

∫

R
d

∫

R
2d

f (xT1/α − y) f (y − z)ϕ̃T(y)ϕ̃T(z)dzdyμ(dx), (3.60)
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where ϕ̃T is given by Eq. 3.53, and

f (x) =
∫ 1

0
ps(x)ds. (3.61)

By the Hölder inequality applied to the integral on z, y, we have

I2(T) ≤ C
HT T2−2d/α

F2
T

μ(R
d
)|| f ||22+β ||ϕ̃T ||2(2+β)/(1+β).

Eqs. 3.4, 3.53 and 2.17 imply

I2(T) ≤ C1T2(d/α(2+β)−1/(1+β)) → 0,

by Eq. 2.15.
To complete the proof of Eq. 3.5 we show Eqs. 3.23 and 3.24. From Eq. 3.21, by a

similar argument as in Eq. 3.60 we obtain

J1(T) ≤ HT T1+2(1+β)−2(d/α)(1+β)

F2(1+β)

T

∫

R
d

f ∗ ( f ∗ ϕ̃T( f ∗ ϕ̃T))1+β(xT−1/α)μ(dx),

with f, ϕ̃T as above. Applying the Hölder and Young inequalities several times we
obtain

|| f ∗ ( f ∗ ϕ̃T( f ∗ ϕ̃T))1+β ||∞ ≤ || f ||3+β

2+β ||ϕ̃T ||1+β

1 ||ϕ̃T ||1+β

(2+β)/(1+β).

Hence, by Eqs. 2.17, 3.53, 3.61 and 3.4,

J1(T) ≤ CT(d/α)(1+β)/(2+β)−1 → 0,

by Eq. 2.15.
Finally, by Eq. 3.22 and the usual argument we get

J2(T) ≤ HT T2+β+(1+β)(1+β)−(d/α)(1+β)(1+β)

F(1+β)(1+β)

T

∫

R
d

f ∗ ( f ∗ ( f ∗ ϕ̃T)1+β)1+β(xT−1/α)μ(dx).

In this case

|| f ∗ ( f ∗ ( f ∗ ϕ̃T)1+β)1+β ||∞ ≤ || f ||2+β

2+β || f ||(1+β)(1+β)

1+β ||ϕ̃T ||(1+β)(1+β)

1 ≤ C,

since ||ϕ̃T ||1 = ||ϕ||1. Hence, by Eqs. 2.16 and 2.17,

J2(T) ≤ C
T

Hβ

T

→ 0.

We now pass to the proof of tightness. To prove Eq. 3.33 we rewrite Eq. 3.38 as

A(T) = HT T2

F2
T

∫ 1

0

∫ 1

s

∫

R
d
ϕ(x)TT(u−s)ϕ(x)(μTTs)(dx)χ(u)χ(s)duds.

We use the following identity, which holds for any finite measure m,
∫

R
d
ϕ1(x)ϕ2(x)m(dx) = 1

(2π)2d

∫

R
2d

ϕ̂1(x)ϕ̂2(y)m̂(x + y)dxdy,
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obtaining

A(T)= HT T2

(2π)2d F2
T

∫ 1

0

∫ 1

s

∫

R
2d

ϕ̂(x)e−T(u−s)|y|α ϕ̂(y)e−Ts|x+y|α μ̂(x + y)dxdyχ(u)χ(s)duds.

(3.62)
Fix h satisfying

(
1 − d

α

)+
< h <

(
2 + β

1 + β
− d

α

)
∧ 1. (3.63)

The function r → r1−he−r is bounded on [0, ∞), hence we have from Eq. 3.62

A(T) ≤ C
HT T2

F2
T T2(1−h)

∫ 1

0

∫ 1

s
(u − s)h−1sh−1χ(u)χ(s)duds

∫

R
2d

|ϕ̂(x)ϕ̂(y)||y|α(h−1)|x + y|α(h−1)dxdy

≤ C1
T−2(2+β)/(1+β)+2d/α+2h

H(1−β)/(1+β)

T

∫ t2

t1

∫ t2

s
(u − s)h−1sh−1duds,

by Eqs. 2.17, 3.25, and since α(1 − h) < d by Eq. 3.63. The right-hand side of
Eq. 3.63 implies that the term involving T is bounded, so it is easy to see that Eq.
3.33 is obtained with σ = h.

In order to prove Eq. 3.34 we use Eq. 3.37. By Eqs. 3.52 and 3.25 we have

I1(T) ≤
∫

R
d

[
R1(xT−1/α) + R2(xT−1/α)

]
μ(dx),

where

R1(x) =
∫ t1

0

∫

R
d

ps(x − y)

(∫ t2

t1

∫

R
d

pu−s(y − z)ϕ̃T(z)dzdy
)1+β

dyds, (3.64)

R2(x) =
∫ t2

t1

∫

R
d

ps(x − y)

(∫ t2

s

∫

R
d

pu−s(y − z)ϕ̃T(z)dzdy
)1+β

dyds. (3.65)

Since μ is finite, it is enough to show that

sup
x∈R

d

R j(x) ≤ C(th
2 − th

1 )1+σ , j = 1, 2 (3.66)

for some positive h and σ .
Fix δ > 0 satisfying Eq. 3.58 and

δβ >
(1 + β)2

2 + β

d
α

− 1. (3.67)

Equation 3.67 holds for δ sufficiently close to 1 because from Eq. 2.15 it follows that

(1 + β)2

2 + β

d
α

− 1 < β.
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For any fixed s ∈ [0, t1], by the Jensen inequality applied to the measure

(u − s)−δ

∫ t2
t1

(r − s)−δdr
11[t1,t2](u)du

(this trick is borrowed from [17]), we have

R1(x) ≤
∫ t1

0

∫

R
d

ps(x − y)

(∫ t2

t1
(r − s)−δdr

)β

×
∫ t2

t1
(u − s)−δ

(∫

R
d
(u − s)δ pu−s(y − z)ϕ̃T(z)dz

)1+β

dudyds

≤ C(t2 − t1)(1−δ)β

∫ t2

t1

∫ t1

0
(u − s)δβ

∫

R
d

ps(x − y)(pu−s ∗ ϕ̃T(y))1+βdydsdu. (3.68)

By the Hölder and Young inequalities,

∫

R
d
. . . dy ≤

(∫

R
d

p2+β
s (y)dy

)1/(2+β) (∫

R
d

p2+β
u−s (y)dy

)(1+β)/(2+β) (∫

R
d
ϕ̃T(z)dz

)1+β

= Cs−(d/α)(1+β)/(2+β)(u − s)−(d/α)(1+β)2/(2+β), (3.69)

where we have used Eqs. 3.51 and 3.53. Observe that by Eqs. 2.15 and 3.67,

1 − d
α

1 + β

2 + β
> 0 and 1 + δβ − d

α

(1 + β)2

2 + β
> 0.

Hence, combining Eq. 3.69 with 3.68, substituting s′ = s/u and estimating the integral
on s′ by the corresponding value of the beta function,

R1(x) ≤ C1(t2 − t1)(1−δ)β

∫ t2

t1
u1−(d/α)(1+β)/(2+β)+δβ−(d/α)(1+β)2/(2+β)du

≤ C2(th′
2 − th′

1 )1+(1−δ)β , (3.70)

where

h′ = min{1, 2−(d/α)(1 + β)/(2 + β) + δβ − (d/α)(1 + β)2/(2 + β)}.
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To estimate R2 (see Eq. 3.65) we use the Hölder inequality as in Eq. 3.59, and then
the Young inequality, obtaining

R2(x) ≤
[∫ t2

t1
s−δ

∫

R
d
(sδ ps(x − y))2+βdyds

]1/(2+β)

×
[∫ t2

t1
s−δ

∫

R
d

(∫ t2−t1

0

∫

R
d

pu(y − z)ϕ̃T(z)dzdu
)2+β

dyds

](1+β)/(2+β)

= C
(∫ t2

t1
s(δ−d/α)(1+β)ds

)1/(2+β)

(t1−δ
2 − t1−δ

1 )(1+β)/(2+β)

×
[∫

R
d

(∫ t2−t1

0
pu ∗ ϕ̃T(y)du

)2+β

dy
](1+β)/(2+β)

≤ C1(th′′
2 − tth′′

1 )Q(1+β)/(2+β), (3.71)

where

h′′ = min

{
1 − δ, 1 +

(
δ − d

α

)
(1 + β)

}

(note that h′′ > 0 by Eq. 3.58), and

Q =
∫

R
d

(∫ t2−t1

0
pu(y)du

)2+β

dy.

To estimate Q we substitute u′ = u/(t2 − t1), we use self-similarity and Eq. 3.4,
obtaining

Q = C(t2 − t1)2+β−(d/α)(1+β),

the exponent being positive by Eq. 2.15. Combining this with Eq. 3.71 we have

R2(x) ≤ C2(th′′
2 − th′′

1 )2+β−(d/α)(1+β)2/(2+β).

This and Eq. 3.70 imply 3.66 with

h = min{h′, h′′} and σ = min

{
(1 − δ)β, 1 + β − d

α

(1 + β)2

2 + β

}
.

This proves Eq. 3.34 and completes the proof of part (a) of the theorem.
Proof of part (b) According to the general scheme, we prove Eq. 3.16, and it is

easy to see that to this end it suffices to show that

lim
T→∞

I1(T) = μ(R
d
)C1+β

α,d

∫

R
d

p1(y)|y|−(d−α)(1+β)dy
(∫

R
d
ϕ(z)dz

)1+β

(χ(0))1+β .

(3.72)
Observe that Eq. 2.18 implies that d > α, hence

sup
x∈R

d

Gϕ(x) < ∞, (3.73)
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where G is defined by Eq. 2.3. This fact implies that if one of the limits below exists,
then so does the other, and

lim
T→∞

I1(T) = lim
T→∞

I′
1(T), (3.74)

where

I′
1(T) = 1

log T

∫

R
d

∫ T−1

0
TT−s

(∫ s

0
Ts−uϕχ

(
T − u

T

)
du

)1+β

(x)dsμ(dx)

(see Eqs. 3.13, 3.6 and 2.19). By obvious substitutions,

I′
1(T) = 1

log T

∫

R
d

∫ T

1

∫

R
d

ps(x − y)

(∫ T−s

0

∫

R
d

pu(y − z)ϕ(z)χ
( u

T
+ s

T

)
dzdu

)1+β

dydsμ(dx)

= 1

log T

∫

R
d

∫ T

1

∫

R
d

p1(xs−1/α − y)

×
(∫ T−s

0

∫

R
d

s−d/α pu/s(y − zs−1/α)ϕ(z)χ
( u

T
+ s

T

)
dzdu

)1+β

dydsμ(dx),

where we have used self-similarity and the substitution y′ = ys−1/α . Next, we substi-
tute u′ = u/s, and using Eq. 2.18 we get

I′
1(T) = 1

log T

∫

R
d

∫ T

1

∫

R
d

s−1 p1(xs−1/α − y)

×
(∫ T/s−1

0

∫

R
d

pu(y − zs−1/α)ϕ(z)χ
(us

T
+ s

T

)
dzdu

)1+β

dydsμ(dx).

Now we make the substitution s′ = log s/ log T, which is the main trick in calculating
the limit. We obtain

I′
1(T)=

∫

R
d

∫ 1

0

∫

R
d

p1(xT−s/α − y)

×
(∫ T1−s−1

0

∫

R
d

pu(y−zT−s/α)ϕ(z)χ((u+1)Ts−1)dzdu

)1+β

dydsμ(dx). (3.75)

It is now seen that taking the limit as T → ∞ we arrive at the right-hand side of
Eq. 3.72. It remains to justify this procedure.

Denote

U1(T, s, y) =
∫ T1−s−1

0

∫

R
d

pu(y − zT−s/α)ϕ(z)χ((u + 1)Ts−1)dzdu

and

U2(T, x) =
∫ 1

0

∫

R
d

p1(xT−s/α − y)U1+β

1 (T, s, y)dyds.
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We will need the following fact, which can be found, e.g., in [20] (Lemma 5.3)

sup
x∈R

d

(1 + |x|d−α)|Gϕ(x)| < ∞, ϕ ∈ S(R
d
), d > α. (3.76)

We have

U1(T, s, y) ≤ C
∫

R
d

1

|y − zT−s/α|d−α
ϕ(z)dz

= C1

|y|d−α
|yTs/α|d−αGϕ(yTs/α)

≤ C2

|y|d−α
,

by Eq. 3.76. On the other hand, using the well known estimate

p1(x) ≤ C
1 + |x|d+α

, (3.77)

we have

∫ 1

0
p1(xT−s/α − y)ds ≤ C3

1 + |x|d+α

1 + |y|d+α
,

hence it is not hard to see that U2(T, x) converges pointwise as T →∞, since (d−α)

(1 + β) < d by Eq. 2.18. Moreover, it is bounded in T, x, since

∫

R
d

p1(xT−s/α − y)|y|−(d−α)(1+β)dy ≤ C.

This proves Eqs. 3.72 by 3.74 and 3.75 because μ is finite.
Next observe that Eq. 3.19 implies that

I2(T) ≤ C
HT

F2
T

∫

R
d

G(ϕGϕ)(x)μ(dx), (3.78)

hence Eq. 3.17 follows by Eqs. 3.73 and 2.19. Using Eq. 3.73, by Eq. 3.21 we have

J1(T) ≤ C

F1+β

T

HT

F1+β

T

∫

R
d

∫ T

0
TT−s

(∫ s

0
Ts−uϕdu

)1+β

(x)dsμ(dx)

≤ C1

F1+β

T

→ 0,

since from the proof of Eq. 3.72 it follows that

sup
T≥2

sup
x∈R

d

1

log T

∫ T

0
TT−s

(∫ s

0
Ts−uϕdu

)1+β

(x)ds < ∞. (3.79)
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To prove Eq. 3.24 it suffices to note that by Eqs. 3.22 and 3.79,

J2(T) ≤ C
HT

F(1+β)2

T

T(log T)1+β = C
T

Hβ

T

→ 0,

by (2.16). This completes the proof of Eq. 3.5.
To show tightness we prove Eqs. 3.33 and 3.34 with h = 1 and σ satisfying Eq. 3.46

(such σ exists by Eq. 2.18). Recall that now we consider t1, t2 such that 0 < ε < t1 <

t2 ≤ 1, hence in Eq. 3.62 the integral on s is taken over [ε, 1]. In Eq. 3.62 we estimate
|ϕ̂(x)μ̂(x + y)| by a constant and we integrate with respect to x, obtaining

A(T) ≤ C
HT T2−d/α

F2
T

∫ 1

ε

∫ 1

s

∫

R
d

s−d/α|ϕ̂(y)|e−T(u−s)|y|αχ(u)χ(s)dyduds.

By Eqs. 3.48 and 2.19 we have

A(T) ≤ C1ε
−d/αT1−d/α+σ (t2 − t1)σ

∫ 1

ε

χ(s)ds
∫

R
d
|ϕ̂(y)||y|α(σ−1)dy

≤ C2(ε)T1−d/α+σ (t2 − t1)1+σ .

Hence Eq. 3.33 follows by Eqs. 3.36, 3.46 and 2.18.
Now we pass to the proof of Eq. 3.34. In this case the formula 3.52 has the form

I1(T) = Q1(T) + Q2(T), (3.80)

where

Q1(T) = 1

log T

∫

R
d

∫ ε/2

0
ps(xT−1/α − y)

(∫ 1

s

∫

R
d

pu−s(y − z)ϕ̃T(z)χ(u)dzdu
)1+β

dydsμ(dx), (3.81)

Q2(T) = 1

log T

∫

R
d

∫ 1

ε/2

∫

R
d
. . . dydsμ(dx). (3.82)

In Eq. 3.81 we have u − s > ε/2, hence pu−s(y − z) ≤ C(ε/2)−d/α . Therefore

Q1(T) ≤ C1(ε)

(∫

R
d
ϕ(z)dz

)1+β

μ(R
d
)(t2 − t1)1+β ≤ C2(ε)(t2 − t1)1+σ . (3.83)

In Eq. 3.82 we estimate ps(xT−1/α − y) by C(ε/2)−d/α , hence

Q2(T) ≤ C3(ε)

∫ 1

0

∫

R
d

(∫ 1

s

∫

R
d

pu−s(y − z)ϕ̃T(z)dzχ(u)du
)1+β

dyds.

The last expression is identical with the estimate of II in [7], and it was shown there
that it can be estimated by C(t2 − t1)1+σ , provided that d < α(1 + β)/β, which holds
in our case by Eq. 2.18. This, together with Eqs. 3.83, 3.80 and 3.37, proves Eq. 3.34,
so the proof of part (b) is complete.

Proof of part (c) First we show that under the assumption Eq. 2.20,

sup
x∈R

d

G((Gϕ)1+β)(x) < ∞, ϕ ∈ S(R
d
). (3.84)
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We have

G(Gϕ)1+β(x) = Cα,d

∫

|x−y|<1

1

|x − y|d−α
(Gϕ)1+β(y)dy + Cα,dg ∗ (Gϕ)1+β(x),

where g(x) = 11[1,∞)(|x|)|x|α−d. The first term is bounded since Gϕ is bounded. To
show that the second term is bounded it suffices to find p, q ≥ 1, 1/p + 1/q = 1, such
that g ∈ Lp and (Gϕ)1+β ∈ Lq. Fix q such that

d
α

> q > max

{
d

(1 + β)(d − α)
, 1

}

(such q exists by Eq. 2.20). Then Eq. 3.76 implies that G1+βϕ ∈ Lq, and it is clear that
g ∈ Lp for the corresponding p.

We now study the convergence of I1,I2 and I3 defined by Eqs. 3.13–3.15. We have

I1(T) =
∫

R
d

∫ T

0
Ts

(∫ T−s

0
Tuϕχ

( s
T

+ u
T

)
du

)1+β

(x)dsμ(dx). (3.85)

It is not difficult to see that Eq. 3.84 implies that

lim
T→∞

I1(T) =
∫

R
d

G((Gϕ)1+β)(x)μ(dx)(χ(0))1+β. (3.86)

By Eq. 3.21, Eqs. 3.73 and 3.84 we have

J1(T) ≤ C
HT

∫

R
d

G((Gϕ)1+β)(x)μ(dx) → 0.

Similarly, using Eqs. 3.22 and 3.84,

J2(T) ≤ C
T

Hβ

T

→ 0,

by Eq. 2.16. Hence we obtain Eq. 3.18, by Eqs. 3.20 and 3.86. Next, for β < 1, Eq.
3.78 implies 3.17. This together with Eq. 3.18, 3.86 and 3.12 yield Eq. 3.5 in the case
β < 1 with X determined by Eq. 2.22. To obtain Eq. 3.5 in the case β = 1 it remains
to show that

lim
T→∞

I2(T) =
∫

R
d

G(ϕGϕ)μ(dx)(χ(0))2. (3.87)

Using Eqs. 3.14 and 3.8 we write

I2(T) = I′
2(T) − I′′

2 (T) − I′′′
3 (T),

where

I′
2(T) =

∫

R
d

∫ T

0
TT−s

(
ϕχ

(
T − s

T

) ∫ s

0
Ts−uϕχ

(
T − s

T

)
du

)
(x)dsμ(dx),

I′′
2 (T) =

∫

R
d

∫ T

0
TT−s

(
ϕχ

(
T − s

T

) ∫ s

0
Ts−uϕχ

(
T − u

T

)
vT(·, u)du

)
(x)dsμ(dx),

I′′′
2 (T) = V

2
H1/2

T

∫

R
d

∫ T

0
TT−s

(
ϕχ

(
T − s

T

)∫ s

0
Ts−uv

2
T(·, u)du

)
(x)dsμ(dx).
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It is easy to see that I′
2(T) converges to the right-hand side of Eq. 3.87. To show

that I′′
2 (T) and I′′′

2 (T) converge to 0, we first apply Eq. 3.10, and then use Eqs. 3.73
and 3.84.

Finally, we pass to the proof of tightness. For 0 < ε ≤ t1 < t2, by Eqs. 3.38 and 3.25
we have

A(T) ≤ Cμ(R
d
) sup

x∈R
d

∫ T

0
Ts

(
ϕ

∫ T

s
Tu−sϕχ

( u
T

)
du

)
(x)χ

( s
T

)
ds

≤ C1 sup
x∈R

d

∫ t2T

t1T

∫

R
d

s−d/α p1((x − y)x−1/α)ϕ(y)

∫ t2T−s

0
Tuϕ(y)dudyds

≤ C2ε
−d/αT1−d/α(t2 − t1)

∫

R
d
ϕ(y)dy sup

y

∫ (t2−t1)T

0
Tuϕ(y)du

≤ C3(ε)T1−d/α+σ (t2 − t1)1+σ (sup
y

Gϕ(y))1−σ

≤ C4(ε)(t2 − t1)1+σ ,

for any

0 < σ <

(
d
α

− 1

)
∧ 1, (3.88)

so we obtain Eq. 3.33.
To derive Eq. 3.34 we use Eqs. 3.37, 3.85 and 3.25, obtaining

I1(T) ≤ μ(R
d
) sup

x∈R
d

(Z1(T, x) + Z2(T, x) + Z3(T, x)), (3.89)

where

Z1(T, x) =
∫ t1T/2

0
Ts

(∫ t2T−s

t1T−s
Tuϕdu

)1+β

(x)ds, (3.90)

Z2(T, x) =
∫ t1T

t1T/2
Ts

(∫ t2T−s

t1T−s
Tuϕdu

)1+β

(x)ds, (3.91)

Z3(T, x) =
∫ t2T

t1T
Ts

(∫ t2T−s

0
Tuϕdu

)1+β

(x)ds. (3.92)

By self-similarity we have

Z1(T, x) ≤ C
∫ t1T/2

0

(∫ t2T−s

t1T−s
u−d/αdu

)1+β

ds.

As u ≥ t1T − s ≥ t1T/2 ≥ εT/2, we get

Z1(T, x) ≤ C1ε
1−(d/α)(1+β)T2+β−(d/α)(1+β)(t2 − t1)1+β,

≤ C2(ε)(t2 − t1)1+β, (3.93)

by Eq. 2.20.
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To estimate Z2 we first use the bound ps(x − y) ≤ C(Tε/2)−d/α for s ≥ t1T/2.
After obvious substitutions we have

Z2(T, x) ≤ C(ε)(Z ′
2(T, x) + Z ′′

2 (T, x)), (3.94)

where

Z ′
2(T, x) = T−d/α

∫ 1

0

∫

R
d

(∫ (t2−t1)T+s

s
Tuϕ(y)du

)1+β

dyds, (3.95)

Z ′′
2 (T, x) = T−d/α

(∫ t1T/2

1

∫

R
d
. . . dyds

)+
. (3.96)

For any 0 < σ ≤ β we have

(∫ (t2−t1)T+s

s
Tuϕ(y)du

)β

≤ (Gϕ(y))β−σ

(
sup
y∈R

d

ϕ(y)

)σ

((t2 − t1)T)σ .

≤ C(t2 − t1)σ Tσ , (3.97)

by Eq. 3.73. Applying this to Eq. 3.95 we obtain

Z ′
2(T, x) ≤ C1T−d/α+1+σ (t2 − t1)1+σ ≤ C1(t2 − t1)1+σ , (3.98)

provided that

0 < σ <

(
d
α

− 1

)
∧ β. (3.99)

In order to estimate Z ′′
2 we notice that for d > α and 0 < a < b ,

∫ b

a
Tuϕ(y)du ≤ C

∫ b

a
u−d/αdu ≤

{
C(b − a)a−d/α,

C1a1−d/α.

Using these two bounds, instead of Eq. 3.97 we now have for 0 < σ ≤ β,

(∫ (t2−t1)T+s

s
Tuϕ(y)du

)β

≤ C2s(1−d/α)(β−σ)((t2 − t1)Ts−d/α)σ .

Putting this into Eq. 3.96 we obtain for t1T/2 > 1,

Z ′′
2 (T, x) ≤ C3T−d/α+1+σ

∫ t1T/2

1
s−σ+(1−d/α)βdx(t2 − t1)1+σ

≤ C3T−d/α+1+σ max(1, T1−σ+(1−d/α)β log T)(t2 − t1)1+σ

≤ C4(t2 − t1)1+σ , (3.100)

provided that Eq. 3.99 holds, and we also use Eq. 2.20. Combining Eqs. 3.94, 3.98 and
3.100 we arrive at

Z2(T, x) ≤ C(t2 − t1)1+σ (3.101)

for σ satisfying Eq. 3.99.
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Finally, by the Hölder inequality and using the fact that t2T − s ≤ (t2 − t1)T,
we have

Z3(T, x) ≤
(∫ t2T

t1T

∫

R
d

ps(x − y)dyds
)1/(2+β)

×
[∫ t2T

t1T

∫

R
d

ps(x − y)

(∫ (t2−t1)T

0
Tuϕ(y)du

)2+β

dyds
](1+β)/(2+β)

≤ C((t2 − t1)T)1/(2+β)

×
[∫ t2T

t1T

∫

R
d

s−d/α(Gϕ(y))2+β−σ ((t2 − t1)T)σ dyds
](1+β)/(2+β)

(3.102)

for any 0 < σ ≤ 2 + β, by an argument as in Eq. 3.97. Observe that by Eq. 3.76,
∫

R
d
(Gϕ(y))2+β−σ dy < ∞

for σ sufficiently small, satisfying

d
α

>
2 + β − σ

1 + β − σ
. (3.103)

Hence, by Eq. 3.102 we have

Z3(T, x) ≤ C(ε)(t2 − t1)1+σ(1+β)/(2+β)T1+σ(1+β)/(2+β)−(d/α)(1+β)/(2+β)

≤ C(ε)(t2 − t1)1+σ(1+β)/(2+β), (3.104)

provided that

σ <
d
α

1 + β

2 + β
− 1. (3.105)

Combining Eqs. 3.89, 3.93, 3.101 and 3.104, we conclude that Eq. 3.34 holds (with
σ(1 + β)/(2 + β) instead of σ ) for any σ satisfying Eqs. 3.99, 3.103 and 3.105.

The proof of Theorem 2.7 is complete. ��

Proof of Proposition 2.9 Only part (d) of the proposition needs to be proved. The
argument is similar to that used in the proof of Theorem 2.7 in [7].

Observe that the finite-dimensional distributions of the process ζ defined by
Eq. 2.2 are determined by

Eexp{i(z1ξt1 + . . . + zkξtk)}

= exp
{
−

∫

R
d+1

[∣
∣∣∣

k∑

j=1

z j p1/(1+β)
r (x)11[0,t j](r)

∫ t j

r
pu−r(x)du

∣
∣∣∣

1+β

×
(

1−isgn
( k∑

j=1

z j p1/(1+β)
r (x)11[0,t j](r)

∫ t j

r
pu−r(x)du

)
tan

π

2
(1+β)

)]
drdx (3.106)

(see Proposition 3.4.2 of [24]).
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Denote

D+
T = DT(1, z; u, v, s, t), z > 0,

D−
T = DT(1,−z; u, v, s, t), z > 0,

(see Eq. 2.12). It suffices to show that for fixed 0 ≤ u < v < s < t and z > 0,

D+
T ≤ CT−d/α, D−

T ≤ CT−d/α, (3.107)

and for T sufficiently large,

D+
T ≥ CT−d/α (3.108)

(see Eq. 2.11).
It will be convenient to denote

f = f (x, r) = z
∫ t+T

s+T
pr′−r(x)dr′,

g1 = g1(x, r) =
∫ v

u
pr′−r(x)dr′,

g2 = g2(x, r) =
∫ v

r
pr′−r(x)dr′.

It is not difficult to see that by Eq. 3.106,

D+
T = C

[∫ u

0

∫

R
d

pr(x)(( f + g1)
1+β − f 1+β − g1+β

1 )dxdr

+
∫ v

u

∫

R
d

pr(x)(( f + g2)
1+β − f 1+β − g1+β

2 )dxdr
]

. (3.109)

By the elementary inequality

0 ≤ (a + b)1+β − a1+β − b 1+β ≤ (1 + β)abβ, a, b ≥ 0, 0 < β ≤ 1,

and the estimate

f (x, r) ≤ CT−d/α,

we have

D+
T ≤ C1

∫

R
d

[∫ u

0
pr(x) fgβ

1 dr +
∫ v

u
pr(x) fgβ

2 dr
]

dx

≤ C2T−d/α

∫

R
d

(∫ v

0
pr(x)dr

)1+β

dx

≤ C3T−d/α, (3.110)

by Eq. 3.3. One can show that for D−
T the estimate (3.110) also holds (see [7] for

details). Hence Eq. 3.107 follows.
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Next, by Eq. 3.109,

D+
T ≥ C

∫ (u+v)/2

u

∫

|x|≤1
pr(x)(( f + g2)

1+β − f 1+β − g1+β)dxdr

≥ C1

∫ (u+v)/2

u

∫

|x|≤1
(( f + g2)

1+β − f 1+β − g1+β)dxdr,

and this is exactly the right-hand side of (4.18) in [7], and it was proved there that it
is greater than CT−d/α for large T. Thus Eq. 3.108 holds. ��

Proof of Theorem 2.10 The theorem can be proved using the corresponding version
of the general scheme (see Eq. 3.39) and the discussion following it). The argu-
ments are similar to those carried out in the branching case and they are easier,
therefore we omit the proof. We only indicate how to obtain the process ζ in
part (a).

It is easy to see that II1(T) defined by Eq. 3.40 can be written as

II1(T) =
∫

R
d

∫ 1

0

∫

R
d

∫ 1

s

∫

R
d

s−d/α p1((x − y)T−1/αs−1/α)ϕ(y)χ(s)(u − s)−d/α

×p1((y − z)T−1/α(u − s)−1/α)ϕ(z)χ(u)dzdudydsμ(dx)

→ p2
1(0)μ(R

d
)

(∫

R
d
ϕ(y)dy

)2 ∫ 1

0

∫ 1

s
(u − s)−d/αs−d/αχ(s)χ(u)duds,

and this is exactly the logarithm of right-hand side of Eq. 3.42 with

X =
(

2p2
1(0)μ(R

d
)

1 − d
α

)1/2

λρ,

and ρ is Gaussian with covariance (2.25). ��
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